当前位置:文档之家› 某型发动机连杆小头衬套故障分析与优化设计20150814

某型发动机连杆小头衬套故障分析与优化设计20150814

某型发动机连杆小头衬套故障分析与优化设计20150814
某型发动机连杆小头衬套故障分析与优化设计20150814

某8V柴油机连杆小头衬套故障分析与改进设计

赵志强1王根全1王延荣1 张利敏1 许春光1

(1.中国北方发动机研究所(天津),天津300400)

摘要:针对某8V柴油机50h台架试验中出现的衬套磨损和松动的故障,在故障分析的基础上,从改善轴承润滑、提高衬套固持力和提高连杆小头刚度三方面入手,借助经验、理论计算及有限元仿真等手段开展结构改进分析进而提出改进方案,该方案经500h台架耐久性试验考核未重现上述故障,由此验证本文改进措施的有效性。

关键词:柴油机衬套改进设计试验验证

连杆是往复活塞式内燃机动力传递的重要组件,它承受周期性交变载荷,把活塞旋转往复直线运动转化为曲轴的旋转运动,并将作用在活塞上的力传递给曲轴对外输出功率[1,2]。连杆小头衬套作为连杆组件的关键零件,它与活塞销组成一对滑动轴承副,连杆小头衬套与连杆体采取过盈的方式紧固联接、小头衬套与活塞销为间隙配合,连杆衬套的磨损和松动是连杆的主要失效形式。

本研究对象为某8V柴油机连杆小头衬套,分析并确定其故障机理,基于经验、理论公式和有限元仿真软件技术确定出改进方案,最终经试验验证,找到衬套磨损和松动的解决措施。

1 某8V柴油机连杆小头衬套故障描述

某8V柴油机在初样机阶段多台样机在50h 台架试验中发生衬套磨损和松动的故障,连杆小头衬套磨损故障见图1、连杆小头衬套松动见图2。

图1连杆小头衬套磨损故障

图2连杆小头衬套松动故障

2 故障分析

依据经验分析,连杆衬套磨损、发黑一般应从润滑角度考虑;连杆小头衬套松动、脱出应该从衬套与连杆体固持力不足角度分析,但往往两者非独立故障导致衬套故障,存在一定关联关系影响。如连杆轴承润滑不良,衬套和活塞销摩擦表面的摩擦磨损状态会发生剧变,衬套安装固持力和摩擦力会此消彼长,过度的磨损使衬套的固持力持续下降,而摩擦力持续增加,当衬套安装固持力和工作摩擦力发生逆转时,故障现象随即出现;而衬套固持力不足,衬套会发生松动和旋转现象,使衬套进油孔和连杆体进油孔位置错位,导致轴承润滑不畅发生衬套磨损和烧蚀故障。鉴于上述分析,决定从提高固持力和加强润滑两条思路同时出发,以解决某8V柴油机的连杆衬套故障。

3 改进方案

3.1加强润滑

由于连杆小头轴承润滑为飞溅润滑方式,所以小头轴承润滑主要从衬套进油结构和轴承内表面油线结构进行分析和改进。

原8V 柴油机机连杆衬套为锡青铜旋压制成,衬套壁厚为2mm 、衬套孔径Ф52mm ,衬套与活塞销的间隙为0.04~0.063mm ,衬套与连杆体的过盈量为0.065~0.088mm ,连杆衬套进油方式为顶部Ф6进油孔,两侧设计进油槽结构,原8V 柴油机小头衬套结构示意图见图3所示,经分析原8V 柴油机顶部一个油孔的连杆常见于直列发动机,V 型发动机左右两排气缸存在一定角度,飞溅的润滑油不容易进入连杆顶部小头油孔,所以项目组决定衬套进油孔由顶部单个进油孔改为两侧两个进油孔,使较多的润滑油更容易进入小头轴承,并且在衬套孔两侧增加油池结构,一方面可以储备润滑油,满足轴承工作需要;另外也可以储存轴承内磨损产生的磨粒和外界的杂质、防止划伤轴承,进一步导致轴承磨损等故障。连杆衬套改进后结构示意见图4所示。原机衬套与活塞销的间隙为0.04~0.063mm ,经冷却润滑分析认为该润滑间隙偏小,决定增大活塞销与衬套间隙到0.065~0.072mm 。

图3 原8V

柴油机小头衬套结构示意

图4 连杆衬套改进后结构示意

3.2 提高固持力

3.2.1 衬套背压理论公式计算分析

依据理论公式,衬套背压计算如下:

△:衬套压入时的过盈,取值(0.06-0.08); t:发动机工作时连杆温度,取值:120°; α:连杆线膨胀系数,取值:1.00E-06; αB ;连杆衬套线膨胀系数,取值:1.80E-06; μ:泊松比,取值0.3;

E: 连杆弹性模量,取值:2.10E+05; E B :衬套弹性模量,取值:1.30E+05; d: 衬套内径, 取值:52;

d1':衬套外径,取值:1.5mm 壁厚为Ф55,2mm 壁厚为Ф56,2.5mm 壁厚为Ф57; d2 :连杆小头外径,取Ф79; p:衬套背压。

安装工况下,经理论公式计算衬套壁厚为1.5mm 、2mm 和2.5mm 背压结果见表1。

表1 衬套背压计算结果

壁厚 1.5mm

2.0mm

2.5mm

背压

(MPa )

8.0~10.4 9.9~13.0 11.7~15.3

3.2.2 衬套背压有限元仿真分析

在安装衬套工况下,对壁厚1.5mm 衬套,壁厚2.0mm 衬套和改进方案壁厚2.5mm 连杆衬套背压进行有限元仿真计算分析,壁厚 1.5mm 衬套背压分析结果见图5所示,壁厚2.0mm 衬套背压分析结果见图6所示, 壁厚2.5mm 衬套背压分析结果见图7所示。

图5 壁厚1.5mm 衬套背压分析结果

图6 壁厚2.0mm衬套背压分析结果

图7 壁厚2.5mm衬套背压分析结果

由有限元软件分析知,衬套背压小于10MPa 区域呈现黑色,由图6知壁厚1.5mm衬套大部分区域背压小于10MPa,由图6知壁厚2.0衬套存在部分区域背压小于10MPa,由图7知,壁厚2.5mm衬套基本不存在背压小于10MPa区域。

一般认为,在衬套安装状态下,连杆小头衬套和连杆体底孔背压接触应力不小于10MPa,通过理论公式和仿真软件计算分析知1.0和2.0壁厚衬套背压不满足使用要求。所以选择2.5mm 的旋压衬套作为改进目标。

4 连杆体刚度分析

连杆在工作过程中,承受周期变化的拉-压交变载荷,工作情况较恶劣。连杆衬套壁厚由原机2mm增加到改进后2.5mm壁厚,连杆小头底孔直径由原机的Ф56mm增加到Ф57mm,必然消弱了连杆小头的刚度,鉴于连杆工作情况复杂性,防止小头刚度变化导致连杆其他故障,所以对连杆体小头部分进行刚度改进,改进的目标:1. 由于连杆为模锻件,最小程度减小摸具的返修;2.壁厚2.5连杆体刚度不弱于壁厚2.0连杆体刚度;3.连杆小头重量尽量增加最小,以不改变原发动机平衡。

4.1 有限元分析

在Pro/E中对连杆小头各方案进行建模,通过Hypermesh网格划分软件进行有限元网格划分,导入到有限元软件Abaqus进行有限元的仿真计算。划分网格后的连杆小头模型如图8所示。

图8 划分网格后的连杆小头模型

4.2 结果考察角度定义

连杆小头的刚度通过连杆小头底孔的直径方向的变形大小来定义,向小头中心点的位移为负值,远离中心点的位移为正值。连杆小头底孔变形结果对应角度定义如图9所示。

图9 连杆小头底孔变形结果对应角度定义

4.3 连杆刚度计算结果

项目组进行了大量方案对比分析,如改进连杆小头与杆身过渡圆角、增加小头外圆直径尺寸、增加小头厚度尺寸等方案,均不能达到改进目标,最后确定,在原机连杆小头外圆直径基础上向上偏移2mm,保证改进目标的同时,可以实现改进后连杆小头刚度不弱于原机连杆。安装工况下,改进后连杆小头变形结果与原机对比见

图10,安装工况下变形对比分析结果见表2所示。

图10 改进后连杆小头变形结果与原机对比

表2 变形对比分析结果

方向直径变形(mm) 改进

0°-180°0.0077

90°-270°0.0199 原机

0°-180°0.0078

90°-270°0.0207 最大惯性力工况下,改进后连杆小头变形结果与原机对比见图11,变形对比分析结果见表3所示。

图11 改进后连杆小头变形结果与原机对比

表3 变形对比分析结果

状态方向直径变形(mm)

改进

0°-180°0.0283

90°-270°-0.0252 原机

0°-180°0.0258

90°-270°-0.0220 由以上计算分析知,在安装工况下,改进后连杆小头孔变形结果均优于原机状态,在最大惯性力工况下,改进后连杆小头孔基本比原机连杆小头孔变形大0.003mm(小数点后三位),认为变形相当。

5 台架耐久性试验验证

改进后的连杆随整机进行500h台架耐久性试验验证,试验后对发动机进行拆检,拆检发现8支连杆中有两支连杆衬套表面有轻微划痕(图12下面两张照片),经分析表面划分不影响使用,其余6支连杆衬套表面光亮(图12上面两张照片)试验后连杆照片见图12。

图12 试验后连杆衬套照片

6 结论

某8V柴油机数台初样机在50h台架耐久性试验中,连杆小头衬套频出现衬套内表面发黑、磨损和松动故障,从加强润滑和提高固持力角度出发,提出衬套改进方案,最终经500h台架耐久性试验验证,衬套内表面无磨损和松动特征,证明分析思路的正确性和改进措施的有效性。

参考文献

[1] 周龙保, 内燃机学[M]. 北京:机械工业出版

社,1999.

[2] 杨连生.内燃机设计[M].北京:中国农业机械

出版社,1981.

[3] 王远,朱会田,曹永晟,等.基于有限元法的发

动机连杆疲劳强度分析研究[J].机械传动,2010,34(4):68-71.

[4] 苏铁雄,吕彩琴,张翼,等。接触问题对连

杆有限元分析的影响[J].内燃机学报,2002,20(1):79-83.

[5] 尹松. 发动机连杆小头与衬套刚强度分析与

优化[D]. 北京理工大学,2014.

[6] 谈卓君, 左正兴, 张儒华. 内燃机连杆有限

元分析进展[J].中国机械工程, 2004,15(4): 365-369.

[7] 任俊, 刘小君, 王伟等. 发动机连杆小头轴

承的润滑研究[J]. 合肥工业大学学报(自然科学版), 2008,31(3): 347-351.

[8] Dan Dinu, Michael T. Lapp. Optimized Power

Cell Unit in IC Engine-Design for Light Weight and High Strength Piston and Connecting Rod. SAE 2006-01-0894.

[9] Zhang C, Cheng H S. Scuffing Behavior of

Piston-Pin/Bore Bearing in Mixed Lubrication-Part II: Scuffing Mechanism and Failure Criterion[J]. Tribology Transactions, 2004, 47(1): 149-156.

[10] 张利敏,王延荣,赵志强等. 高功率密度柴

油机连杆小头衬套孔结构优化设计[J]. 车用发动机,2014(2): 15-18.

[11] 李梅,吴泓,陈志忠等. 船用柴油机连杆小

头轴承润滑分析[J]. 柴油机, 2011,33(3): 29-32.

[12] Jambolka B, Rolf L, Ulrich P, etc. Aluminum

Connecting Rods for car engines [J]. MTZ, 2012, 73(9): 36-40.

[13] 何柏岩, 陈寺专, 裴毅强等. 基于多体动力

学的479Q发动机连杆载荷与强度分析[J].

内燃机工程, 2011, 32(4): 39-45.

Failure Analysis、Modification and Validation for Bush of

Connecting Rod Small End of a Diesel Engine

Abstract: Focusing on the wear and loosen invalidity of the bush of an 8V diesel engine in 50h bench test, on the basis of failure analysis, the structure modification is presented in terms of improving lubrication、increasing the bush shrink-fit force and strengthening the stiffness of the small end of con-rod by virtual of the experience、theory calculation and FEA, which has been passed 500h endure test without

above-mentioned problem, therefore, the validation is well verified.

Key word: diesel engine; bush; modification; test

连杆设计的详细计算

第四章典型零部件(连杆)的设计 连杆是发动机最重要的零件之一,近代中小型高速柴油机,为使发动机结构紧凑,最合适的连杆长度应该是,在保证连杆及相关机件运动时不与其他机件相碰的情况下,选取小的连杆长度,而大缸径的中低速柴油机,为减少侧压力,可适当加长连杆。 连杆的结构并不复杂,且连杆大头、小头尺寸主要取决于曲轴及活塞组的设计。在连杆的设计中,主要考虑的是连杆中心距以及大、小头的结构形式。。连杆的运动情况和受力状态都比较复杂。在内燃机运转过程中,连杆小头中心与活塞一起作往复运动,承受活塞组产生的往复惯性力;大头中心与曲轴的连杆轴颈一起作往复运动,承受活塞连杆组往复惯性力和不包括连杆大头盖在内的连杆组旋转质量惯性力;杆身作复合平面运动,承受气体压力和往复惯性力所产生的拉伸.压缩交变应力,以及压缩载荷和本身摆动惯性力矩所产生的附加弯曲应力。 为了顺应内燃机高速化趋势,在发展连杆新材料、新工艺和新结构方面都必须既有利于提高刚度和疲劳强度,有能减轻质量,缩小尺寸。 对连杆的要求: 1、结构简单,尺寸紧凑,可靠耐用; 2、在保证具有足够强度和刚度的前提下,尽可能的减轻重量,以降低惯性力; 3、尽量缩短长度,以降低发动机的总体尺寸和总重量; 4、大小头轴承工作可靠,耐磨性好; 5、连杆螺栓疲劳强度高,连接可靠。 但由于本设计是改型设计,故良好的继承性也是一个考虑的方面。 4.1连杆材料 结合发动机工作特性,发动机连杆材料应当满足发动机正常工作所需要的要求。应具有较高的疲劳强度和冲击韧性,一般选用中碳钢或中碳合金钢,如45、40Cr等,本设计中发动机为中小功率发动机,故选用一般的45钢材料基本可以满足使用要求。

汽车发动机连杆螺栓热处理工艺设计分析解析

金属材料热处理原理与工艺课程设计40Mn发动机连杆螺栓热处理工艺设计 院、部: 学生姓名: 学号: 指导教师:职称 专业: 班级: 完成时间:

摘要 综述了发动机连杆螺栓的工作环境,使用性能,失效形式,连杆螺栓材料的选择,热处理工艺等。主要就连杆螺栓的热处理工艺做了详细的分析,通过大量的实验得出了连杆螺栓材料热处理后的金相组织图等资料。分别对球化退火、淬火、回火过程中组织、硬度的的变化做了分析。并就实验中出现的问题作了分析,以供参考。 关键词:连杆螺栓热处理;等温退火;淬火;回火;问题分析

目录 摘要............................................................................................................................................. I 前言. (1) 1 连杆螺栓的使用性能 (1) 2 材料选择及技术要求 (1) 2.1.螺栓的热处理工艺规范 (2) 2.2材料的选择 (2) 3 热处理工艺及目的 (3) 3.1退火 (3) 3.2正火 (3) 3.3淬火 (4) 3.4回火 (4) 4 设计说明 (4) 4.1失效形式 (4) 4.2工作要求 (4) 4.3结构钢40M N的化学成分 (5) 4.3.1 主要特性 (5) 4.3.2 材料分析 (5) 4.3.3 力学性能要求 (6) 4.3.4 基于材料的零件设计 (6) 4.5热处理工艺说明 (7) 5 设计方案 (8) 5.1正火 (8) 5.2调质处理 (8) 5.3回火的制定 (9) 6 螺栓的热处理质量检测 (9) 6.1硬度计 (9) 6.2外观检测与金相组织检验 (9) 7 螺栓热处理回火缺陷的原因及解决方案 (10) 参考文献 (11)

发动机连杆加工工艺分析与设计

发动机连杆加工工艺分析与设计 1

发动机连杆加工工艺分析与设计 摘要 因为连杆是活塞式发动机和压缩机的主要零件之一,其大头孔与曲轴连接,小头孔经过活塞销与活塞连接,其作用是将活塞的气体压力传送给曲轴,又收曲轴驱动而带动活塞压缩汽缸中的气体。连杆承受的是冲击动载荷,因此要求连杆质量小,强度高。因此在安排工艺过程时,按照”先基准后一般”的加工原则。连杆的主要加工表面为大小头孔和两端面,较重要的加工表面为连杆体和盖的结合面及螺栓孔定位面。 由于连杆既是传力零件,又是运动件,不能单靠加大连杆尺寸来提高其承载能力,须综合材料选用、结构设计。在对其设计中我们先对连杆工艺过程分析,联系实际经过对其具体设计的了解进行连杆机械加工工艺过程分析及其一些机械加工余量、工序尺寸的确定。 关键词:发动机,连杆,定位基面,工艺设计 2

目录 第一章发动机的概述 (1) 1.1发动机的定义 (1) 1.2发动机的发展历史 (1) 1.3发动机的分类 (2) 1.4发动机的总体结构 (2) 第二章连杆的分析 (3) 2.1连杆的作用 (3) 2.2连杆的结构特点 (3) 2.3连杆的工艺分析 (4) 第三章连杆工艺规程设计 (7) 3.1确定连杆的材料和毛坯 (7) 3.2连杆的机械加工工艺过程 (7) 3.4连杆的机械加工工艺过程的夹紧方法 (8) 第四章连杆机械加工工艺过程分析 (9) 4.1.工艺过程的安排 (9) 4.2连杆主要加工表面的工序安排 (9) 4.3连杆机械加工工艺路线 (10) 第五章机械加工余量、工序尺寸的确定 (12) 3

5.1大头孔两端面的加工余量及工序尺寸 (12) 5.2小头孔端面加工余量及工序尺寸 (12) 5.3小头孔的加工余量及工序尺寸 (12) 5.4大头孔的加工余量及工序尺寸 (13) 5.5螺栓孔加工余量及工序尺寸 (13) 5.6小头油孔加工余量及工序尺寸 (13) 5.7连杆盖定位销孔加工余量及工序尺寸 (14) 5.8小头油孔加工余量及工序尺寸 (14) 5.9确定切削用量及工时 (14) 5.10工艺卡片的制订 (15) 谢辞 (29) 参考资料 (30) 附录 (31) 4

连杆受力及其特征

1.连杆受力及其特征: 1.)四冲程内燃机连杆在整个工作循环中时而受压,时而受拉,二冲程内燃机的连杆 则几乎是一直受压; 2.)连杆的摆动使杆身产生惯性力矩并使连杆受弯; 3.)主副连杆机构中的副连杆的作用力产生附加弯矩 2.设计连杆时注意: 1.)应从疲劳强度的角度来考虑连杆的强度设计,几乎所有连杆因强度问题而出现的 事故均系耐疲劳强度下不足所致; 2.)应保证连杆有足够的刚度,特别应避免连杆大、小端孔的变形过大,以保证轴瓦 与衬套能可靠工作,同时应力求减小给连杆螺栓增加附加弯曲应力; 3.)保证连杆大、小端轴瓦和衬套可靠工作、足够的耐磨性和抗疲劳性,以适应柴油 机不断提高功率和降低维护保养费用,延长检修期的需要。 3.平切口连杆大端: 连杆大端盖的剖分面与连杆中心垂直。杆身与大端盖之间用连杆螺栓联接。平切口结构连杆大端的曲柄销尺寸范围为dp≤(0.65-0.72)D。尽管这种大端结构及制造工艺均甚为简单,且仍广泛应用于高、中速内燃机中,但由于曲柄销径的增大受到限制,这种结构难以用于高参数的柴油机中。 4.斜切口连杆大端: 当连杆的接合面宽度K相同时,斜切口式连杆大端可以按排较大的连杆轴颈,而仍能保持由气缸中抽出活塞连杆组的优点。通常斜切口连杆大端许可安排下的连杆轴颈为dp≤0.85D. 5.连杆大端盖: 1.)梳齿形断面:结构轻,刚度较均匀,但加工困难、成本高,只能用于轻型高速柴 油机; 2.)双筋式:刚度亦较均匀,由于大端盖筋的方向与杆身上工字形断面肋片方向垂直 而不便与连杆体用同一幅锻模制造; 3.)T型断面:结构简单,易于锻造和机械加工,在中、高速柴油机中应有较多; 4.)工字形断面:结构合理,适合于铸钢毛坯,多用于中低速柴油机 6.连杆小端结构的优缺点: 1.)锻造毛坯的连杆,表面有7-10度的拔模角,通常在模锻之后外表不再机械加工, 广泛用于强载度不高,大批量生产的,尺寸不大的产品中; 2.)自由锻毛坯经车削加工而成,小端呈球形,杆身多呈圆柱形,工艺简单,结构笨 重,适用于小批量生产的中低速柴油机; 3.)在于增加小端顶部中央截面的抗弯能力; 4.)可以分别增加连杆小端及活塞销座的主要承压面,许多强载度较高的柴油机连杆 采用; 5.)二冲程高速柴油机的连杆小端,其特点在于衬套内表面有螺旋形布油槽,能向连 杆小端轴承内表面供应较充分的润滑油。 7.连杆杆身设计时为什么选用工字梁:

某型发动机连杆小头衬套故障分析与优化设计20150814

某8V柴油机连杆小头衬套故障分析与改进设计 赵志强1王根全1王延荣1 张利敏1 许春光1 (1.中国北方发动机研究所(天津),天津300400) 摘要:针对某8V柴油机50h台架试验中出现的衬套磨损和松动的故障,在故障分析的基础上,从改善轴承润滑、提高衬套固持力和提高连杆小头刚度三方面入手,借助经验、理论计算及有限元仿真等手段开展结构改进分析进而提出改进方案,该方案经500h台架耐久性试验考核未重现上述故障,由此验证本文改进措施的有效性。 关键词:柴油机衬套改进设计试验验证 连杆是往复活塞式内燃机动力传递的重要组件,它承受周期性交变载荷,把活塞旋转往复直线运动转化为曲轴的旋转运动,并将作用在活塞上的力传递给曲轴对外输出功率[1,2]。连杆小头衬套作为连杆组件的关键零件,它与活塞销组成一对滑动轴承副,连杆小头衬套与连杆体采取过盈的方式紧固联接、小头衬套与活塞销为间隙配合,连杆衬套的磨损和松动是连杆的主要失效形式。 本研究对象为某8V柴油机连杆小头衬套,分析并确定其故障机理,基于经验、理论公式和有限元仿真软件技术确定出改进方案,最终经试验验证,找到衬套磨损和松动的解决措施。 1 某8V柴油机连杆小头衬套故障描述 某8V柴油机在初样机阶段多台样机在50h 台架试验中发生衬套磨损和松动的故障,连杆小头衬套磨损故障见图1、连杆小头衬套松动见图2。 图1连杆小头衬套磨损故障 图2连杆小头衬套松动故障 2 故障分析 依据经验分析,连杆衬套磨损、发黑一般应从润滑角度考虑;连杆小头衬套松动、脱出应该从衬套与连杆体固持力不足角度分析,但往往两者非独立故障导致衬套故障,存在一定关联关系影响。如连杆轴承润滑不良,衬套和活塞销摩擦表面的摩擦磨损状态会发生剧变,衬套安装固持力和摩擦力会此消彼长,过度的磨损使衬套的固持力持续下降,而摩擦力持续增加,当衬套安装固持力和工作摩擦力发生逆转时,故障现象随即出现;而衬套固持力不足,衬套会发生松动和旋转现象,使衬套进油孔和连杆体进油孔位置错位,导致轴承润滑不畅发生衬套磨损和烧蚀故障。鉴于上述分析,决定从提高固持力和加强润滑两条思路同时出发,以解决某8V柴油机的连杆衬套故障。 3 改进方案

发动机曲柄连杆机构的设计

. 摘要 以桑塔纳2000AJR型发动机为例,基于相关参数对发动机曲柄滑块机构主要零部件进行结构设计计算,同时进行强度、刚度等方面的校核,并进行相关力学分析和机构运动仿真分析,以达到良好的生产经济效益。 目前国外对发动机曲柄连杆机构的动力学分析的方法很多,而且已经完善和成熟,但仍缺乏一种基于良好生产效益、经济效益上的综合性分析,本次设计在清晰、全面剖析的基础上,有机地将各研究模块联系起来,达到既简便又清晰的设计目的,力求为发动机曲柄滑块机构的设计提供一种综合全面的思路。 分析研究的主要模块分为以下三个部分:第一,对发动机曲柄滑块机构进行力学分析,着重分析活塞的位移、速度、加速度以及工质的作用力和机构的惯性力;第二,进行曲柄滑块机构活塞组、连杆组以及曲轴的结构设计,并对其强度和刚度进行校核;第三,应用Pro∕Engineer 建立曲柄滑块机构主要零部件的几何模型,并利用Pro/Mechanism进行机构仿真。 关键词:发动机;曲柄滑块机构;力学分析;机构仿真

目录 第一章绪论 (1) 1.1国外发展现状 (1) 1.2研究的主要容 (1) 第二章总体方案的设计 (2) 2.1原始参数的选定 (2) 2.2原理性方案设计 (2) 2.3 结构的设计 (3) 2.4 确定设计方案 (3) 第三章中心曲柄连杆机构的设计 (5) 3.1 气缸的作用力分析 (5) 3.2 惯性力的计算 (5) 第四章活塞以及连杆组件的设计 (8) 4.1 设计活塞组件 (8) 4.2 设计活塞销 (9) 4.3 活塞销座 (9) 4.4 连杆的设计 (9) 第五章曲轴的设计 (11) 5.1 曲轴的材料的选择 (11) 5.2 确定曲轴的主要尺寸和结构细节 (11) 第六章曲柄连杆机构的创建 (13)

195柴油机连杆设计及连杆螺栓强度校核计算课程设计说明书

课程设计说明书 课程名称:发动机设计课程设计 课程代码: 题目:195柴油机连杆设计及连杆螺 栓强度校核计算 学院(直属系) :交通与汽车工程学院 年级/专业/班: 2009/热能与动力工程(汽车 发动机)/1班 学生姓名: 学号: 3120090805015XX 指导教师:曾东建、田维、暴秀超 开题时间: 2012 年 6 月 28 日 完成时间: 2012 年 7 月 16 日

目录 摘要 (2) 1引言 (3) 1.1国内外内燃机研究现状 (3) 1.2任务与分析 (5) 2柴油机工作过程计算 (6) 2.1 已知条件 (6) 2.2 参数选择 (7) 2.3 195柴油机额定工况工作过程计算 (7) 3 连杆设计 (11) 3.1 连杆结构设计 (11) 3.2 连杆材料选择 (13) 4 连杆螺钉强度校核 (14) 4.1 连杆螺钉的结构设计 (14) 4.2 连杆螺钉的强度校核 (14) 5 结论 (18) 致谢 (19) 参考文献 (19) 附录:195柴油机额定工况工作过程计算程序 (20)

摘要 20 世纪90 年代以来,汽车行业的竞争已从单一的性能竞争转向性能、环保、节能等多元综合竞争。仅就柴油机而言,为应对世界能源危机和减少对环境污染,其研究开发工作已侧重于降低油耗、减少排放、轻质及减少磨损等方面,在这些研究中优化技术将得到广泛的应用。汽车已经在普通民众中得到普及,随着汽车行业的不断发展,汽车产业的未来乐观与否一定意义决定于发动机的技术水平。因此,培养高素质的汽车发动机人才对当今社会的快速发展至关重要。 本次课程设计的既是通过对195柴油机结构的分析研究,计算工作过程中的热力参数绘制其工作过程的P-V图,绘制195柴油机总成横剖面图,对连杆进行设计、强度计算和绘制连杆零部件图,对并对设计好的连杆大头、小头和螺钉进行校核,以根据工况设计连杆小头、杆身、大头,合理达到要求。此次,我们就选择了对连杆螺钉进行校核。连杆螺钉在连杆盖以及连杆大头之间的联接发挥着至关重要的作用,并且由于往复惯性力和气体压力的双重作用下,使螺钉的受力十分严酷,所以对其进行强度校核就显得十分必要。 关键词:柴油机、连杆、设计、校核

发动机连杆机械加工工艺设计

毕业设计(论文)题目:发动机连杆机械加工工艺研究 院系: 专业班级: 学号: 姓名: 指导老师: 教务二处制

摘要 连杆是汽车发动机中重要的组成部分,本文主要论述了发动机连杆的机械加工工艺。连杆主要是把活塞和曲轴连接起来,使活塞的往复直线运动转换为曲轴的旋转运动。连杆承受的是冲击动载荷,因此要求连杆刚度和强度。由于连杆既是传动零件又是运动件,须综合材料选用、结构设计。在对其设计中我们先对连杆工艺过程分析,联系实际通过对其具体设计的了解进行连杆机械加工工艺过程分析及其机械加工余量、工序尺寸的确定。 关键词:连杆;工艺设计;加工余量;工序尺寸

Abstract Automotive engine connecting rod is an important part of this paper discusses the machining process of engine connecting rod. The main link is connected to the piston and the crankshaft, so that the reciprocating linear motion of the piston is converted to rotary motion of the crankshaft. Link to withstand the impact of dynamic load, thus requiring the link stiffness and strength. Since both the transmission link is part of moving parts, must be integrated material selection, structural design. In its design, we first link process analysis, and practice by conducting rod machining process analysis and mechanical allowance, the process to determine the size of their understanding of the specific design. Keywords: Link; Process design; Allowance

第三章 连杆的基本设1

第三章 连杆的基本设计 3.1 连杆结构及长度的确定 单列式汽油机的连杆,根据大头的结构一般可分为平切口、斜切口连杆及分体式连杆。多列式柴油机的连杆有并列连杆、叉形连杆、主副连杆等类型。 连杆的长短直接影响到柴油机的高度及侧压力的大小,较长的连杆能使惯性力增加,而同时在侧压力方面的改善却不明显。因此在柴油机设计时,当运动件不与有关零部件相碰时,都力求缩短连杆的长度。 连杆长度L (即连杆大小头孔中心距)与结构参数l R =λ(R 为曲柄半径)有关。连杆 长度越短,即λ越大,则可降低发动机高度,减轻运动件重量和整机重量,对高速化有利,但λ大,使二级往复惯性力及气缸侧压力增大,并增加曲轴平衡块与活塞、气缸相碰的可能性。 在现代高速内燃机中,连杆长度的下限大约是l=3.2,即λ=1/3.2,上限大约是l=4R 。连杆长度的确定必须与所设计的内燃机整体相适应,连杆设计完成后应进行零件之间的防碰撞校核,应校核当连杆在最大摆角位置上时是否与气缸套的下缘相碰,以及当活塞在下止点附近位置上时活塞下缘是否与平衡重相碰,它们之间的最小距离都不应小于2~5毫米[]4。 在机体的设计中,已经根据要求设计出连杆长度为 168mm 。 3.2连杆小头的设计 3.2.1 小头结构型式 现代内燃机绝大多数采用浮式活塞销,也就是说, 在运转过程中活塞的销座中和在连杆的小头中都 是能够自由转动的。 本连杆的小头的设计采用薄壁圆环形结构,优点是构形简 单、制造方便,材料能充分应用,受力时应力分布较均匀[]4 。 连杆小头的构造如图3-1所示: 图 3-1 连杆小头结构型式

3.2.2 小头结构尺寸 小头主要尺寸为连杆衬套内径d 和小头宽度b 1(通常小头和衬套制成同样的宽度)。b 1取决于活塞销座间隔b 。 连杆小头主要尺寸比例范围大致如下: D=(0.28~0.42)D δ=(04~0.08)d d 1=(0.9~1.2)d d 2=(1.2~1.4)d 1 根据《内燃机设计》要求[]1,初步设计连杆小头的主要尺寸为: 连杆小头衬套内径 d=25mm, 小头衬套厚度 δ=3mm 宽度同小头同宽 小头孔径 d 1=28mm 小头外径 d 2=34mm 小头宽度 b 1=30mm 小头油孔直径 d 0=3mm 3.2.3 连杆衬套 衬套与连杆小头孔为过盈配合,青铜衬套与活塞销的配合间隙?大致在(0.0004~0.0015)d 的范围内,在采用粉末冶金衬套时,由于衬套压入后,内径会缩小,因此配合间隙应适当放大,一般?大致在(0.0015~0.0020)d 。在四冲程柴油机中,为减少小头轴承的冲击负荷,间隙应尽量取小些,以不发生咬合为原则[]4 。 在小头上方开有集油孔或集油槽,靠曲轴箱中飞溅的油雾进行润滑。润滑油的均匀分布可通过衬套上开布油槽来达到。 设计衬套宽度与连杆小头等宽,厚度为3mm ,选用铅青铜材料。 3.3 连杆杆身 连杆杆身的截形十分重要,它应能在保证强度的前提下有尽量较轻的重量,此外,还要有利于该截面形状向大端、小端的过渡,因此柴油机连杆杆身常采用工字形截面。连杆杆身采用工字形截面,其长轴位于连杆摆动平面,这种截面对材料利用得最为合理。 连杆杆身截面的高H 一般大约是截面宽度的1.5~1.8倍,而B 大约等于(0.26~0.3)D(D 为气缸直径)。为了使杆身能与小头和大头圆滑过渡,杆身截面是由上向下逐渐增大的。杆身的最小截面积与活塞面积之比,对于钢制连杆来说大约是在1 1 2530 的范围内[]4。 根据《柴油机设计手册》要求,本连杆设计的杆身尺寸为: 杆身高度H=25mm

发动机连杆的加工工艺设计

四川职业技术学院毕业设计 中文题目:发动机连杆的加工工艺设计 英文题目:Engine connecting rod process design 学生姓名邓思伟 系别汽车工程系 专业班级汽车制造和装配技术、09汽制3班指导教师 成绩评定 2011 年 3月

目录 1 前言 (1) 1.1 连杆的国内外发展状况 (1) 1.1.1 连杆的毛坯材料发展状况 (1) 1.1.2 连杆的加工工艺发展状况 (1) 2 连杆的结构及特点 (2) 3 连杆的主要技术要求 (3) 3.1 大、小头孔的尺寸精度、形状精度 ........ 错误!未定义书签。3.2 大、小头孔轴心线在两个互相垂直方向的平行度错误!未定义书签。 3.3 大、小头孔中心距 ...................... 错误!未定义书签。3.4 连杆大头孔两端面对大头孔中心线的垂直度错误!未定义书签。3.5 大、小头孔两端面的技术要求 ............ 错误!未定义书签。3.6 螺栓孔的技术要求 ...................... 错误!未定义书签。3.7 有关结合面的技术要求 .................. 错误!未定义书签。3.8 连杆的材料和毛坯 ...................... 错误!未定义书签。3.8.1 连杆的材料 .......................... 错误!未定义书签。3.8.1 连杆的毛坯 .......................... 错误!未定义书签。3.9 连杆的机械加工工艺过程 ............... 错误!未定义书签。3.10 连杆的机械加工工艺过程分析 ........... 错误!未定义书签。3.11 连杆加工工艺设计应考虑的问题 ......... 错误!未定义书签。3.12 切削用量的选择原则 ................... 错误!未定义书签。 3.13 确定各工序的加工余量、计算工序尺寸及公差错误!未定义书签。 4 连杆的检验 ............................. 错误!未定义书签。 5 结束语 ................................. 错误!未定义书签。【参考文献】 ........................... 错误!未定义书签。 致谢 ..................................... 错误!未定义书签。 附录1:外文文献原文 (17) 附录2:外文文献中文翻译.................... 错误!未定义书签。 摘要

连杆盖说明书

连杆是发动机中的主要传动部件之一,它在柴油机中,把作用于活塞顶面的膨胀的压力传递给曲轴,又受曲轴的驱动而带动活塞压缩气缸中的气体。连杆在工作中承受着急剧变化的动载荷。连杆由连杆体及连杆盖两部分组成。连杆体及连杆盖上的大头孔用螺栓和螺母与曲轴装在一起。为了减少磨损和便于维修,连杆的大头孔内装有薄壁金属轴瓦。轴瓦有钢质的底,底的内表面浇有一层耐磨巴氏合金轴瓦金属。在连杆体大头和连杆盖之间有一组垫片,可以用来补偿轴瓦的磨损。连杆小头用活塞销与活塞连接。小头孔内压入青铜衬套,以减少小头孔与活塞销的磨损,同时便于在磨损后进行修理和更换。 在发动机工作过程中,连杆受膨胀气体交变压力的作用和惯性力的作用,连杆除应具有足够的强度和刚度外,还应尽量减小连杆自身的质量,以减小惯性力的作用。连杆杆身一般都采用从大头到小头逐步变小的工字型截面形状。为了保证发动机运转均衡,同一发动机中各连杆的质量不能相差太大,因此,在连杆部件的大、小头两端设置了去不平衡质量的凸块,以便在称量后切除不平衡质量。连杆大、小头两端对称分布在连杆中截面的两侧。考虑到装夹、安放、搬运等要求,连杆大、小头的厚度相等(基本尺寸相同)。在连杆小头的顶端设有油孔(或油槽),发动机工作时,依靠曲轴的高速转动,把气缸体下部的润滑油飞溅到小头顶端的油孔内,以润滑连杆小头衬套与活塞销之间的摆动运动副。 连杆的作用是把活塞和曲轴联接起来,使活塞的往复直线运动变为曲柄的回转运动,以输出动力。因此,连杆的加工精度将直接影响柴油机的性能,而工艺的选择又是直接影响精度的主要因素。反映连杆精度的参数主要有5个:(1)连杆大端中心面和小端中心面相对连杆杆身中心面的对称度;(2)连杆大、小头孔中心距尺寸精度;(3)连杆大、小头孔平行度;(4)连杆大、小头孔尺寸精度、形状精度;(5)连杆大头螺栓孔与接合面的垂直度。 1.2 连杆的的材料及毛坯制造 连杆在工作中承受多向交变载荷的作用,要求具有很高的强度。因此,连杆材料一般采用高强度碳钢和合金钢;如45钢、55钢、40Cr、40CrMnB等。近年来也有采用球墨铸铁的,粉末冶金零件的尺寸精度高,材料损耗少,成本低。随着粉末冶金锻造工艺的出现和应用,使粉末冶金件的密度和强度大为提高。因此,采用粉末冶金的办法制造连杆是一个很有发展前途的制造方法。连杆毛坯制造方法的选择,主要根据生产类型、材料的工艺性(可塑性,可锻性)及零件对材料的组织性能要求,零件的形状及其外形尺寸,毛坯车间现有生产条件及采用先进的毛坯制造方法的可能性来确定毛坯的制造方法。根据生产纲领为大量生产,连杆多用模锻制造毛坯。连杆模锻形式有两种,一种是体和盖分开锻造,另一种是将体和盖锻成—体。整体锻造的毛坯,

发动机连杆设计说明书

广东技术师范学院天河学院 汽车制造工艺学 课程设计说明书 课题: — 姓名: 学号: 班级: 指导教师:

二〇年月 · 汽车制造工艺学课程设计任务书

目录 ( 序言 (1) 一、生产纲领及零件说明 (2) 二、材料与毛坯 (3) 三、连杆的技术要求 (4) 四、加工工艺路线 (5) 五、指定工序加工余量、计算工序尺寸及公差 (6) 六、指定工序切削用量和工时定额 (6) 七、指定工序专用夹具设计 (7) ( 参考文献 (9)

: 序言 《汽车制造工艺学课程设计》是我们学习完大学阶段的汽车类基础和技术基础课以及专业课程之后的一个综合的课程设计,它是将设计和制造知识有机的结合,并融合现阶段汽车制造业的实际生产情况和较先进成熟的制造技术的应用,而进行的一次理论联系实际的训练,通过本课程的训练,将有助于我们对所学知识的理解,并为后续的课程学习以及今后的工作打下一定的基础。 对于本人来说,希望能通过本次课程设计的学习,学会将所学理论知识和工艺课程实习所得的实践知识结合起来,并应用于解决实际问题之中,从而锻炼自己分析问题和解决问题的能力;同时,又希望能超越目前工厂的实际生产工艺,而将有利于加工质量和劳动生产率提高的新技术和新工艺应用到机器零件的制造中,为改善我国的汽车制造业相对落后的局面探索可能的途径。但由于所学知识和实践的时间以及深度有限,本设计中会有许多不足,希望各位老师能给予指正。

】 ' 一.生产纲领及零件说明 1. 生产纲领 发动机连杆零件,年产量为30000件,现已知该产品属于轻型机械,根据生产类型与生产纲领的关系查阅参考文献,确定其生产类型为大批量生产。 大批量生产的工艺特征: 】 (1)零件的互换性:具有广泛的互换性,少数装配精度较高处,采用分组装配法和调整法。毛坯的制造方法和加工余:广泛采用金属模机器造型,模锻或其他商效方法。毛坯精度高,加工余量小。 (2)机床设备及其布置形式:广泛采用商效专用机床及自动机床,按流水线和自动排列设备。 (3)工艺装备:广泛采用高效夹具,复合刀具,专用量具或自动检验装置,靠调整法达到精度要求。 (4)对工人的技术要求:对调整工的技术水平要求高,对操作工的技术水平要求较低。 (5)工艺文件:有工艺过程卡或工序卡,关键工序要调整卡和检验卡。 (6)成本:较低。 (7)生产率:高。

连杆小头衬套材料

连杆小头衬套材料 1) 小头衬套材料常采用ZCuSn5Pb5Zn5、ZCuSnlOPbl铸造锡青铜和ZCuA110Fe3铸造铝青铜。 2) 机加工 ①衬套外圆和内孔的圆度不低于GB/T1184—1996规定的7级精度公差。 ②外圆和内孔中心线的同轴度不低于GB/T1184—1996规定的6级精度 公差。 ③衬套外圆表面粗糙度Ra3.2μm,内孔表面粗糙度不高于Ra1.6μm,但当留有错刮余量时可为及Ra6.3μm。 11.十字头 (1)十字头体及滑履 1) 常用材料:十字头体材料常用ZG270-500、QT600-3、HT200等钢和球墨铸铁、灰铸铁及ZG35CrMo、ZG40Cr等合金钢。十字滑履材料常用CuSnSb11-6轴承合金。 2)毛坯和热处理:铸件质量应符合GB/T6414—1999的规定,铸后对铸铁件应经退火或时效处理;对球墨铸铁应经正火处理;对合金铸钢经退火处理,粗加工后再做调质处理。 3) 机加工: a)十字头工作表面圆度和直线度不低于GB/T1184—1996规定的8级精度 公差。 b) 十字头销孔座中心线对十字头工作表面的垂直度,不低于GB/T1184—1996规定的7级精度公差。 c) 螺纹连接时,十字头体的螺纹中心线对工作表面中心的同轴度,不大于GB/T1184—1996规定的6级精度公差。 d) 螺纹连接时,活塞杆(柱塞)上的紧固螺母在十字头体上的支承面对一字头中心线的垂直度不低于GB/T1184—1996规定的6级精度公差。 e) 十字头工作表面粗糙度为ftxl.6|xr? (2) 十字头导板 1) 材料和热处理。常用材料有铸铁HT200、球墨铸铁QT400-15、铸锡青铜ZCuSn5Pb5Zn5和ZCuSnlOPbl等。铸后毛坯应经退火、时效处理。毛坯不允许有集中性气孔、砂眼等缺陷^ 2) 机加工: a) 导板工作表面粗粮度为Ra1.6μm。 b) 导板内、外圆中心线的同轴度,不低于GB/T1184—1996规定的7级續 度公差。 c) 导板内、外圆直径的圆度、直线度不低于GB/T1184—1996规定的7级精度公差。? (3) 十字头销 1) 材料及热处理。常用材料有45、40Cr钢,表面淬火,推荐硬度45-55HRC;20、20Cr

发动机连杆的加工工艺设计

-- 四川职业技术学院 毕业设计 中文题目:发动机连杆的加工工艺设计 英文题目:Engine connecting rodprocessdesign 学生姓名邓思伟 系别汽车工程系 专业班级汽车制造与装配技术、09汽制3班 指导教师 成绩评定 2011 年3月 --

目录 1 前言?错误!未定义书签。 1.1 连杆的国内外发展状况?错误!未定义书签。 1.1.1 连杆的毛坯材料发展状况 .............. 错误!未定义书签。1.1.2连杆的加工工艺发展状况 ............. 错误!未定义书签。 2 连杆的结构及特点 ....................... 错误!未定义书签。 3连杆的主要技术要求?错误!未定义书签。 3.1 大、小头孔的尺寸精度、形状精度 ......... 错误!未定义书签。3.2 大、小头孔轴心线在两个互相垂直方向的平行度错误!未定义书签。3.3 大、小头孔中心距 ..................... 错误!未定义书签。3.4 连杆大头孔两端面对大头孔中心线的垂直度?错误!未定义书签。3.5 大、小头孔两端面的技术要求 ............ 错误!未定义书签。3.6 螺栓孔的技术要求 ....................... 错误!未定义书签。3.7 有关结合面的技术要求?错误!未定义书签。 3.8 连杆的材料和毛坯 .................... 错误!未定义书签。3.8.1连杆的材料 .......................... 错误!未定义书签。3.8.1 连杆的毛坯 .......................... 错误!未定义书签。3.9 连杆的机械加工工艺过程?错误!未定义书签。 3.10 连杆的机械加工工艺过程分析 ........... 错误!未定义书签。3.11 连杆加工工艺设计应考虑的问题?错误!未定义书签。 3.12切削用量的选择原则?错误!未定义书签。 3.13确定各工序的加工余量、计算工序尺寸及公差?错误!未定义书签。 4 连杆的检验?错误!未定义书签。 5 结束语?错误!未定义书签。 【参考文献】 ........................... 错误!未定义书签。 致谢 ...................................... 错误!未定义书签。 附录1:外文文献原文? 17 附录2:外文文献中文翻译..................... 错误!未定义书签。

连杆的结构特点与作用

连杆的结构特点与作用 一,连杆的结构特点: 连杆是汽车发动机中的主要传动部件之一,他在柴油机中,把作用活塞顶面的膨胀的压力传递给曲轴,又受曲轴的驱动而带动活塞压缩气缸中的气体。连杆在工作中承受着着急剧变化的动载荷。连杆由连杆体及连杆盖两部分组成。连杆及连杆盖上的大头孔用螺栓和螺母与曲轴装在一起。为了减少磨损和便于维修,连杆的大头孔内装有薄壁金属轴瓦。轴瓦有钢质的底,底的内表面浇有一层耐磨巴氏合金轴瓦金属。在连杆体大头和连杆盖之间有一组垫片,可以用来补偿轴瓦的磨损。连杆小头用活塞销与活塞连接。小头孔内压入青铜衬套,以减少小头孔与活塞的磨损,同时便于在磨损后进行修理和更换。 在发动机工作过程中,连杆受膨胀气体交变压力的作用和惯性力的作用,;连杆除应具有足够的强度和刚度外,还应尽量减小连杆自身的质量,以减小惯性力的作用,。连杆杆身一般都采用从大头到小头逐步变小的工字型截面形状。为了保证发动机的运转均衡,同一发动机中各连杆的质量不能相差太大,因此,在连杆部件的大,小头两端设置了去不平衡的质量的凸块,以便于在称重后切除不平衡质量,连杆大,小头两端对称分布在连杆中截面的两侧。考虑到装夹,安放,搬运等要求,连杆大,小头的厚度相等(基本尺寸相同)。在连杆小头的顶端设有油孔(或油槽),发动机工作时,依靠曲轴的高速转动,把气缸体下部的润滑油飞溅到小头顶端的油孔内,以润滑连杆小头衬套与活塞之间的摆动运动副。 连杆的作用是把活塞与曲轴联接起来,使活塞的往复直线运动变为曲柄的回转运动,以输出动力。因此,连杆的加工精度将直接影响柴油机的性能,而工艺的选择又是直接影响精度的主要因素。反映连杆精度的参数主要有5 个:(1)连杆大端中心面和小端中心面相对连杆杆身中心面的对称度;(2):连杆大、小头孔中心距尺寸精度;(3)连杆大、小头孔平行度;(4)连杆大。小头孔尺寸精度、形状精度;(5)连杆大头螺栓孔与接合面的垂直度。

汽车发动机连杆的热处理工艺设计

—汽车发动机连杆的热处理工艺设计 目录 摘要---------------------------------------------------------------------------------------------------(1)1.概述--------------------------------------------------------------------------------------------(2)1.1 前言-----------------------------------------------------------------------------------------------(2)1.2 使用性能-----------------------------------------------------------------------------------------(2) 1.3 失效形式---------------------------------------------------------------------------------------(2) 1.4 材料选择---------------------------------------------------------------------------------------(2) 1.4.1技术要求-----------------------------------------------------------------------------------(2) 1.4.2材料比较------------------------------------------------------------------------------------(3) 1.5热处理工艺及目的----------------------------------------------------------------------- ----(4) 1.5.1退火--------------------------------------------------------------------------------------------(4) 1.5.2正火-------------------------------------------------------------------------------------------(4) 1.5.3淬火----------------------------------------------------------------------------------------- (4) 1.5.4回火--------------------------------------------------------------------------------------------(5) 2.热处理工艺-------------------------------------------------------------------------------------(5) 2.1工艺路线------------------------------------------------------------------------------------- -(5) 2.1.1 等温退火---------------------------------------------------------------------------------(5) 2.1.2淬火----------------------------------------------------------------------------------------(5) 2.1.3回火-----------------------------------------------------------------------------------------(6) 3.实验结果及分析---------------------------------------------------------------------6) 3.1 组织及分析----------------------------------------------------------------------------------(6) 3.1.1原始组织----------------------------------------------------------------------------------- (6) 3.1.2 等温退火后组织---------------------------------------------------------------------------(7) 3.1.3淬火后组织----------------------------------------------------------------------------------(7) 3.1.4 回火后组织---------------------------------------------------------------------------------(8) 3.2 缺陷分析------------------------------------------------------------------------(8) 3.2.1过热-----------------------------------------------------------------------------------------(8) 3.2.2欠热-----------------------------------------------------------------------------------------(8) 3.2.3淬火裂纹-----------------------------------------------------------------------------------(8) 3.2.4脱碳组织-----------------------------------------------------------------------------------(8) 3.2.5热处理变形--------------------------------------------------------------------------------(9) 3.2.6软点-----------------------------------------------------------------------------------------(9) 3.2.7回火缺陷-----------------------------------------------------------------------------------(9) 4 . 总结--------------------------------------------------------------------------------(10) 5. 参考文献-------------------------------------------------------------------------(10) 6.致谢----------------------------------------------------------------------------------(10)

相关主题
文本预览
相关文档 最新文档