当前位置:文档之家› 交通灯控制系统外文翻译

交通灯控制系统外文翻译

交通灯控制系统外文翻译
交通灯控制系统外文翻译

本科生毕业设计(论文)

外文文献翻译

毕业设计题目:交通灯智能控制系统

学院:信息科学与工程学院

专业班级:测控技术与仪器0703班

学生姓名:王欣

指导教师:桑海峰

2011年3月19日

外文原文

Intelligent Traffic Light Control Marco Wiering, Jelle van Veenen, Jilles Vreeken, and Arne Koopman Intelligent

Systems Group

Institute of Information and Computing Sciences Utrecht University

Padualaan 14, 3508TB Utrecht, The Netherlands

email: marco@cs.uu.nl

July 9, 2004

Abstract

Vehicular travel is increasing throughout the world, particularly in large urban areas.Therefore the need arises for simulating and optimizing traffic control algorithms to better accommodate this increasing demand. In this paper we study the simulation and optimization of traffic light controllers in a city and present an adaptive optimization algorithm based on reinforcement learning. We have implemented a traffic light simulator, Green Light District, that allows us to experiment with different infrastructures and to compare different traffic light controllers. Experimental results indicate that our adaptive traffic light controllers outperform other fixed controllers on all studied infrastructures.

Keywords: Intelligent Traffic Light Control, Reinforcement Learning, Multi-Agent Systems (MAS), Smart Infrastructures, Transportation Research

1 Introduction

Transportation research has the goal to optimize transportation flow of people and goods.As the number of road users constantly increases, and resources provided by current infrastructures are limited, intelligent control of traffic will become a very important issue in the future. However, some limitations to the usage of intelligent traffic control exist. Avoiding traffic jams for example is thought to be beneficial to both environment and economy, but improved traffic-flow may also lead to an increase in demand [Levinson, 2003].

There are several models for traffic simulation. In our research we focus on microscopic models that model the behavior of individual vehicles, and thereby can simulate dynamics of groups of vehicles. Research has shown that such models yield realistic behavior [Nagel and Schreckenberg, 1992, Wahle and Schreckenberg, 2001].

Cars in urban traffic can experience long travel times due to inefficient traffic light control. Optimal control of traffic lights using sophisticated sensors and intelligent optimization algorithms might therefore be very beneficial. Optimization of traffic light switching increases road capacity and traffic flow, and can prevent traffic congestions. Traffic light control is a complex optimization problem and several intelligent algorithms, such as fuzzy logic, evolutionary algorithms, and reinforcement learning (RL) have already been used in attempts to solve it. In this paper we describe a model-based, multi-agent reinforcement learning algorithm for controlling traffic lights.

In our approach, reinforcement learning [Sutton and Barto, 1998, Kaelbling et al., 1996] with road-user-based value functions [Wiering, 2000] is used to determine optimal decisions for each traffic light. The decision is based on a cumulative vote of all road users standing for a traffic junction, where each car votes using its estimated advantage (or gain) of setting its light to green. The gain-value is the difference between the total time it expects to wait during the rest of its trip if the light for which it is currently standing is red, and if it is green. The waiting time until cars arrive at their destination is estimated by monitoring cars flowing through the infrastructure and using reinforcement learning (RL) algorithms.

We compare the performance of our model-based RL method to that of other controllers using the Green Light District simulator (GLD). GLD is a traffic simulator that allows us to design arbitrary infrastructures and traffic patterns, monitor traffic flow statistics such as average waiting times, and test different traffic light controllers. The experimental results show that in crowded traffic, the RL controllers outperform all other tested non-adaptive controllers. We also test the use of the learned average waiting times for choosing routes of cars through the city (co-learning), and show that by using co-learning road users can avoid bottlenecks.

This paper is organized as follows. Section 2 describes how traffic can be modelled, predicted, and controlled. In section 3 reinforcement learning is explained and some of its applications are shown. Section 4 surveys several previous approaches to traffic light control, and introduces our new algorithm. Section 5 describes the

simulator we used for our experiments, and in section 6 our experiments and their results are given. We conclude in section 7.

2 Modelling and Controlling Traffic

In this section, we focus on the use of information technology in transportation.

A lot of ground can be gained in this area, and Intelligent Transportation Systems (ITS) gained interest of several governments and commercial companies [Ten-T expert group on ITS, 2002, White Paper, 2001, EPA98, 1998].

ITS research includes in-car safety systems, simulating effects of infrastructural changes, route planning, optimization of transport, and smart infrastructures. Its main goals are: improving safety, minimizing travel time, and increasing the capacity of infrastructures. Such improvements are beneficial to health, economy, and the environment, and this shows in the allocated budget for ITS.

In this paper we are mainly interested in the optimization of traffic flow, thus effectively minimizing average traveling (or waiting) times for cars. A common tool for analyzing traffic is the traffic simulator. In this section we will first describe two techniques commonly used to model traffic. We will then describe how models can be used to obtain real-time traffic information or predict traffic conditions. Afterwards we describe how information can be communicated as a means of controlling traffic, and what the effect of this communication on traffic conditions will be. Finally, we describe research in which all cars are controlled using computers.

2.1 Modelling Traffic.

Traffic dynamics bare resemblance with, for example, the dynamics of fluids and those of sand in a pipe. Different approaches to modelling traffic flow can be used to explain phenomena specific to traffic, like the spontaneous formation of traffic jams. There are two common approaches for modelling traffic; macroscopic and microscopic models.

2.1.1 Macroscopic models.

Macroscopic traffic models are based on gas-kinetic models and use equations relating traffic density to velocity [Lighthill and Whitham, 1955, Helbing et al., 2002].

These equations can be extended with terms for build-up and relaxation of pressure to account for phenomena like stop-and-go traffic and spontaneous congestions [Helbing et al., 2002, Jin and Zhang, 2003, Broucke and Varaiya, 1996]. Although macroscopic models can be tuned to simulate certain driver behaviors, they do not offer a direct, flexible, way of modelling and optimizing them, making them less suited for our research.

2.1.2 Microscopic models.

In contrast to macroscopic models, microscopic traffic models offer a way of simulating various driver behaviors. A microscopic model consists of an infrastructure that is occupied by a set of vehicles. Each vehicle interacts with its environment according to its own rules. Depending on these rules, different kinds of behavior emerge when groups of vehicles interact.

Cellular Automata. One specific way of designing and simulating (simple) driving rules of cars on an infrastructure, is by using cellular automata (CA). CA use discrete partially connected cells that can be in a specific state. For example, a road-cell can contain a car or is empty. Local transition rules determine the dynamics of the system and even simple rules can lead to chaotic dynamics. Nagel and Schreckenberg (1992) describe a CA model for traffic simulation. At each discrete time-step, vehicles increase their speed by a certain amount until they reach their maximum velocity. In case of a slower moving vehicle ahead, the speed will be decreased to avoid collision. Some randomness is introduced by adding for each vehicle a small chance of slowing down. Experiments showed realistic behavior of this CA model on a single road with emerging behaviors like the formation of start-stop waves when traffic density increases.

Cognitive Multi-Agent Systems. A more advanced approach to traffic simulation and optimization is the Cognitive Multi-Agent System approach (CMAS), in which agents interact and communicate with each other and the infrastructure. A cognitive agent is an entity that autonomously tries to reach some goal state using minimal effort. It receives information from the environment using its sensors, believes certain things about its environment, and uses these beliefs and inputs to

select an action. Because each agent is a single entity, it can optimize (e.g., by using learning capabilities) its way of selecting actions. Furthermore, using heterogeneous multi-agent systems, different agents can have different sensors, goals, behaviors, and learning capabilities, thus allowing us to experiment with a very wide range of (microscopic) traffic models.

Dia (2002) used a CMAS based on a study of real drivers to model the drivers’ response to travel information. In a survey taken at a congested corridor, factors influencing the choice of route and departure time were studied. The results were used to model a driver population, where drivers respond to presented travel information differently. Using this population, the effect of different information systems on the area where the survey was taken could be simulated. The research seems promising, though no results were presented.

A traffic prediction model that has been applied to a real-life situation, is described in [Wahle and Schreckenberg, 2001]. The model is a multi-agent system (MAS) where driving agents occupy a simulated infrastructure similar to a real one. Each agent has two layers of control; one for the (simple) driving decision, and one for tactical decisions like route choice. The real world situation was modelled by using detection devices already installed. From these devices, information about the number of cars entering and leaving a stretch of road are obtained. Using this information, the number of vehicles that take a certain turn at each junction can be inferred. By instantiating this information in a faster than real-time simulator, predictions on actual traffic can be made. A system installed in Duisburg uses information from the existing traffic control center and produces real-time information on the Internet. Another system was installed on the freeway system of North Rhine-Westphalia, using data from about 2.500 inductive loops to predict traffic on 6000 km of roads.

中文译文

智能交通灯控制

马克威宁,简丽范威,吉尔威瑞肯,安瑞库普曼

智能系统小组

乌得勒支大学信息与计算科学研究所

荷兰乌得勒支Padualaan14号

邮箱:marco@cs.uu.nl

2004年7月9日

摘要

世界各地的车辆运行逐渐增多,尤其是在一个大的本地区域。因此就需要有关交通控制的模拟与优化算法,来更好的地适应日益增长的需求。在文中,我们学习了在城市中的模拟与优化的交通灯控制器,以及目前基于强化学习的自适应优化算法。我们已经实行了一个交通等模拟器,绿灯区,这允许我们用不同的基础设施和不同的交通控制器去实验。实验结果表明,在所有基础设施的研究领域内,我们的自适应交通灯控制器优于其他固定的控制器。

关键字:智能交通灯控制,强化学习,多代理系统(MAS),智能基础设施,运输研究

1 介绍

运输研究的目的是优化人流和物流。随着道路使用者的数量不断上涨,当前基础设施所提供的资源受到限制,在未来,交通智能控制将会成为一个非常重要的问题。然而,一些交通智能控制使用受限问题的存在。避免交通堵塞,例如,被认为是对环境和经济有益的,但是增加的交通流也可能导致资源需求的增加。[莱文森,2003]。

这有几个交通仿真模型。在我们的研究中,我们专注于那些具有个体车辆行为的微观模型,从而更好的模拟群体车辆的动力学。研究表明,这种模型的出现具有现实意义[Nagel and Schreckenberg,1992,Wahle and Schreckenberg,2001]。

汽车在城市交通中经历了漫长的运行时间,要归因于低效的交通灯控制。因此,使用成熟传感器和智能优化算法的交通灯优化控制可能是有益的。优化的交通灯切换增加了道路的容量和人流,能阻止交通堵塞。交通灯控制是一个复杂的优化问题和几个智能算法,例如模糊逻辑、遗传算法和强化学习(RL)已被应用去试图解决问题。在本文中,我们描述了一种对交通灯控制,基于模型的、多

代理的强化学习算法。

我们的方法,强化学习[Sutton and Barto,1998,Kaelbling,1996]和基于道路使用者的价值功能[威宁,2000]被用来决定每个交通灯的优化选择。这个决定是基于道路使用者站了一个交叉路口的累积投票,在那里每辆汽车使用其估计选票的优势(或增益)设置它的光的绿色。在其余路程,它的所有等待时间里,如果信号灯现在是红色的或者绿色的,那么增益的值是不同的。汽车直到到达目的地后的等待时间,是通过监测汽车流过基础设施和应用强化学习(RL)算法而估算出来的。

本文写作安排如下。第二部分描述了交通是如何被建立、预测和控制的。在第三部分解释了什么是强化学习和一些它的应用。第四部分调查了几个以前交通控制的方法,介绍了我们的新算法。第五部分描述了我们实验中所使用的仿真器,以及第六部分给出我们的实验和实验结果。在第七部分我们得出结论。

2 建立和控制交通

在这一部分,我们专注于在交通运输方面所使用的信息技术。在这个区域增加了大量的土地,并且一些政府和商业公司在交通智能系统(ITS)方面获得了利润。[Ten-T expert group on ITS,2002,白皮书,2001,EPA98,1998]。

交通智能系统(ITS)研究包括车内安全系统,基础设施改变所引起的仿真效果,路途规划,优化运输和智能的基础设施。其主要目标是:提高安全性、减少运行时间、增加基础设施的能力。这种改进有益健康、经济、环境,这表现在交通智能系统的分配预算方面。

在本文中,我们主要对车流的优化感兴趣,从而有效减少平均运行(或者等待)的车辆次数。一种常见的分析交通的工具就是交通仿真器。在这部分中,我们将首先描述两种常用于交通模型的技术。然后我们将描述模型是如何用来获取实时交通信息或者预测交通情况的。后来,我们描述信息是如何作为一种控制交通的手段来进行沟通的,在这样的交通条件下,沟通产生了什么样的影响。最后,我们描述了所有的汽车都使用计算机进行控制的研究。

2.1 建立交通

与交通动力学仅有的相似之处是,例如,流体力学和管内的沙子。建立车流模型的不同方法是用来解释交通的特殊现象的,就像自发形成的交通堵塞状况。

有两种普遍的方法去建立交通:宏观和微观模型。

2.1.1 宏观模型

宏观交通模型是基于gas-kinetic模型的,利用了关于交通密度和速度的方程式[Lighthill and Whitham,1955,Helbing et al.,2002]。这些方程式可以延长积累和放松压力,归因于类似的停停走走的交通和自发的拥堵的现象。[Helbing et al.,2002,Jin and Zhang, 2003,Broucke and Varaiya,1996]。尽管宏观模型可以来模拟一些特定的可调驱动行为,但是他们不能提供一个直接的、灵活的建立和优化交通的方法,这使他们不太适合我们的研究。

2.1.2 微观模型

与宏观模型相对比的,微观交通模型提供了一种仿真各种各样司机行为的方法。一个微观模型由一组车辆占据的基础设施组成。每辆车都根据自己的规则,和周围的环境产生作用。根据这些规则,当很多车辆互相作用时,不同种类的行为就会出现。

元胞自动机。一个在基础设施上的具体设计和仿真(简单的)汽车驾驶规则,利用了元胞自动机(CA)。元胞自动机运用离散的部分连接细胞,那些细胞就能处于一种特殊的状态下。例如,一个道路细胞可以包含一辆汽车或者也可以是空的。当地的转换规则决定了系统的动力学,甚至简单的规则可以导致混沌动力学。Nagel and Schreckenberg (1992)描述了这种用于交通仿真的元胞自动机模型。在每个离散的时间--步长内,车辆在一定数值上增加自身的速度,直到他们的最大速度。万一如果车速较慢的车行驶在前面,那么车辆的速度将会降低,避免冲撞。一些无规则性是通过增加每辆车的小几率减速而被介绍的。实验表明,在单一路段上,当交通密度增加时,元胞自动机模型的现实行为会以起始波浪那样的形式出现。

认知的多代理系统。一个更先进的交通仿真和优化方法是认知多代理系统方式(CMAS),这些代理互相作用并且与其他代理和基础设施相沟通。一个认知代理是一个整体,这个整体利用最小的努力,试着去达成一些目标状态。他利用自己的传感器接收来自环境的信息,对这些来自环境的信息产生信任,利用这些信任,输入信号来选择一个行动。因为每个代理都是一个单独的整体,他可以优化他的选择行为(例如使用学习能力)。此外,不同的代理有不同的传感器、目

标、行为和学习能力,利用异构多代理系统,从而使我们利用一个非常广泛的(微观)交通模型去实验。

Dia(2002)使用了一个基于真正司机模型的、认知多代理系统的运行信息回应。在调查中,采取了一个拥挤的走廊,选择了有影响因素的路线和起飞时间来研究。这个结果以前被用于建立一个司机数量模型,司机对现有的运行信息回应不同。利用这一数量,在研究的区域内,不同信息系统的影响能被仿真出来。尽管目前没有结论,但是这样的研究似乎是有希望的。

2.2 预测交通

对于优化控制来说,预测交通条件的能力是重要的。例如,如果我们在现有的条件下,能够知道哪些道路将会在未来堵塞,这些信息能够传输给道路使用者,那么他们就能规避这条道路,从而缓解整个系统的拥堵现象。另外,如果我们能准确的预测不同驾驶策略的后果,一个优化决定(或者至少对这个区间路段的优化预测)就能通过预测结果进行比较。

在一个交叉路口,最简单形式的交通预测就是通过在某段时间内测量交通,或者假设下一时段的交通和现在相同[Ledoux,1996],一个交通灯下,神经网络被用于表示对一列排队的长期预测。一个多感知层[Rumelhart et al.,1986]被训练来预测下一个时间--步长的排队长度,长期预测可以由迭代法一步预测制成。当预测以十个步长进行时,生成的网络将十分精确,但是它还没有被纳入到控制器里。

应用于真实生活情况的交通预测模型被描述在[Wahle and Schreckenberg,2001]。该模型是一种占用一个仿真基础设施的多代理系统(MAS)。每个代理都有两层控制:一个是(简单的)驾驶决定,另一个是类似于路径选择的决定战术策略。利用已经安装好的探测装置,真实世界的情况就能被建立成模型。从这些装置中,这段路进入和离开的车辆数量的信息能被获得。利用这些信息,在每个交叉路口转弯的车辆数量能够被推断。通过举例说明这种信息的速度要快于实时模拟系统,预测实际的交通就能被做到。一个被安装在杜伊斯堡的系统,使用存在的交通控制中心的信息,在互联网上产生实时信息。另一个系统被安装在北威斯特法伦州的高速公路上,它使用了2.500的感应线圈来预测6000千米的道路交通。

传感器技术论文中英文对照资料外文翻译文献

中英文对照资料外文翻译文献 附件1:外文资料翻译译文 传感器新技术的发展 传感器是一种能将物理量、化学量、生物量等转换成电信号的器件。输出信号有不同形式,如电压、电流、频率、脉冲等,能满足信息传输、处理、记录、显示、控制要求,是自动检测系统和自动控制系统中不可缺少的元件。如果把计算机比作大脑,那么传感器则相当于五官,传感器能正确感受被测量并转换成相应输出量,对系统的质量起决定性作用。自动化程度越高,系统对传感器要求越高。在今天的信息时代里,信息产业包括信息采集、传输、处理三部分,即传感技术、通信技术、计算机技术。现代的计算机技术和通信技术由于超大规模集成电路的飞速发展,而已经充分发达后,不仅对传感器的精度、可靠性、响应速度、获取的信息量要求越来越高,还要求其成本低廉且使用方便。显然传统传感器因功能、特性、体积、成本等已难以满足而逐渐被淘汰。世界许多发达国家都在加快对传感器新技术的研究与开发,并且都已取得极大的突破。如今传感器新技术的发展,主要有以下几个方面: 利用物理现象、化学反应、生物效应作为传感器原理,所以研究发现新现象与新效应是传感器技术发展的重要工作,是研究开发新型传感器的基础。日本夏普公司利用超导技术研制成功高温超导磁性传感器,是传感器技术的重大突破,其灵敏度高,仅次于超导量子干涉器件。它的制造工艺远比超导量子干涉器件简单。可用于磁成像技术,有广泛推广价值。 利用抗体和抗原在电极表面上相遇复合时,会引起电极电位的变化,利用这一现象可制出免疫传感器。用这种抗体制成的免疫传感器可对某生物体内是否有这种抗原作检查。如用肝炎病毒抗体可检查某人是否患有肝炎,起到快速、准确作用。美国加州大学巳研制出这类传感器。 传感器材料是传感器技术的重要基础,由于材料科学进步,人们可制造出各种新型传感器。例如用高分子聚合物薄膜制成温度传感器;光导纤维能制成压力、流量、温度、位移等多种传感器;用陶瓷制成压力传感器。

冲压模具技术外文翻译(含外文文献)

前言 在目前激烈的市场竞争中,产品投入市场的迟早往往是成败的关键。模具是高质量、高效率的产品生产工具,模具开发周期占整个产品开发周期的主要部分。因此客户对模具开发周期要求越来越短,不少客户把模具的交货期放在第一位置,然后才是质量和价格。因此,如何在保证质量、控制成本的前提下加工模具是值得认真考虑的问题。模具加工工艺是一项先进的制造工艺,已成为重要发展方向,在航空航天、汽车、机械等各行业得到越来越广泛的应用。模具加工技术,可以提高制造业的综合效益和竞争力。研究和建立模具工艺数据库,为生产企业提供迫切需要的高速切削加工数据,对推广高速切削加工技术具有非常重要的意义。本文的主要目标就是构建一个冲压模具工艺过程,将模具制造企业在实际生产中结合刀具、工件、机床与企业自身的实际情况积累得高速切削加工实例、工艺参数和经验等数据有选择地存储到高速切削数据库中,不但可以节省大量的人力、物力、财力,而且可以指导高速加工生产实践,达到提高加工效率,降低刀具费用,获得更高的经济效益。 1.冲压的概念、特点及应用 冲压是利用安装在冲压设备(主要是压力机)上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件(俗称冲压或冲压件)的一种压力加工方法。冲压通常是在常温下对材料进行冷变形加工,且主要采用板料来加工成所需零件,所以也叫冷冲压或板料冲压。冲压是材料压力加工或塑性加工的主要方法之一,隶属于材料成型工程术。 冲压所使用的模具称为冲压模具,简称冲模。冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。 与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点,主要表现如下; (1) 冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。这是

自动化系毕业设计外文翻译(中英文对照)

吉林化工学院信息与控制工程学院 毕业设计外文翻译 基于WINCC自动洗车监控系统设计 Design of Automatic Vehicle Cleaning Simulation System Based on WinCC 学生学号:08510234 学生姓名:李洪敏 专业班级:自动0904 指导教师:姜德龙 职称:教授 起止日期:2013.03.04~2013.03.19 吉林化工学院 Jilin Institute of Chemical Technology

一个成功的控制系统革新的策略 ——在升级的时候考虑这些指导方针 用最近的最新颖的系统升级一个主要的传统类型的控制系统是任何过程工业得到竞争力的关键。改良任何的系统主要目的是为了要有适当的连接性和互通性来增加灵活性和连续性的功能。 在这里提供的指导方针向指出了在一个如此富有挑战性的工程后面的主要问题。为了及时的和有成本效益的完成,要从概念上的计划上跟随它们。这些建议考虑了限制、假定和附加的研究来解决在整个工程中的一步步活动:设计、采购、构造和委任期间的全部预期问题。 为控制系统升级的需要。当升级一个传统的控制系统为一个集散控制系统(DCS)的时候,目标是: ●提供基于高度的分配机器智能的一个复杂的过程控制系统,供应有效的控 制和包罗万象的操作员接口。 ●保证那在低消耗下具有实时操作的新的集散控制系统(DCS)的高可靠性。 ●保证对工厂操作所必需的数据获取和程序数据设置的快速响应。有与任何 其他的最新颖的系统兼容的开放式结构。这允许过程控制和自动化系统整 合的最高程度,这些自动化系统有一个对各种厂商独立的并且公开分配的 接口的规格。 ●通过对工厂的关键区段/叁数的管理控制来提供工厂自动化。 ●可行性研究应该应该在升级现存的控制系统到集散控制系统(DCS)之前被 实行。所有的理由,无论是系统的、一些装置的或元件的,都要被证明。目 的包括: ●执行基于预先准备的关于对现存系统的恶化和荒废的报告的可行性研究。 ●检查现存的控制系统的线路板的寿命。它被通常估计从安装日期起是大约 15年。这可能造成依照每个控制/检测回路的临界一步步替换线路板的紧急 计划。 ●升级控制系统是艺术级的。通过有一个减少了硬件成份的高度可靠的系统, 丢弃陈旧的仪器,将会减少维护和操作的费用。 ●通过包括较多的厂商和征求最好的提议用最小的价格达成全部的需求。

交通灯外文翻译 2

当今时代是一个自动化时代,交通灯控制等很多行业的设备都与计算机密切相关。因此,一个好的交通灯控制系统,将给道路拥挤,违章控制等方面给予技术革新。随着大规模集成电路及计算机技术的迅速发展,以及人工智能在控制技术方面的广泛运用,智能设备有了很大的发展,是现代科技发展的主流方向。本文介绍了一个智能交通的系统的设计。该智能交通灯控制系统可以实现的功能有:对某市区的四个主要交通路口进行控制:个路口有固定的工作周期,并且在道路拥挤时中控制中心能改变其周期:对路口违章的机动车能够即时拍照,并提取车牌号。在世界范围内,一个以微电子技术,计算机和通信技术为先导的,一信息技术和信息产业为中心的信息革命方兴未艾。而计算机技术怎样与实际应用更有效的结合并有效的发挥其作用是科学界最热门的话题,也是当今计算机应用中空前活跃的领域。本文主要从单片机的应用上来实现十字路口交通灯智能化的管理,用以控制过往车辆的正常运作。 研究交通的目的是为了优化运输,人流以及货流。由于道路使用者的不断增加,现有资源和基础设施有限,智能交通控制将成为一个非常重要的课题。但是,智能交通控制的应用还存在局限性。例如避免交通拥堵被认为是对环境和经济都有利的,但改善交通流也可能导致需求增加。交通仿真有几个不同的模型。在研究中,我们着重于微观模型,该模型能模仿单独车辆的行为,从而模仿动态的车辆组。 由于低效率的交通控制,汽车在城市交通中都经历过长时间的行进。采用先进的传感器和智能优化算法来优化交通灯控制系统,将会是非常有益的。优化交通灯开关,增加道路容量和流量,可以防止交通堵塞,交通信号灯控制是一个复杂的优化问题和几种智能算法的融合,如模糊逻辑,进化算法,和聚类算法已经在使用,试图解决这一问题,本文提出一种基于多代理聚类算法控制交通信号灯。 在我们的方法中,聚类算法与道路使用者的价值函数是用来确定每个交通灯的最优决策的,这项决定是基于所有道路使用者站在交通路口累积投票,通过估计每辆车的好处(或收益)来确定绿灯时间增益值与总时间是有差异的,它希望在它往返的时候等待,如果灯是红色,或者灯是绿色。等待,直到车辆到达目的地,通过有聚类算法的基础设施,最后经过监测车的监测。 我们对自己的聚类算法模型和其它使用绿灯模拟器的系统做了比较。绿灯模拟器是一个交通模拟器,监控交通流量统计,如平均等待时间,并测试不同的交通灯控制器。结果表明,在拥挤的交通条件下,聚类控制器性能优于其它所有测试的非自适应控制器,我们也测试理论上的平均等待时间,用以选择车辆通过市区的道路,并表明,道路使用者采用合作学习的方法可避免交通瓶颈。 本文安排如下:第2部分叙述如何建立交通模型,预测交通情况和控制交通。第3部分是就相关问题得出结论。第4部分说明了现在正在进一步研究的事实,并介绍了我们的新思想。

无线传感器网络论文中英文资料对照外文翻译

中英文资料对照外文翻译 基于网络共享的无线传感网络设计 摘要:无线传感器网络是近年来的一种新兴发展技术,它在环境监测、农业和公众健康等方面有着广泛的应用。在发展中国家,无线传感器网络技术是一种常用的技术模型。由于无线传感网络的在线监测和高效率的网络传送,使其具有很大的发展前景,然而无线传感网络的发展仍然面临着很大的挑战。其主要挑战包括传感器的可携性、快速性。我们首先讨论了传感器网络的可行性然后描述在解决各种技术性挑战时传感器应产生的便携性。我们还讨论了关于孟加拉国和加利 尼亚州基于无线传感网络的水质的开发和监测。 关键词:无线传感网络、在线监测 1.简介 无线传感器网络,是计算机设备和传感器之间的桥梁,在公共卫生、环境和农业等领域发挥着巨大的作用。一个单一的设备应该有一个处理器,一个无线电和多个传感器。当这些设备在一个领域部署时,传感装置测量这一领域的特殊环境。然后将监测到的数据通过无线电进行传输,再由计算机进行数据分析。这样,无线传感器网络可以对环境中各种变化进行详细的观察。无线传感器网络是能够测量各种现象如在水中的污染物含量,水灌溉流量。比如,最近发生的污染涌流进中国松花江,而松花江又是饮用水的主要来源。通过测定水流量和速度,通过传感器对江水进行实时监测,就能够确定污染桶的数量和流动方向。 不幸的是,人们只是在资源相对丰富这个条件下做文章,无线传感器网络的潜力在很大程度上仍未开发,费用对无线传感器网络是几个主要障碍之一,阻止了其更广阔的发展前景。许多无线传感器网络组件正在趋于便宜化(例如有关计算能力的组件),而传感器本身仍是最昂贵的。正如在在文献[5]中所指出的,成功的技术依赖于

机械设计外文翻译(中英文)

机械设计理论 机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。 进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。 应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。 一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。 新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不受各种约束。即使产生了许多不切实际的想法,也会在设计的早期,即绘制图纸之前被改正掉。只有这样,才不致于堵塞创新的思路。通常,要提出几套设计方案,然后加以比较。很有可能在最后选定的方案中,采用了某些未被接受的方案中的一些想法。

集散控制系统

直接数字控制系统 现场总线控制系统 实时控制 传输速率 计算机控制系统 集散控制系统 现场总线 组态 串行传输 通信协议 监督计算机控制系统 分级控制系统 模拟通信 数字通信 并行传输 开放系统互连参考模型 数字滤波: 实时 三、单项选择题 1. TDC3000系统进行NCF组态时,每个系统可以定义()个单元。 (A)24 (B)100 (C)36 (D)64 2. TDC3000系统进行NCF组态时,每个系统可以定义()个区域。 (A)24 (B)10 (C)36 (D)64 3. TDC3000系统运行中,HM 如出现故障,可能会影响()。

(A) 控制功能运行 (B) 流程图操作 (C) 键盘按键操作 (D) 以上3种情况都有 4. TDC3000系统运行中,在HM 不可以进行如下操作()。 (A) 格式化卡盘 (B) 流程图文件复制 (C) 删除系统文件 (D) 删除用户文件 5. TDC3000系统中,HPMM 主要完成以下功能()。 (A) 控制处理和通讯 (B) 控制点运算 (C) 数据采集处理 (D) 逻辑控制 6. TDC3000系统中,每个HPM 可以有()卡笼箱。 (A) 8个 (B) 6个 (C) 3个 (D) 没有数量限制 7. TDC3000系统中,当IOP卡件(如AI卡)的状态指示灯闪烁时,表示此卡件存在()。 (A) 通信故障 (B) 现场输入/输出参数超量程报警(C) 软故障(D) 硬件故障 8. TDC3000系统中,若有一组AO卡为冗余配置,当其中一个AO卡状态指示灯灭时,其对应FTA 的输出应为()。 (A) 输出为100,对应现场为20mA (B) 正常通信 (C) 输出为设定的安全值 (D) 输出为0,对应现 场为4mA 9.TDC3000系统中,HLAI为高电平模拟量输入卡,不可以接收()信号。 (A) 24VDC信号(B) 4-20mA信号(C) 1-5V信号 (D) 0-100mv信号 10. TDC3000系统中,若有一组DI卡为冗余配置,则其对应的FTA应为()。 (A) 不冗余配置(B) 冗余配置(C) 由工艺重要性确定是否冗余配置 (D) 由控制工程师确定是否冗 余配置 11. TDC3000/TPS系统中,每个LCN系统可以定义()个AREA区域。 (A) 36 (B) 100 (C) 20 (D) 10 12.TDC3000/TPS系统中,操作员的操作权限是通过()的划分来限制的。 (A) UNIT单元(B) HPM硬件 (C) AREA区域 (D) 由工艺流程岗位 13. TDC3000/TPS系统中,每个AREA区域可以定义()个操作组。 (A) 390 (B) 400 (C) 450 (D) 20 14. TDC3000/TPS系统中,操作员在操作组画面上不可以进行下列()操作。

压力传感器外文翻译

压力传感器 合理进行压力传感器的误差补偿是其应用的关键。压力传感器主要有偏移量误差、灵敏度误差、线性误差和滞后误差,本文将介绍这四种误差产生的机理和对测试结果的影响,同时将介绍为提高测量精度的压力标定方法以及应用实例。 目前市场上传感器种类丰富多样,这使得设计工程师可以选择系统所需的压力传感器。这些传感器既包括最基本的变换器,也包括更为复杂的带有片上电路的高集成度传感器。由于存在这些差异,设计工程师必须尽可能够补偿压力传感器的测量误差,这是保证传感器满足设计和应用要求的重要步骤。在某些情况下,补偿还能提高传感器在应用中的整体性能。 本文以摩托罗拉公司的压力传感器为例,所涉及的概念适用于各种压力传感器的设计应用。 摩托罗拉公司生产的主流压力传感器是一种单片压阻器件,该器件具有 3 类: 1.基本的或未加补偿标定; 2.有标定并进行温度补偿; 3.有标定、补偿和放大。 偏移量、范围标定以及温度补偿均可以通过薄膜电阻网络实现,这种薄膜电阻网络在封装过程中采用激光修正。 该传感器通常与微控制器结合使用,而微控制器的嵌入软件本身建立了传感器数学模型。微控制器读取了输出电压后,通过模数转换器的变换,该模型可以将电压量转换为压力测量值。传感器最简单的数学模型即为传递函数。该模型可在整个标定过程中进行优化,并且模型的成熟度将随标定点的增加而增加。 从计量学的角度看,测量误差具有相当严格的定义:它表征了测量压力与实际压力之间的差异。而通常无法直接得到实际压力,但可以通过采用适当的压力标准加以估计,计量人员通常采用那些精度比被测设备高出至少 10 倍的仪器作为测量标准。 由于未经标定的系统只能使用典型的灵敏度和偏移值将输出电压转换为压 力,测得的压力将产生如图 1 所示的误差。 这种未经标定的初始误差由以下几个部分组成: a.偏移量误差。由于在整个压力范围内垂直偏移保持恒定,因此变换器扩散和激光调节修正的变化将产生偏移量误差。 b.灵敏度误差,产生误差大小与压力成正比。如果设备的灵敏度高于典型值,灵敏度误差将是压力的递增函数(见图 1)。如果灵敏度低于典型值,那么灵敏度误差将是压力的递减函数。该误差的产生原因在于扩散过程的变化。

机械类外文翻译

机械类外文翻译 塑料注塑模具浇口优化 摘要:用单注塑模具浇口位置的优化方法,本文论述。该闸门优化设计的目的是最大限度地减少注塑件翘曲变形,翘曲,是因为对大多数注塑成型质量问题的关键,而这是受了很大的部分浇口位置。特征翘曲定义为最大位移的功能表面到表面的特征描述零件翘曲预测长度比。结合的优化与数值模拟技术,以找出最佳浇口位置,其中模拟armealing算法用于搜索最优。最后,通过实例讨论的文件,它可以得出结论,该方法是有效的。 注塑模具、浇口位臵、优化、特征翘曲变形关键词: 简介 塑料注射成型是一种广泛使用的,但非常复杂的生产的塑料产品,尤其是具有高生产的要求,严密性,以及大量的各种复杂形状的有效方法。质量ofinjection 成型零件是塑料材料,零件几何形状,模具结构和工艺条件的函数。注塑模具的一个最重要的部分主要是以下三个组件集:蛀牙,盖茨和亚军,和冷却系统。拉米夫定、Seow(2000)、金和拉米夫定(2002) 通过改变部分的尼斯达到平衡的腔壁厚度。在平衡型腔充填过程提供了一种均匀分布压力和透射电镜,可以极大地减少高温的翘曲变形的部分~但仅仅是腔平衡的一个重要影响因素的一部分。cially Espe,部分有其功能上的要求,其厚度通常不应该变化。 pointview注塑模具设计的重点是一门的大小和位臵,以及流道系统的大小和布局。大门的大小和转轮布局通常被认定为常量。相对而言,浇口位臵与水口大小布局也更加灵活,可以根据不同的零件的质量。 李和吉姆(姚开屏,1996a)称利用优化流道和尺寸来平衡多流道系统为multiple 注射系统。转轮平衡被形容为入口压力的差异为一多型腔模具用相同的蛀牙,也存

集散控制系统参考文献

[1] MCGS用户指南. 北京昆仑通态自动化软件科技有限公司[M],2006. [2] MCGS参考手册. 北京昆仑通态自动化软件科技有限公司[M],2006. [3] 刘建民,陈建军.螺杆式空压机运行及维护技术问答[M].北京:中国电力出版社,2010. [4] 张培友.空压机智能监控节能改造研究[D].济南:山东科技大学硕士学位论文,2004. [5] 包建华,张兴奎. 基于MCGS组态软件的空气压缩机组监控软件开发[J], 2007 [6] 黄中原,刘健. 基于组态王的空压机远程监控系统研究[M].浙江大学,2006 [7] 吉永成. 用PLC对数台空气压缩机的控制[M]. 机械工业出版社,2002 [8] 活塞式压缩机产品介绍,山东生建集团 [9] 螺杆式压缩机产品介绍,北京复盛机械有限公司 [10] 苏娟,叶佳卓,杨贵.一种基于单片机的空气压缩机监控系统[[J] .测控技术与设备,2003, 5(29): 16-17 [11] 王立坤.基于PLC的空压机试验台的研究与开发[D].北京交通大学硕士学位论文,2008 [12] 邢子文.螺杆压缩机—理论、设计及应用「M].北京:机械工业出版社,2000: 1-5 [13] 王迪生,杨乐之.活塞式压缩机结构[M].北京:机械工业出版社,1988: 10-15 [14] 张芳玺,彭学院,张成兵.基于PLC的机车空压机性能测控系统研制[J].压缩机技术,2005年第6期,Pag. l -3 [15] 万毅.矿山空压机站智能监控系统的设计与实现[J].南京理工大学硕士论文,2007 [16]徐少明,金光熹.空气压缩机实用技术.北京:机械工业出版社,1994 [17]廖常初. FX 系统PLC 编程及应用.北京: 机械工业出版社,2007. [18]王兆义,杨新志.小型可编程控制器实用技术. 2 版.北京: 机械工 业出版社,2006. [19] 曹辉《可编程序控制器系统原理及应用》电子工业出版社,2003 [20] 路林吉.江龙康等《可编程序控制器原理及应用》清华大学出版社,2002

智能交通灯控制系统_英文翻译

英文 Because of the rapid development of our economy resulting in the car number of large and medium-sized cities surged and the urban traffic, is facing serious test, leading to the traffic problem increasingly serious, its basically are behaved as follows: traffic accident frequency, to the human life safety enormous threat, Traffic congestion, resulting in serious travel time increases, energy consumption increase; Air pollution and noise pollution degree of deepening, etc. Daily traffic jams become people commonplace and had to endure. In this context, in combination with the actual situation of urban road traffic, develop truly suitable for our own characteristics of intelligent signal control system has become the main task. Preface In practical application at home and abroad, according to the actual traffic signal control application inspection, planar independent intersection signal control basic using set cycle, much time set cycle, half induction, whole sensor etc in several ways. The former two control mode is completely based on planar intersection always traffic flow data of statistical investigation, due to traffic flow the existence of variable sex and randomicity, the two methods have traffic efficiency is low, the scheme, the defects of aging and half inductive and all the inductive the two methods are in the former two ways based on increased vehicle detector and according to the information provided to adjust cycle is long and green letter of vehicle, it than random arrived adaptability bigger, can make vehicles in the parking cord before as few parking, achieve traffic flowing effect In modern industrial production,current,voltage,temperature, pressure, and flow rate, velocity, and switch quantity are common mainly controlled parameter. For example: in metallurgical industry, chemical production, power engineering, the papermaking industry, machinery and food processing and so on many domains, people need to transport the orderly control. By single chip microcomputer to control of traffic, not only has the convenient control, configuration simple and flexible wait for an advantage, but also can greatly improve the technical index by control quantity, thus greatly improve product quality and quantity. Therefore, the monolithic integrated circuit to the traffic light control problem is an industrial production we often encounter problems. In the course of industrial production, there are many industries have lots of traffic equipment, in the current system, most of the traffic control signal is accomplished by relays, but relays response time is long, sensitivity low, long-term after use, fault opportunity increases greatly, and adopts single-chip microcomputer control, the accuracy of far greater than relays, short response time, software reliability, not because working time reduced its performance sake, compared with, this solution has the high feasibility. About AT89C51 (1)function characteristics description: AT89C51 is a low power consumption, high performance CMOS8 bit micro-controller, has the 8K in system programmable Flash memory. Use high-density Atmel company the beltpassword nonvolatile storage technology and manufacturing, and industrial 80S51 product instructions and pin fully compatible. Chip Flash allow program memory in system programmable, also suitable for conventional programmer. In a single chip, have dexterous 8 bits CPU and in system programmable Flash, make AT89C51 for many embedded control application system provides the high flexible, super efficient solution. AT89C51 has the following standard function: 8k bytes Flash, 256 bytes RAM, 32-bit I/O mouth line, the watchdog timer, two data pointer, three 16 timer/counter, a 6 vector level 2 interrupt structure, full-duplex serial port, piece inside crystals timely clock circuit. In addition, AT89C51 can drop to 0Hz static logic operation, support two software can choose power saving mode. Idle mode, the CPU to stop working, allowing the RAM, timer/counter, serial ports, interruption continue to work. Power lost protection mode, RAM content being saved, has been frozen, microcontroller all work stop, until the next interruption or hardware reset so far. As shown in

传感器外文翻译

Basic knowledge of transducers A transducer is a device which converts the quantity being measured into an optical, mechanical, or-more commonly-electrical signal. The energy-conversion process that takes place is referred to as transduction. Transducers are classified according to the transduction principle involved and the form of the measured. Thus a resistance transducer for measuring displacement is classified as a resistance displacement transducer. Other classification examples are pressure bellows, force diaphragm, pressure flapper-nozzle, and so on. 1、Transducer Elements Although there are exception ,most transducers consist of a sensing element and a conversion or control element. For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement. This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance. Such combination of mechanical and electrical elements form electromechanical transducing devices or transducers. Similar combination can be made for other energy input such as thermal. Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical transducers respectively. 2、Transducer Sensitivity The relationship between the measured and the transducer output signal is usually obtained by calibration tests and is referred to as the transducer sensitivity K1= output-signal increment / measured increment . In practice, the transducer sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1. 3、Characteristics of an Ideal Transducer The high transducer should exhibit the following characteristics a) high fidelity-the transducer output waveform shape be a faithful reproduction of the measured; there should be minimum distortion. b) There should be minimum interference with the quantity being measured; the presence of the transducer should not alter the measured in any way. c) Size. The transducer must be capable of being placed exactly where it is needed.

机械图纸中英文翻译汇总

近几年,我厂和英国、西班牙的几个公司有业务往来,外商传真发来的图纸都是英文标注,平时阅看有一定的困难。下面把我们积累的几点看英文图纸的经验与同行们交流。 1标题栏 英文工程图纸的右下边是标题栏(相当于我们的标题栏和部分技术要求),其中有图纸名称(TILE)、设计者(DRAWN)、审查者(CHECKED)、材料(MATERIAL)、日期(DATE)、比例(SCALE)、热处理(HEAT TREATMENT)和其它一些要求,如: 1)TOLERANCES UNLESS OTHERWISE SPECIFIAL 未注公差。 2)DIMS IN mm UNLESS STATED 如不做特殊要求以毫米为单位。 3)ANGULAR TOLERANCE±1°角度公差±1°。 4)DIMS TOLERANCE±0.1未注尺寸公差±0.1。 5)SURFACE FINISH 3.2 UNLESS STATED未注粗糙度3.2。 2常见尺寸的标注及要求 2.1孔(HOLE)如: (1)毛坯孔:3"DIAO+1CORE 芯子3"0+1; (2)加工孔:1"DIA1"; (3)锪孔:锪孔(注C'BORE=COUNTER BORE锪底面孔); (4)铰孔:1"/4 DIA REAM铰孔1"/4; (5)螺纹孔的标注一般要表示出螺纹的直径,每英寸牙数(螺矩)、螺纹种类、精度等级、钻深、攻深,方向等。如: 例1.6 HOLES EQUI-SPACED ON 5"DIA (6孔均布在5圆周上(EQUI-SPACED=EQUALLY SPACED均布) DRILL 1"DIATHRO' 钻1"通孔(THRO'=THROUGH通) C/SINK22×6DEEP 沉孔22×6 例2.TAP7"/8-14UNF-3BTHRO' 攻统一标准细牙螺纹,每英寸14牙,精度等级3B级 (注UNF=UNIFIED FINE THREAD美国标准细牙螺纹) 1"DRILL 1"/4-20 UNC-3 THD7"/8 DEEP 4HOLES NOT BREAK THRO钻 1"孔,攻1"/4美国粗牙螺纹,每英寸20牙,攻深7"/8,4孔不准钻通(UNC=UCIFIED COARSE THREAD 美国标准粗牙螺纹)

外文资料翻译---工业控制系统与协同控制系统

外文资料翻译 工业控制系统与协同控制系统 当今的控制系统被广泛运用于许多领域。从单纯的工业控制系统到协同控制系统(CCS),控制系统不停变化,不断升级,现在则趋向于家庭控制系统,而它则是这两者的变种。被应用的控制系统的种类取决于技术要求。而且,实践表明,经济和社会因素也对此很重要。任何决定都有它的优缺点。工业控制要求可靠性,完整的文献记载和技术支持。经济因素使决定趋向于协同工具。能够亲自接触源码并可以更快速地解决问题是家庭控制系统的要求。多年的操作经验表明哪个解决方法是最主要的不重要,重要的是哪个可行。由于异类系统的存在,针对不同协议的支持也是至关重要的。本文介绍工业控制系统,PlC controlled turn key 系统,和CCS工具,以及它们之间的操作。 引言: 80年代早期,随着为HERA(Hadron-Elektron-Ring-Anlage)加速器安装低温控制系统,德国电子同步加速器研究所普遍开始研究过程控制。这项新技术是必需的,因为但是现有的硬件没有能力来处理标准过程控制信号,如4至20毫安的电流输入和输出信号。而且软件无法在0.1秒的稳定重复率下运行PID控制回路。此外,在实现对复杂的低温冷藏系统的开闭过程中,频率项目显得尤为重要。 有必要增加接口解决总线问题并增加运算能力,以便于低温控制。因为已安装的D / 3系统[1] 只提供了与多总线板串行连接,以实现DMA与VME的连接并用其模拟多总线板的功能。温度转换器的计算功能来自一个摩托罗拉MVME 167 CPU和总线适配器,以及一个MVME 162 CPU。其操作系统是VxWorks,而应用程序是EPICS。 由于对它的应用相当成功,其还被运用于正在寻找一个通用的解决方案以监督他们的分布式PLC的公共事业管理。 德国电子同步加速器研究所对过程管理系统的筛选 集散控制系统(D/ 3): 市场调查表明:来自GSE的D / 3系统被HERA低温冷藏工厂选中。因为集散控制系统(D/ 3)的特性,所以这决定很不错。在展示端和I / O端扩展此系统的可能将有助于解决日益增加的 HERA试验控制的要求。制约系统的大小的因素不是I / O的总数,通信网络的畅通与否。而通信网络的畅通与否取决于不存档的数据总量,不取决于报警系统中配置的数据。 拥有DCS特点(Cube)的SCADA系统: 相对于Y2K问题促使我们寻找一个升级版或者代替版来代替现有的系统而言,以上提到的D / 3系统有一些硬编码的限制。由于急需给Orsi公司提供他们的产品,Cube开始起作用了[2]。该项目包括安装功能的完全更换。这包括D / 3,以及德国电子同步加速器研究所的集成总线SEDAC和VME的温度转换器。该项目很有前景。但是因为HERA试验原定时间是有限制的,所以技术问题和组织问题也迫使计划提前。在供应商网站上的最后验收测试又出现了戏剧性的性能问题。有两个因素引起了这些问题。第一个跟低估在1赫兹运行的6级温度转换器

基于单片机的交通灯控制系统设计【开题报告】

开题报告 电气工程及其自动化 基于单片机的交通灯控制系统设计 一、课题研究意义及现状 随着社会经济的飞速速发展,世界各国的大中城市的交通问题越来越引起人们的关注。现在,人们生活水平的提高,私家车也越来越多。人,车,路的协调,已经成为交通管理部门急需解决的重要问题之一。所以,如何采取合适的控制方法,最大限度利用有限的道路资源,缓解城市主干道与城区以及城市周围的交通拥堵状况,越来越成为亟待解决的问题。经过查阅各种书刊,我们将利用单片机设计一种控制交通灯的方案,以缓解现在的交通压力。 目前设计交通灯的方案有很多,有应用CPLD设计实现交通信号灯控制器的方法;有应用PLC 实现对交通灯控制系统的设计;有应用单片机实现对交通信号灯设计的方法。目前,国内的交通灯一般设在十字路口没在醒目的位置用红、绿、黄三种颜色的指示灯。加上一个倒计时的显示计时器来控制路上行车。对于一般情况下的安全行车,车辆分流尚能发挥作用,但是根据实际行车过程中出现的情况,还是存在缺陷:两车道的车辆交替放行时间相同且固定,在十字路口上,经常一个车道为主干道,车辆比较多,放行时间应该长些;另外一个车道为副干道,车辆较少,放行时间应该短些。 针对这种交通拥挤,交叉路口经常出现拥堵的情况。利用单片机控制技术,对软件和硬件设计方案进行修改,使其能够对车流量的不同对放行时间能够自由、灵活控制。 单路口交通的控制就是确定交叉路口的红绿灯信号配时,使通过交叉口的车辆延误尽可能缩小。传统的控制一般是采用模型控制或预先人为地设定多套方案,实践表明这种方法的控制效果并不是很理想。由于道路上的交通流具有较大的随机性和非常大的复杂性,所实施的相位控制也应随交通流的不同而相对变化。交通警察在实际的交通指挥中可以根据实际情况来控制交通,比如:交警可以通过观察路口车辆数的多少来机动地控制各个路口的红绿灯时间。如果东西方向的车流量大,则其放行时间长,南北方向这流量小,则其放行时间短。 在总结交警的经验基础上,运用单片机对十字路口的信息进行模糊控制,达到减少堵塞的,增加效率的目的。 二、课题研究的主要内容和预期目标 采用单片机控制技术,对现在城市道路十字路口的交通灯控制进行研究和设计,实现智能灵活控制,减轻道路压力。 了解当前国内外交通灯的控制方法;熟悉单片机控制技术等,为将来从事单片机设计打下基

相关主题
文本预览
相关文档 最新文档