当前位置:文档之家› 超微病理学

超微病理学

超微病理学
超微病理学

《超微病理学》课程主要内容

超微结构病理学( Ultrastructural pathology),简称超微病理学,它是在超微水平或分子水平上观察研究病理状态下细胞的超微变化,在超微水平和分子水平上揭示疾病的发生机理及疾病的发生、发展和转化的规律。

随着现代化电镜和分子生物学技术的迅猛发展,医学基础理论取得了许多重要进展,利用细胞超微病变方法来认识、观察某些器官和组织的超微结构和超微病变,并根据需要将细胞病理学的理论和方法应用于科学研究之中。电镜技术是打开微观世界大门的一把钥匙,它是当今分子病理学不可缺少的研究手段,因此人们把它喻为超微观世界(或分子世界)的眼睛。超微病理学等新学科的出现,标志着病理学已不仅从细胞和亚细胞水平、而且深入到从分子水平、以及人类遗传基因突变和染色体畸变去认识疾病,发现疾病的起因。超微病理学就是从细胞超微结构水平以至分子水平研究疾病的病因、发病机理、病理变化和探索疾病防治的重要基础课程。

开设此课程的目的,就是使学生通过学习了解掌握人体基本组织和病变,进而了解掌握细胞和重要器官常见病超微病理的基本知识、方法和理论,拓宽学生视野,提高分析问题和解决问题的能力,为今后独立科研推进中医药现代化打好基础。

本课程中的基本教学内容包括:电子显微镜原理、细胞的超微结构及其基本病变、肝脏超微病理学、心血管系统常见疾病的超微病理学、肾脏超微病理学、神经肌肉系统常见疾病的超微病理学、呼吸系统常见疾病的超微病理学、电镜生物样本制作等8个主要的学习内容。

电子显微镜原理是介绍了超微病理学的发展史、电子显微镜与光学显微镜的区别、电子显微镜的常见类型、透射和扫描电子显微镜的成像原理。

细胞的超微结构及其基本病变是讲述细胞膜、细胞核、各种细胞器的基本超微结构和功能及常见的超微病理变化。

心血管系统常见疾病的超微病理学是讲述正常心肌细胞的超微结构、心绞痛、心肌梗死、动脉粥样硬化等疾病的超微结构变化特点。

肝脏超微病理学是介绍肝细胞、肝窦状隙和窦周隙的基本结构及其基本病变;

病毒性肝炎、酒精性肝病、糖原累积病、肝细胞型肝癌的超微结构变化特点。

肾脏超微病理学是介绍肾小球、肾小管的基本结构及常见的超微病理改变;原发性肾小球疾病的超微结构变化特点(微小病变性肾病、毛细血管内增生性肾小球肾炎、膜性肾病、系膜增生性肾小球肾炎、膜增生性肾小球肾炎);继发性肾脏疾病的超微结构变化特点(狼疮性肾炎、、乙肝肾、糖尿病肾病等)。

神经肌肉系统常见疾病的超微病理学是讲述神经元及各种胶质细胞的正常超微结构和基本超微病变;骨骼肌正常结构及基本超微病理改变。常见脑部疾病和肌肉疾病的超微病变特点。

呼吸系统常见疾病的超微病理学是介绍气管、支气管及肺的正常超微结构和基本超微病变;病毒性肺炎、支原体肺炎、特发性肺纤维化的超微病变特点;肺癌的超微结构特点。

电镜生物样本制作是教授常规透射和扫描电子显微镜的取材要求及常规制样过程。

本课程的讲授理论与实践相结合,学习中应加强对光镜与电镜制片标本、组织学及超微病理学图谱的观察,达到对一般器官组织正常结构及细胞常见超微病理变化能独立进行诊断及鉴别诊断.

内质网病变的超微结构观察

内质网病变的超微结构观察 徐娇等 摘要:电镜技术的应用使人们对细胞的超微结构有了更深入的了解。各种细胞器的结构以及其病理状况时发生的改变为人们判断疾病的发生提供了直观科学的依据。本文主要概述了投射电镜观察下内质网的各种超微病理变化。 关键词:电镜;内质网;病理变化 20世纪30年代,德国的RUSKA第一次发现了电子显微镜,随后利用刚刚形成的电子显微镜技术第一次看到了烟草花叶病毒[1]。随着电子显微镜技术的不断完善和发展,电镜的应用使人们对细胞的研究逐步深入到亚细胞结构,各种细胞器的结构也不断被人们认知。同时,在医学科研和诊断疾病中做出了重要贡献。例如,Gyorkey[2]等在2000例肿瘤诊断中8%要靠电镜帮助诊断。Kuzela[3]等对49例肿瘤的诊断结果分析,11例电镜可进一步提供明确的诊断,占22%,纠正6%的错误诊断,确诊率28%。国内周晓军[4]报道223例肿瘤电镜诊断,电镜确诊135例,占60%,纠正原病例诊断11例,占5%。有诊断价值者占65%。有由此可见,电镜技术在诊断疾病中的应用价值。 电镜分为扫描电镜和投射电镜。由于其分辨率高,放大倍数大,而且使用较为方便,电镜已经成为研究细胞微观结构最有效的方法之一[5]。本文所的总结的内质网超微结构变化主要通过投射电镜来观察。 1 内质网的超微结构及生理功能 内质网(endoplasmic reticulum),ERKR. Porter、A. Claude 和EF. Fullam等人于1945年发现,是细胞质内由膜组成的一系列片状的囊腔和管状的腔,彼此相通形成一个隔离于细胞基质的管道系统,为细胞中的重要细胞器。它实际上是一个连续的膜囊和膜管网,可分为粗面内质网(RER,Rough Endoplasmic Reticulum)和滑面内质网(SER,Smooth Endoplasmic Reticulum)两大部分。粗面内质网上附着有大量核糖体,合成膜蛋白和分泌蛋白;滑面内质网上无核糖体。 内质网是哺乳细胞中一种重要的亚细胞器。膜分泌性蛋白、氨基多糖、磷脂、胆固醇及钙信号等的代谢均与内质网功能直接相关,例如分泌性蛋白的合成与空间折叠、蛋白质糖基化修饰、蛋白质分泌等均在内质网内发生。目前研究认为,胰腺细胞、心肌细胞、神经元细胞等内质网功能障碍可能分别是糖尿病、心脑组织缺血梗塞、退行性神经疾病等发生的重要原因[6-8]。 真核细胞的内质网具有四个主要的生理功能:合成膜蛋白和分泌蛋白;折叠形成蛋白质正确的三维空间构象;储存Ca2+;参与脂质和胆固醇的生物合成[9]。 2 内质网的病理性变化形态观察 2.1内质网增多内质网的多少可以反应细胞病变状况。例如在蛋白质合成及分泌活性高的细胞(如浆细胞、胰腺腺泡细胞、肝细胞等)以及细胞再生和病毒感染时,粗面内质网有增多现象。 李颖智[10]等研究了脊髓损伤后继发骨质疏松的骨组织超微结构,发现进行手术后第11w,胫骨成骨骨细胞核空化,粗面内质网增多。熊娟[11]等观察了锯缘青蟹病毒感染的超微病理变化,发现其胃细胞中粗面内质网肿胀增多。 2.2内质网减少和水祥[12]等用秋水仙素灌大鼠慢性肝损伤大鼠,用电镜观察细胞,发现胞浆内内质网减少。谢学军[13]等研究了糖尿病大鼠视觉系统三级神经元的病理变化,发现糖尿病大鼠视皮质,神经细胞胞浆中,粗面内质网减少且变形。山羊冰川棘豆中毒[14],缺血[15,16]等也可导致细胞内粗面内质网减少。

超微病理学

《超微病理学》课程主要内容 超微结构病理学( Ultrastructural pathology),简称超微病理学,它是在超微水平或分子水平上观察研究病理状态下细胞的超微变化,在超微水平和分子水平上揭示疾病的发生机理及疾病的发生、发展和转化的规律。 随着现代化电镜和分子生物学技术的迅猛发展,医学基础理论取得了许多重要进展,利用细胞超微病变方法来认识、观察某些器官和组织的超微结构和超微病变,并根据需要将细胞病理学的理论和方法应用于科学研究之中。电镜技术是打开微观世界大门的一把钥匙,它是当今分子病理学不可缺少的研究手段,因此人们把它喻为超微观世界(或分子世界)的眼睛。超微病理学等新学科的出现,标志着病理学已不仅从细胞和亚细胞水平、而且深入到从分子水平、以及人类遗传基因突变和染色体畸变去认识疾病,发现疾病的起因。超微病理学就是从细胞超微结构水平以至分子水平研究疾病的病因、发病机理、病理变化和探索疾病防治的重要基础课程。 开设此课程的目的,就是使学生通过学习了解掌握人体基本组织和病变,进而了解掌握细胞和重要器官常见病超微病理的基本知识、方法和理论,拓宽学生视野,提高分析问题和解决问题的能力,为今后独立科研推进中医药现代化打好基础。 本课程中的基本教学内容包括:电子显微镜原理、细胞的超微结构及其基本病变、肝脏超微病理学、心血管系统常见疾病的超微病理学、肾脏超微病理学、神经肌肉系统常见疾病的超微病理学、呼吸系统常见疾病的超微病理学、电镜生物样本制作等8个主要的学习内容。 电子显微镜原理是介绍了超微病理学的发展史、电子显微镜与光学显微镜的区别、电子显微镜的常见类型、透射和扫描电子显微镜的成像原理。 细胞的超微结构及其基本病变是讲述细胞膜、细胞核、各种细胞器的基本超微结构和功能及常见的超微病理变化。 心血管系统常见疾病的超微病理学是讲述正常心肌细胞的超微结构、心绞痛、心肌梗死、动脉粥样硬化等疾病的超微结构变化特点。 肝脏超微病理学是介绍肝细胞、肝窦状隙和窦周隙的基本结构及其基本病变;

病理学笔记(___完美版___)

病理学笔记 绪论 病理学(pathology)是一门研究疾病发生发展规律的医学基础学科,揭示疾病的病因、发病机制、病理改变和转归。 一、病理学的内容和任务 病理学教学内容分为总论和各论两部分。总论主要是研究和阐明存在于各种疾病的共同的病 因、发病机制、病理变化及转归等发生、发展规律,属普通病理学(general pathology),包 括组织的损伤和修复、局部血液循环障碍、炎症和肿瘤等章节。各论是研究和阐明各系统(器官)的每种疾病病因、发病机制及病变发生、发展的特殊规律,属系统病理学(systemic pathology),包括心血管系统疾病、呼吸系统疾病、消化系统疾病、淋巴造血系统疾病、泌尿系统疾病、生殖系统和乳腺疾病及传染病等。 二、病理学在医学中的地位病理学需以基础医学中的解剖学、组织胚胎学、生理学、生物化学、细胞生物学、分子生物学、微生物学、寄生虫学和免疫学等为学习的基础,同时又为临床医学提供学习疾病的必要理论。因此,病理学在基础医学和临床医学之间起着十分重要的桥梁作用。 三、病理学的研究方法 (一)人体病理学研究方法 1、尸体剖验(autopsy):简称尸检,即对死亡者的遗体进行病理剖验,是病理学的基本研究方法之一。 2、活体组织检查(biopsy):简称活检,即用局部切取、钳取、细针吸取、搔刮和摘取等手术方法, 从患者活体获取病变组织进行病理检查。活检是目前研究和诊断疾病广为采用的方法,特别是对肿瘤良、恶性的诊断上具有十分重要的意义。 3、细胞学检查(cytology):是通过采集病变处脱落的细胞,涂片染色后进行观察。 (二)实验病理学研究方法 1 、动物实验:运用动物实验的方法,可以在适宜动物身上复制出某些人类疾病的模型,并通过疾病复制过程可以研究疾病的病因学、发病学、病理改变及疾病的转归。 2、组织培养和细胞培养:将某种组织或单细胞用适宜的培养基在体外培养,可以研究在各种病因作用下细胞、组织病变的发生和发展。 四、病理学观察方法和新技术的应用 1 、大体观察:运用肉眼或辅以放大镜、量尺、和磅秤等工具对大体标本及其病变性状(外形、大小、重量、色泽、质地、表面及切面形态、病变特征等)进行细致的观察和检测。 2、组织和细胞学观察:将病变组织制成切片,经不同的方法染色后用显微镜观察,通过分析和综合病变特点,可作出疾病的病理诊断。 3、组织化学和细胞化学观察:通过应用某些能与组织细胞化学成分特异性结合的染色试剂, 显示病变组织细胞的化学成分的改变,从而加深对形态结构改变的认识和代谢改变的了解,特别是对一些代谢性

病理学Z 第五次作业

A型题: 请从备选答案中选取一个最佳答案 1. 肿瘤的实质是:C.识别各种肿瘤组织来源的根据 A.由瘤细胞及血管、淋巴管组成 B.由瘤细胞及结缔组织组成 C.识别各种肿瘤组织来源的根据 D.反映肿瘤中淋巴细胞浸润的多少 E.出现病理性核分裂的现象 2. 风湿性病变中,哪一项对机体危害最大? C.反复发作的风湿性心内膜炎 A.反复发作的风湿性关节炎 B.反复发作的风湿性心包炎 C.反复发作的风湿性心内膜炎 D.风湿性皮下结节 E.风湿性动脉炎 3. 鼻咽癌最早的转移部位是:A.颈淋巴结 A.颈淋巴结 B.颅内 C.骨 D.肝 E.肺 4. 关于二尖瓣狭窄的血液动力学变化,下列哪项是错误的?B.左心室增大 A.左心房增大 B.左心室增大 C.肺动脉高压 D.右心房增大 E.右心室增大 5. 关于慢性心瓣膜病,下列哪项是错误的?E.病变不会同时累及两个以上瓣膜 A.多由风湿性心内膜炎引起 B.表现为心瓣膜狭窄或关闭不全 C.二尖瓣最常受累 D.狭窄和关闭不全常同时存在 E.病变不会同时累及两个以上瓣膜 6. 风湿病心内膜的病变是 B. 疣状心内膜炎 A.血管周围肉芽肿形成 B. 疣状心内膜炎 C.浆液性炎 D.内膜大片坏死 E.心内膜穿孔 7. 左心衰竭时发生呼吸困难的主要机制是 C.肺淤血、肺水肿 A.心脏缺血缺氧 B.低血压 C.肺淤血、肺水肿 D.体循环淤血,回心血量减少 E.以上都不是 8. 肿瘤的外观是指肿瘤的:E.大小、形状、颜色、质地 A.数目和大小 B.形状 C.颜色 D.质地 E.大小、形状、颜色、质地 9. 心肌梗死灶的肉眼形状常为 B.地图形 A.契形 B.地图形 C. 锥形 D.节段性 E.点灶状 10. 日光暴晒与下列哪一种肿瘤关系最密切? C.皮肤癌 A.肺癌 B.唾液腺腺癌 C.皮肤癌 D.恶性淋巴瘤 E.眼内恶性黑色素瘤 11. 关于右心衰竭可能出现的临床表现,下列哪项是错误的?E.心源性哮喘 A.下肢水肿 B.肝肿大 C. 少尿 D.食欲不振,恶心呕吐 E.心源性哮喘

超微病理学试卷二(1)‘

一、名词解释:(2×5’) 1、核仁边集:在生长旺盛的细胞,核仁常靠近核膜内侧,称为核仁边集,以有利于核仁 合成的RNA向胞浆运送。 2、HSP:即热休克蛋白,指热应激(或其他应激)时细胞新合成或合成增加的一组蛋白 质,它们主要在细胞内发挥功能,属非分泌型蛋白质 3、缺血—再灌注损伤:在恢复血液灌注时,组织反而出现比再灌注前更明显、更严重的 损伤和功能障碍,这种现象被称为缺血—再灌注损伤。 4、无复流现象:是指缺血的原因解除后,并没使缺血区在再灌注期得到充分血流灌注的 反常现象。 5、凋亡小体:细胞凋亡时,胞膜皱缩内陷、分割包绕胞浆而形成泡状小体称为凋亡小体, 它是细胞凋亡的特征性形态学改变。 二、填空题:(20×0.5’) 1、膜脂中,胆固醇具有(刚性)的特点,其含量越高,细胞膜的流动性越(低) 2、线粒体复制的方式有(芽生)和(分裂) 3、细胞信号转导途径中,不同胞外信号所启动的信号转导过程的共同通路是(蛋白质的磷酸化)和(脱磷酸) 4、机体对感染、组织损伤的保护性反应可大致分为两个时相,一是(急性反应),二是 (迟缓相或免疫时相)。 5、白细胞介导缺血—再灌注损伤的机制主要有(机械阻塞作用)和(炎症反应失控) 6、细胞凋亡信号的转导系统的特点是:多样性、(同一性)和(偶联性) 7、细胞外基质主要由纤维状的胶原蛋白和(弹性蛋白)、非胶原糖蛋白、(蛋白聚糖)和 糖蛋白构成。 8、缺血—再灌注损伤的机制主要有:高能磷酸化合物的缺乏、(钙超载)氧自由基的作用、白细胞浸润和(无复流现象) 9、恶性肿瘤的演化可以分为两个阶段,即(演发)和(演进) 10、缺血—再灌注性心率失常以(室性心动过速)和(室颤)为主 三、单选题: 2、应激时的抵抗期体内起主要的激素是:() A、胰岛素 B、醛固酮 C、胰高血糖素 D、糖皮质激素 E、垂体加压素 3、下面哪项是关于“分子伴娘”的正确描述?( ) A、能提高细胞对多种应激原的耐受能力 B、与受损蛋白质修复或移除有关 C、帮助蛋白质的正确折叠、移位、维持和降解 D、诱生性HSP即是一类重要的“分子伴娘” E、以上都对 5、下述关于黏附分子的说法,哪一点是错误的?() A、可促进细胞及基质的黏附 B、由血浆产生 C、由整合素、选择素等一大类分子组成 D、维持细胞结构 E、参与细胞信号转导 7、关于细胞凋亡与细胞坏死的区别,下列哪项是错误的?() A、细胞凋亡耗能,细胞坏死不耗能 B、细胞凋亡有新蛋白质合成,细胞坏死没有 C、凋亡细胞DNA片段化,坏死细胞DNA弥散性降解

超微结构病理(亚细胞病理)

超微结构病理(亚细胞病理) virchous在19世纪中期奠定了细胞病理学说。随着科学信息的进步发展,建立了亚细胞病理,通过对疾病发生发展中超微结构的认识,扩大和加深了对疾病的理解。 一细胞膜 细胞膜是包于细胞表面,将细胞与周围环境隔开的弹性薄膜,厚约7.5~9.0mm,液态镶嵌模型(双分子脂质和蛋白质构) (一)细胞之间连接方式的变化成 1、肿瘤细胞的变化 癌细胞之间的各种连接在数量上比正常细胞间的少,而且细胞之间的间隙扩大。 鳞癌——桥粒数目减少 疣细胞之间、角化棘皮瘤——桥粒增多、丰富 基底细胞癌——癌细胞之间保存着密切的相互黏着。 连接结构的变化对区别未分化癌和肉瘤有所帮助。 有桥粒存在——癌的可能性较大 间胚叶肿瘤——不典型桥粒,类似中间结构。 2、损伤和炎症的变化 正常人的滑膜之间没有中间连接,但在损伤和风湿性关节炎以及绒毛结节性滑膜炎增生时,可出现桥粒或类桥粒。 胞浆中出现桥粒 多核巨细胞中出现——巨噬细胞融合 角化棘皮瘤进行分裂的角化不良细胞中亦可出现。

微绒毛见于正常的肾曲管和肠黏膜上皮。在病理情况下发生数量上的多或少,形态上的气球样变和融合。 肝细胞、胆管上皮细胞微绒毛的变化 微绒毛增加:小鼠肝炎、兔注射抗原抗体之后。 微绒毛消失:肝癌失分化的细胞。 小鼠部分肝切除,胆小管微绒毛消失或减少 微绒毛形态变化:CCl4,30分钟后,微绒毛气球样变。 肠绒毛变化:(中轴含有微丝) 脂肪泻——变短、变宽和融合,排列也不规则。(其它吸收不良时,变化不显著)。 给氨甲喋呤后——扩张和形成水泡。 霍乱弧菌——球状绒毛,毒素及水分通过微绒毛逸出。 毛细胞性白血病,毛细胞有许多突起,甚至在红细胞表面也有分支或不分支的细胞突起。(还出现于特发性血小板减少性紫癜、恶性贫血、何杰金氏病)这种细胞吞饮作用增高。 环境中缺少某些因子或存在某种刺激因子。 (三)纤毛的变化 细胞表面游离面伸出的能摆动的细胞突起,比微绒毛粗而长。 1、复合绒毛表现为纤毛中有许多轴微管存在于共同的基质和一个膜的包绕中。这种变化出现在第三脑室胶样囊肿的衬里上皮、卵巢恶性多囊性畸胎瘤、卵巢癌、鼻乳头状瘤、重度吸烟、支气管癌上皮、过敏状态的上颌窦黏膜、聋子的中耳黏膜 2.、纤毛肿胀,微管脱失和膜的空泡变 纤毛脱落后不再生 二.线粒体Mitochondria

超微结构检查

生物电镜技术在生物医学领域中的应用 摘要: 随着现代医学细胞超微结构及分子生物学等学科的迅速发展,电子显微镜技术并未像某些人预测的那样随着免疫组化技术的发展而进入了末日。相反,电子显微镜技术也正向超,高分辨率、生物分子及原子水平发展。口述(近年来越来越多的事实证明电镜在人体各种疾病的诊断中仍然发挥着重要的作用。)生物电镜技术在生物和临床医学疾病诊断中作出了巨大的贡献, 并不断开辟着生物医学研究的新领域, 主要从细胞、亚细胞的形态结构上阐明疾病的发生、发展及转归规律, 丰富了传统病理学的知识。口述比如:1.通过对亚细胞结构和病原体的观察, 在生物医学领域利用高性能的电子显微镜观察细胞中各种细胞器正常的和病理的超微结构, 诸如内质网、线粒体、高尔基体、溶酶体、细胞骨架系统等, 对探明病因和治疗疾病有很大帮助。2.通过研究细胞结构和功能的关系, 也可以研究细胞的通讯与运输、分裂与分化、增殖与调控等生命活动的规律, 电子显微镜也可结合各种制样技术观察病毒、细菌、支原体、生物大分子等的超微结构, 是现代生物医学研究不可替代的工具。口述(随着电镜技术的不断改进以及与多种研究手段相结合, 电子显微镜将在生物医学领域应用会更加广泛。) 口述:引言:首先,我们需要知道的是生物电镜技术是医学生物学工作者深入研究机体的超微结构及其功能的有利手段之一。所谓超微结构,一般指光学显微镜所不能分辨的组织、细胞的细微形态结构(亚显微结构)以及生物大分子的结构。在形态学科,如解剖学、组织学、胚胎学、细胞学、病理学、微生物学、寄生虫学等等之中,电子显微镜技术已成为研究结构的常规方法。在某些机能学科,如生理、生物化学、病理生理、药理等。此外,在临床医学、环境保护科学以及中草药的研究等,电镜技术也做出了重要的贡献,并不断开辟着生物医学研究的新领域,主要从细胞,亚细胞的形态结构上阐明疾病的发生,发展及其病理转归规律。而随着电镜技术的不断改进以及与多种研究手段相结合,电镜技术在生物医学的应用将更加广泛。下面,我们小组将对生物电镜技术在生物医学领域中的应用稍作讲解。分为两个部分。 正文: 一.生物电镜技术在生物和医学中的研究历史 电子显微镜诞生于二十世纪30年代,德国的 Bruche和 Johannson根据电子光学原理,以电子束为介质用电子柬和电子透镜代替传统的光束和光学透镜,

第一章概论复习题动物学

复习试题 一、名词解释 1. 组织; 2. 内分泌腺; 3. 对称; 4. 闰盘; 5. 自动节律性; 6. 反射弧; 7. 突触; 8. 细胞间质; 9. 器官;10. 系统;11. 无对称;12. 球形对称;13 辐射对称;14. 两辐射对称;15. 两侧对称; 16. 次生性辐射对称;17. 多态现象;18. 螺旋卵裂;19. 辐射卵裂;20. 化石;21. 同律分节; 22. 异律分节;23. 原口动物;24 后口动物;25 哈佛氏系统。 二、填空题 1. 生物体结构与机能的基本功能单位是。 2. 细胞一般比较小,需要显微镜才能看见,通常以为单位计算其大小。 3. 细胞的心态结构与机能是多种多样的,游离的细胞多为;紧密连接的细胞有、和等;具有搜索机能的肌细胞多为或;具有传导机能的神经细胞则为。 4. 动物细胞中具有24种生命所必需的化学元素,其中对生命起着特别重要作用的有6种,分别是、、、、和;另有12种微量元素也是生命不可缺少的。 5. 细胞中的化合物可分为无机物和两大类,前者主要是和;后者主要是、和等。 6. 动物的组织通常可分为、、和四大类。 7. 上皮组织具有、、、、和等。 8. 根据机能的不同,上皮组织可分为、和等。 9. 根据细胞层数和形状的不同,被覆上皮又可分为、、和 等多种类型。 10. 根据结构和功能的差异,结缔组织又可分为、、、 、和等多种。 11. 根据肌细胞的形态结构可将肌肉组织分为、、和 等多种。 12. 神经组织由和组成。 13. 和是神经细胞的主要功能。 14. 一个典型的神经细胞由和组成。 15. 按其功能可将神经元分为、和。 16. 结缔组织是由和组成。 17. 在细胞中与蛋白质合成有关的细胞器是,贮存、加工、转运蛋白质的细胞器是,对细 胞内和进入细胞内的物质起消化作用的细胞器是。 18. 动物细胞不同于植物细胞的特点是、、和。 三、判断与改错题(对的填“T”,错的填“F”并改正)

《超微结构病理学》一些知识(第一次修订版)

读图术语:嗜锇性板层小体、酶原颗粒、腺腔、毛细血管、粗面内质网、肾小囊腔、基底膜、足细胞胞体、毛细血管、肾小囊壁层 1、脱水:固定后的组织块含有游离水,不能与包埋剂混合,必须用中间介质(脱水剂)驱除水分,以利于包埋剂浸透渗入。常用脱水剂为酒精或丙酮。市售无水酒精和丙酮往往含有少量水分而纯度不够,可事先加入无水硫酸钠或硫酸铜等干燥剂吸去水分。脱水的时间可根据样品的不同而适当延长或缩短。 2、基膜:上皮细胞基底面与深部编译组织之间的细胞间质形成的薄膜,包括透明层、基板、网版。功能:支持、连接、固定。 3、质膜:亦称为细胞膜。它是细胞与周围环境、细胞与细胞间进行物质交换和信息传递的重要通道。细胞膜的厚度约为7-10nm ,在低倍tem 下观察质膜时,它呈一条致密的细线。在高倍TEM 下,质膜呈现出“两暗一明”的三夹板式结构,称为单位膜。 4、景深:景深不是一种固定的数值,而是与放大倍数和分辨率有关的,用以表达纵深方向层次细节程度的度量。扫描电镜景深大,图像立体感强。扫描电镜的景深比光学显微镜大几百倍,比投射电镜大10 倍左右。 ★线粒体:线粒体的形状多种多样,一般呈线状、粒状或短杆状。光镜下,线粒体直径为0.5-1.0um ,长短不一。电子显微镜下,线粒体由内外两层膜组成。内、外膜之间的腔隙称线粒体外室,内膜围成的腔称线粒体内室。线粒体内膜向内折叠形成[ 山脊] 膜之间的间隙称“[ 山脊] 间隙”,与外室想通。 ★主要功能:是进行氧化磷酸化,合成ATP ,为细胞生命活动提供能量。 ★病理:线粒体对有害因素敏感,易出现超微结构上的异常改变,且在一定范围内又是可逆的,故线粒体是电镜下观察细胞受损的重要形态指标,有人称之为“细胞病变指示器”,是分子细胞病理学检查的重要依据。1. 肿胀,有室内肿胀和室外肿胀;2. 肥大及增生;3. 巨大线粒体及环形、杯形线粒体;4. 线粒体间疝形成;5. 包含物;6 线粒体固缩;7. 急支颗粒增多、增大。 ★高尔基体:在电镜下,不同细胞中高尔基复合体的形态、大小和分布均有很大差异。但其最基本的成分主要包括扁平囊泡、小囊泡和大囊泡三个基本部分组成。扁平囊泡是高尔基复合体的主体部分,一般由3-8 层堆成,表面光滑,囊腔宽约15-20nm ,囊间距约为15-30nm 。小囊泡直径约为40-80nm ,界膜厚约为6nm (和ER 膜接近)。数量较多,与一般吞饮小泡类似,散布于扁平囊泡周围,常见于形成面附近。大囊泡直径为0.1~0.5um ,其界膜约8nm ,其厚度和质膜相近,在一般切面上多见于扁平囊泡扩大的末端,有时可见与之项链,或见于分泌面,所以也称之为分泌泡或浓缩泡。 ★主要功能:1.形成和包装分泌物;2.蛋白质和脂类的糖基化;3.蛋白质的加工改造;4.膜的转化。 ★病理:1. 高尔基复合体肥大;2 猥琐、破坏、消失;3高尔基复合体扩张;4. 内容物的改变。 电镜的类型:超高压电、高压电经、高分辨电镜、普及型电镜、简易型电镜。 样品制备:# 取材、# 固定、脱水(固定后的组织块含有游离水,不能与包埋剂混合,必须用中间介质(脱水剂)驱除水分,以包埋剂浸透渗入。常用脱水剂为酒精或丙酮)、浸透和包埋(一般是石蜡包埋后再用普通的石蜡切片机切片,或是不经石蜡包埋,直接将组织作冷冻切片)、超薄切片术(是应用超薄切片机制备出供投射电镜观察的超薄切片的专门技术。要切除可供透射电镜观察的超薄切片是很不容易的。它取决于浸透包埋的成功与否、切片机的质量和玻璃刀的正确选用,以及操作者的经验等多种因素。 取材: 取材正确与否直接关系到制备出的标本能不能符合观察的要求,取材的要点是:

细胞超微结构病理学

细胞超微结构病理学 Virchow在19世纪中期所奠定的细胞病理学说,通过近代对细胞及其病变的超微结构以及结构与功能相结合的研究,已经获得了新的更广更深的基础,扩大和加深了对疾病的理解。 细胞是一个由细胞膜封闭的基本生命单元,内含一系列明确无误的互相分隔的反应腔室,这就是以细胞膜为界限的各种细胞器,是细胞代谢和细胞活力的形态支柱。 细胞内的这种严格分隔保证各种细胞器分别进行着无数的生化反应,行使各自的独特功能,维持细胞和机体的生命活动。细胞器的改变是各种病变的基本组成部分。 一、细胞核 细胞核(nucleus)是遗传信息的载体,细胞的调节中心,其形态随细胞所处的周期阶段而异,通常以间期核为准。 细胞核外被核膜。核膜由内外二层各厚约3nm的单位膜构成,中间为2~5nm宽的间隙(核周隙);核膜上有直径约50nm的微孔,作为核浆与胞浆间交通的孔道,其数目因细胞类型和功能而异,多者可占全核表面积的25%;在肝细胞核据估算约有2000个核孔。 核浆主由染色质构成,其主要成分为DNA,并以与蛋白质相结合的形式存在,后者由组蛋白与非组蛋白组成。染色质的DNA现在已可用多种方法加以鉴定和定量测定。 核内较粗大浓缩的、碱性染料深染的团块状染色质为异染色质,呈细颗粒状弥散分布的、用普通染色法几乎不着色的染色质则为常染色质。一部分异染色质也可以上述两种状态存在。从生化角度看,异染色质不具遗传活性,相反,常染色质则大部分具遗传活性。 间期核的染色质模式还反映细胞的功能状态。一般而言,大而淡染的核(浓缩染色质少)提示细胞活性(如蛋白质和酶的合成)较高;小而深染的核(浓缩染色质较多)则提示细胞活性有限或降低。 (一)细胞损伤时核的改变 1、核大小的改变 核的大小通常反映着核的功能活性状态,功能旺盛时核增大,核浆淡染,核仁也相应增大和(或)增多。如果这种状态持续较久,则可出现多倍体核或形成多核巨细胞。多倍体核在正常情况下亦可见于某些功能旺盛的细胞,如肝细胞中可见约20%为多倍体核。在病理状态下,如晚期肝炎及实验性肝癌前期等均可见多倍体的肝细胞明显增多。 核的增大除见于功能旺盛外,也可见于细胞受损时,最常见的情况为细胞水肿。这主要是细胞能量匮乏或毒性损伤所致,是核膜钠泵衰竭导致水和电解质运输障碍的结果。这种核肿大又称为变性性核肿大。 相反,当细胞功能下降或细胞受损时,核的体积则变小,染色质变致密,如见于器官萎缩时。与此同时核仁也缩小。2.核形的改变 光学显微镜下,各种细胞大多具有各自形状独特的核,可为圆形、椭圆形、梭形、杆形、肾形、印戒形、空洞形以及奇形怪状的不规则形等。在电镜下由于切片极薄,切面可以多种多样,但均非核的全貌。核的多形性和深染特别多见于恶性肿瘤细胞,称为核的异型性(atypia)。 3.核结构的改变 细胞在衰亡及损伤过程中的重要表征之一是核的改变,主要表现为核膜和染色质的改变。 核浓缩(karyopyknosis):染色质在核浆内聚集成致密浓染的大小不等的团块状,继而整个细胞核收缩变小,最后仅留下一致密的团块,是为核浓缩。这种浓缩的核最后还可再崩解为若干碎片(继发性核碎裂)而逐渐消失。 核碎裂(karyorrhexis):染色质逐渐边集于核膜内层,形成较大的高电子密度的染色质团块。核膜起初尚保持完整,以后乃在多处发生断裂,核逐渐变小,最后裂解为若干致密浓染的碎片。 核溶解(karyolysis):变致密的结成块状的染色质最后完全溶解消失,即核溶解。核溶解也可不经过核浓缩或核碎裂而一开始即独立进行。在这种情况下,受损的核很早就消失。 上述染色质边集(即光学显微镜下所谓的核膜浓染)、核浓缩、核碎裂、核溶解等核的结构改变为核和细胞不可复性损伤的标志,提示活体内细胞死亡(坏死)。 4.核内包含物(intranuclear inclusions) 在某些细胞损伤时可见核内出现各种不同的包含物,可为胞浆成分(线粒体、内质网断片、溶酶体、糖原颗粒、脂滴等),亦可为非细胞本身的异物,但最常见的还是前者。 这种胞浆性包含物可在两种情况下出现:①胞浆成分隔着核膜向核内膨突,以致在一定的切面上看来,似乎胞浆成分已进入核内,但实际上大多仍可见其周围有核膜包绕,其中的胞浆成分常呈变性性改变(如髓鞘样结构,膜碎裂等)。这

病理学-肿瘤

第四部分肿瘤 一、是非题 1.“癌症”是癌与肉瘤的统称。 ( ) 2.癌珠就是角化物质。 ( ) 3.肝癌转移到肺称肺转移性肝癌。 ( ) 4.肿瘤的异型性愈小,表示其恶性程度愈高。 ( ) 5.间变细胞一般是指缺乏分化状态的恶性肿瘤细胞。 ( ) 6.肝癌转移到肺称肝转移性肺癌。 ( ) 7.肺转移性肝癌是肝癌转移到肺脏。 ( ) 8.恶性肿瘤细胞一旦侵入淋巴管或血管就称为转移。( ) 9.肾母细胞瘤、肝母细胞瘤、神经母细胞瘤为恶性肿瘤,黑色素瘤、精原细胞瘤为良性肿瘤。( ) 10.肿瘤细胞异型性越高,分化就越好,恶性度就越小。 ( ) 11.癌常沿淋巴道转移而肉瘤多经血道转移。( ) 12.由动脉发生的良性肿瘤称动脉瘤。 ( ) 13.癌珠是指高分化鳞癌癌巢中呈同心圆层状排列的角化物。( ) 14.癌前病变是一种良性病变。 ( ) 15.霍奇金淋巴瘤是一种恶性肿瘤。 ( ) 16.肿瘤异型性越小,说明分化程度越高。 ( ) 17.浸润性生长的肿瘤全为恶性肿瘤。( ) 18.动脉瘤是由动脉血管发生的一种良性肿瘤。( ) 19.肿瘤的特点取决于肿瘤的实质。( ) 20.尤文氏瘤、室壁瘤和创伤性神经瘤均是良性肿瘤。 ( ) 21.肿瘤的异型性是指肿瘤在细胞形态及组织结构上与其起源组织所存在的差异性。( ) 22.癌的最常见转移方式是癌细胞侵入血管,淋巴管随血液、淋巴液运行而发生转移。( ) 23.癌常经淋巴道转移,而肉瘤常经血道转移。 ( ) 24.动脉瘤是一种来源于动脉血管组织的良性肿瘤。 ( ) 25.恶性肿瘤分化程度越高,其恶性程度越高。 ( ) 26.霍奇金淋巴瘤中,淋巴细胞为主型愈后最好。 ( ) 27.肿瘤异型性越小,说明分化程度越高,恶性程度越低。 ( ) 28.癌珠就是指呈同心圆排列的角化物质。 ( ) 29.霍奇金淋巴瘤中结节硬化型愈后最好。 ( ) 30.肿瘤均表现为局部肿块。( ) 31.根据肿瘤的命名原则由动脉发生的良性肿瘤称动脉瘤。( ) 32.霍奇金淋巴瘤中淋巴细胞消退型的愈后最好。( ) 33.R-S细胞是诊断霍奇金淋巴瘤的重要依据。( ) 34.单纯癌属于一种低分化腺癌。( ) 35.肿瘤的分级就是肿瘤的分期,二者意义相同。( ) 36.所有的良性肿瘤均呈膨胀性生长。( ) 37.胃低分化腺癌转移至肺称之为肺转移性胃低分化腺癌。( ) 38.胃癌转移到肝时称胃转移性肝癌。( )

超微病理学题目

1、跨膜运输的方式有哪些?分别有何特点? 1、膜的选择性通透与简单扩散 (1)、被动运输 (2)、主动运输 (3)、大分子和颗粒物质的运输 I、内吞作用 吞噬作用、胞饮作用 胞吐作用 2、核内假性包涵体的识别特征及实质? 假性包涵体 识别特征:内层膜上有核蛋白体颗粒。 实质:细胞高度畸形 3、内质网几种病理学改变的意义? 粗面内质网增生 是合成外输性蛋白增多的表现,有代偿作用。 镜下表现:粗面内质网密集,增多的内质网课伴有小池扩张。 例如:孕妇肝细胞 滑面内质网增生 多为药物及致癌物引起的解毒性反应。 镜下:滑面内质网呈分支或小囊状。 扩张及囊泡化 水分进入或分泌物潴留引起。 镜下:囊泡状 常见于炎症、缺氧、中毒及营养不良,或者有些瘤细胞内。 粗面内质网的脱颗粒及解聚 核糖体从粗面内质网上脱落,外输性蛋白合成减少。 多聚核糖体分解称为单核糖体称为解聚,此时蛋白质合成功能丧失。 例如:四氯化碳中毒胡病毒感染,癌变细胞,坏血病病人创伤处的纤维母细胞。 同心圆性板层小体 多发生于病毒感染或中毒的肝细胞内,以及肝肿瘤细胞内。 病变意义有争议。 变性? 增生? 4、线粒体肿胀可分为?其各自特点是? 肿胀:最常见,非特异性改变,多见 于缺血、缺O2、药物、低渗及固定不及时 等,特别强调取材固定与线粒体形态保存 的重要性。 线粒体肿胀→A TP产生↓→细胞膜上Na泵功能↓→膜透性↑→细胞内水份↑

→细胞肿胀,所以线粒体肿胀是细胞浊肿的一部分。 现在研究认为细胞退变的最早改变可能是线粒体,而非溶酶体的“自杀”作用所致。 由于外膜与内膜在结构和功能上有所差异,故EM下Mito肿胀可区别出:?内室肿胀: 特点:内室基质密度↓,基质颗粒减少或消失,嵴减少、变短、边移,线粒体体积增大。基质颗粒消失,与氧化磷酸化速率下降有关,是可逆的。线粒体膜破裂及基质内出现絮状沉积物则为不可逆的超微结构改变。 外室肿胀: 特点:体积不增大,基质电子密度加深,嵴间歇扩大,电子密度降低。一般是轻度,可转变为内室肿胀,常表现为嵴内间歇肿胀,偶见同一细胞内有以上二种肿胀改变。 5、细胞骨架由哪三种蛋白微丝组成?其功能是? 细胞骨架主要由三种类型的蛋白细丝组成。包括: 1、微丝(microfilaments)[MF] : 功能: 横纹肌细胞收缩功能机理(细肌丝、粗肌丝、滑动学说) 非肌细胞中,与细胞的外形维持和收缩、运动有关,如:细胞内吞、胞吐作用;细胞分裂沟的产生;收缩环的形成;参与细胞内信号传递;作为蛋白质合成的支架成分之一等。如: ①吞噬泡的质膜下方微丝明显增多, ②用细胞松弛素B后,可导致细胞分裂时,出现卵裂球多核现象(multinucleation)。 6-8nm(多数),12nm(少数) 2、微管(microtubules)[MT] :25nm 、功能: ①构成细胞的网状支架,保持细胞形态,固定与支持细胞器的位置。 ②参与细胞的收缩与伪足运动,是纤毛、鞭毛等细胞运动器官的基本结构成分。 ③参加细胞器的位移,尤其是染色体的分裂和位移,需在纺锤体微管的帮助下进行。 ④参与细胞运输活动。如神经递质、病毒、色素颗粒等。 微管与细胞病理举例:①细胞分泌受阻现象;②肿瘤细胞微管减少或消失,使从膜到核信息传递受阻,肿瘤细胞丧失接触性抑制(contact inhibition);③神经细胞轴突可由于微管减少或消失而形成回缩,等等。 3、中间丝(inter-mediate filaments) [IF]: 中间丝是细胞骨架一词的最原始来源。主要作用为机械支架。 其它可能的作用: ①与核固定有关; ②与微丝、微管共同发挥运输作用; ③波形纤维蛋白在细胞癌变调控中起一定作用,其常增多; ④与DNA复制与转录有关,等等。

病理学第五章肿瘤

第五章肿瘤 肿瘤(tumor)机体局部组织在致瘤因素作用下,在基因水平上变异,发生恶性转化,导致异常增生而形成的新生物,这种新生物称为肿瘤 异型性(atypia):肿瘤组织在细胞形态和组织结构上与正常组织有不同程度的差异,这种差异称为异型性。它反映分化程度高低,是确定肿瘤良、恶性的组织学依据。 瘤细胞异型性的特点(胞核的多形性常为恶性肿瘤的重要特征。) 大:瘤细胞大;核大;核仁大。 多:瘤细胞和核多形性;核多;核仁多;核染色质多;核分裂多。 怪:瘤细胞和核奇形怪状。 裂:病理性核分裂。 1.异型性越大,成熟程度和分化程度就越低0 2.肿瘤的结构异型性:肿瘤组织在空间排列方式上与相应正常组织的差异称为肿瘤的结构异型性。 简述异型性、分化程度及与肿瘤良恶性的关系。⑴肿瘤的异型性为肿瘤组织无论在细胞形态和组织结构上都与其来源的正常组织有不同程度的差异;⑵肿瘤的分化(成熟)程度为肿瘤的实质细胞与其来源的正常细胞和组织在形态和功能上的相似程度;⑶肿瘤的异型性愈大,分化程度愈低,则肿瘤更倾向于恶性,反之则很可能为良性。 肿瘤的生长和扩散:肿瘤的生长方式:膨胀性生长、外生性生长、侵润性生长 肿瘤的扩散(spread):系指恶性肿瘤不限于发生部位生长,可侵入到邻近或远处组织生长,即蔓延及转移。 直接蔓延(direct spread):指癌瘤细胞连续浸润性生长到邻近组织或器官,如肺癌侵入胸腔,子宫颈癌侵入膀胱或直肠。 浸润(invasion)::指癌瘤细胞可突破基底膜向邻近间隙象树根或蟹足样生长,是恶性肿瘤的生长特点。 转移(metastasis):癌瘤细胞从原发部位(原发瘤)分离脱落侵入一定的腔道(淋巴管、血管、体腔)被带到另一部位,并生长成与原发瘤同样类型的肿瘤 转移的主要途径:(1)淋巴道转移(2)血道转移(3)种植性转移 种植性转移:1.指体腔内器官(腹腔、胸腔、脑部器官)的恶性肿瘤蔓延至器官表面时,瘤细胞可

病理学——笔记大全

绪论 病理学(pathology)是一门研究疾病发生发展规律的医学基础学科,揭示疾病的病因、发病机制、病理改变和转归。 一、病理学的内容和任务 病理学教学内容分为总论和各论两部分。总论主要是研究和阐明存在于各种疾病的共同的病因、发病机制、病理变化及转归等发生、发展规律,属普通病理学(general pathology),包括组织的损伤和修复、局部血液循环障碍、炎症和肿瘤等章节。各论是研究和阐明各系统(器官)的每种疾病病因、发病机制及病变发生、发展的特殊规律,属系统病理学(systemic pathology),包括心血管系统疾病、呼吸系统疾病、消化系统疾病、淋巴造血系统疾病、泌尿系统疾病、生殖系统和乳腺疾病及传染病等。 二、病理学在医学中的地位 病理学需以基础医学中的解剖学、组织胚胎学、生理学、生物化学、细胞生物学、分子生物学、微生物学、寄生虫学和免疫学等为学习的基础,同时又为临床医学提供学习疾病的必要理论。因此,病理学在基础医学和临床医学之间起着十分重要的桥梁作用。 三、病理学的研究方法 (一)人体病理学研究方法 1、尸体剖验(autopsy):简称尸检,即对死亡者的遗体进行病理剖验,是病理学的基本研究方法之一。 2、活体组织检查(biopsy):简称活检,即用局部切取、钳取、细针吸取、搔刮和摘取等手术方法,从患者活体获取病变组织进行病理检查。活检是目前研究和诊断疾病广为采用的方法,特别是对肿瘤良、恶性的诊断上具有十分重要的意义。 3、细胞学检查(cytology):是通过采集病变处脱落的细胞,涂片染色后进行观察。 (二)实验病理学研究方法 1、动物实验:运用动物实验的方法,可以在适宜动物身上复制出某些人类疾病的模型,并通过疾病复制过程可以研究疾病的病因学、发病学、病理改变及疾病的转归。 2、组织培养和细胞培养:将某种组织或单细胞用适宜的培养基在体外培养,可以研究在各种病因作用下细胞、组织病变的发生和发展。 四、病理学观察方法和新技术的应用 1、大体观察:运用肉眼或辅以放大镜、量尺、和磅秤等工具对大体标本及其病变性状(外形、大小、重量、色泽、质地、表面及切面形态、病变特征等)进行细致的观察和检测。 2、组织和细胞学观察:将病变组织制成切片,经不同的方法染色后用显微镜观察,通过分析和综合病变特点,可作出疾病的病理诊断。 3、组织化学和细胞化学观察:通过应用某些能与组织细胞化学成分特异性结合的染色试剂,显示病变组织细胞的化学成分的改变,从而加深对形态结构改变的认识和代谢改变的了解,特别是对一些代谢性疾病的诊断有一定的参考价值。 4、免疫组织化学观察(immunohistochemistry):除了可用于病因学诊断和免疫性疾病的诊

病理学名词解释

病理学(pathology)是研究疾病发生,发展和转化规律的一门医学基础学科。其目的是认识和掌握疾病的本质和发生发展的规律,从而为防治疾病提供必要的理论基础和实践依据。 病因学(etiology)研究疾病的病因、发生条件的一门科学。 发病学(pathogenesis)病因作用下疾病发生发展的过程。 病变(pathological changes)机体在疾病过程中形态结构,功能,代谢的变化。 超微病理学(ultrastructral pathology)由于电子显微镜问世和超薄切片技术建立,病理研究遂由组织细胞水平推进至亚细胞水平,进而研讨疾病的发生与发展规律,逐步形成了超微结构病理学。 分子病理学(molecular pathology)①病理学与分子生物学、细胞生物学和细胞化学的结合;②分子水平上研究疾病发生的机制。 核浓缩(pyknosis)特征是核皱缩浓聚,嗜碱性增强。核体积缩小深染。 核碎裂(karyorrhexis)表现为核膜破裂,核染色质呈碎块状分散在胞质中。 核溶解(karyolysis)由于非特异性DNA酶和蛋白酶活化,使得DNA和核蛋白酶溶解破坏,细胞内PH降低,和染色质嗜碱性减弱,核淡染,仅能见到核的轮廓,在坏死后一两天内,细胞核完全溶解消失。 萎缩(atrophy)是指已发育正常的实质细胞、组织或器官体积缩小,可以伴发细胞数量的减少。 肥大(hypertrophy)由于功能增强,合成代谢旺盛,使实质细胞、组织器官体积增大。 增生(hyperplasia)组织、器官内实质细胞增殖,细胞数量增多的现象,成为增生。 化生(metaplasia)是一种分化成熟的细胞类型被另一种分化成熟细胞类型所取代的过程。 变性(degeneration)细胞或细胞间质受损伤后,由于代谢功能障碍,使细胞质内或细胞间质内呈现异常物质或正常物质过度积蓄的现象,常伴有细胞,组织或器官功能低下。 细胞水肿(cellular swelling)又称水变性(hydropic degeneration)是细胞可逆性损伤的一种形式,常是细胞损伤中最早出现的形态学改变,可由缺血,缺氧,感染和中毒引起,是钠-钾泵功能降低细胞内水分增多,胞质淡染、清亮,好发于肝、肾、心等实质器官。 脂肪变性(fatty degeneration or fatty change)指非脂肪细胞的实质细胞内中性脂肪(或甘油三酯)的异常蓄积称为脂肪变性。 细动脉硬化症(arteriolosclerosis)在长期高血压和糖尿病的影响下,细小动脉管壁,尤其是脑,肾脾的细动脉管壁,可发生玻璃样变,称为细动脉硬化症。 坏死(necrosis)①活体内;②局部细胞死亡;③细胞崩解、结构自溶;④急性炎反应。 凝固性坏死(coagulative necrosis)①坏死细胞蛋白质凝固;②保持原组织轮廓;③肉眼呈灰白、灰黄;④好发于心、肾、脾。 干酪样坏死(caseous necrosis,caseation)①属凝固性坏死;②不见原组织轮廓;③肉眼观似奶酪; ④多见于结核病。 液化性坏死(liquefactive necrosis)①坏死组织呈液态;②蛋白质少、脂质多的组织或溶解酶多的组织。 坏疽(gangrene)①较大范围的坏死;②腐败菌感染;③与外界相通的组织、器官;④分干性、湿性、气性三种。 凋亡(apoptosis)①活体内;②单个或小团细胞死亡;③死亡细胞的质膜不破裂,细胞不自溶;④无急性炎反应。 机化(organization)①肉芽组织;②吸收、取代坏死物或其他异物。 修复(repair)①机体部分细胞和组织的缺损;②周围健康细胞分裂、增生;③修补、恢复缺损的过程。 再生(regeneration)①损伤周围的同种细胞;②修补缺损。 肉芽组织(granulation tissue)①新生的毛细血管及成纤维细胞;②炎细胞浸润;③肉眼:鲜红色、颗粒状、柔软湿润,形似鲜嫩的肉芽。 创伤愈合(wound healing)①皮肤等组织的离断缺损;②组织的再生或增生所进行修复的过程。

人卫版 病理学(最新超级完整版)

人卫版 病理学(最新,最全版) 绪论 病理学(pathology)是一门研究疾病发生发展规律的医学基础学科,揭示疾病的病因、发病机制、病理改变和转归。 一、病理学的内容和任务 病理学教学内容分为总论和各论两部分。总论主要是研究和阐明存在于各种疾病的共同的病因、发病机制、病理变化及转归等发生、发展规律,属普通病理学(general pathology),包括组织的损伤和修复、局部血液循环障碍、炎症和肿瘤等章节。各论是研究和阐明各系统(器官)的每种疾病病因、发病机制及病变发生、发展的特殊规律,属系统病理学(systemic pathology),包括心血管系统疾病、呼吸系统疾病、消化系统疾病、淋巴造血系统疾病、泌尿系统疾病、生殖系统和乳腺疾病及传染病等。 二、病理学在医学中的地位 病理学需以基础医学中的解剖学、组织胚胎学、生理学、生物化学、细胞生物学、分子生物学、微生物学、寄生虫学和免疫学等为学习的基础,同时又为临床医学提供学习疾病的必要理论。因此,病理学在基础医学和临床医学之间起着十分重要的桥梁作用。 三、病理学的研究方法 (一)人体病理学研究方法 1、尸体剖验(autopsy):简称尸检,即对死亡者的遗体进行病理剖验,是病理学的基本研究方法之一。 2、活体组织检查(biopsy):简称活检,即用局部切取、钳取、细针吸取、搔刮和摘取等手术方法,从患者活体获取病变组织进行病理检查。活检是目前研究和诊断疾病广为采用的方法,特别是对肿瘤良、恶性的诊断上具有十分重要的意义。 3、细胞学检查(cytology):是通过采集病变处脱落的细胞,涂片染色后进行观察。 (二)实验病理学研究方法 1、动物实验:运用动物实验的方法,可以在适宜动物身上复制出某些人类疾病的模型,并通过疾病复制过程可以研究疾病的病因学、发病学、病理改变及疾病的转归。 2、组织培养和细胞培养:将某种组织或单细胞用适宜的培养基在体外培养,可以研究在各种病因作用下细胞、组织病变的发生和发展。 四、病理学观察方法和新技术的应用 1、大体观察:运用肉眼或辅以放大镜、量尺、和磅秤等工具对大体标本及其病变性状(外形、大小、重量、色泽、质地、表面及切面形态、病变特征等)进行细致的观察和检测。 2、组织和细胞学观察:将病变组织制成切片,经不同的方法染色后用显微镜观察,通过分析和综合病变特点,可作出疾病的病理诊断。 3、组织化学和细胞化学观察:通过应用某些能与组织细胞化学成分特异性结合的染色试剂,显示病变组织细胞的化学成分的改变,从而加深对形态结构改变的认识和代谢改变的了解,特别是对一些代谢性疾病的诊断有一定的参考价值。 4、免疫组织化学观察(immunohistochemistry):除了可用于病因学诊断和免疫性疾病的诊断外,更多的是用于肿瘤病理诊断。 5、超微结构观察:利用电镜观察亚细胞结构或大分子水平的变化来了解组织和细胞最细微的病变,并可与机能和代谢的变化联系起来,加深对疾病基本病变、病因和发病机制的了解。 6、流式细胞术(flow cytometry, FCM):不仅可作为诊断恶性肿瘤的参考指标,还可反映肿瘤的恶性程度和生物学行为;亦可用于对不同功能的淋巴细胞进行精确的亚群分析,对临床免疫学检测起到重要作用。 7、图像分析技术(image analysis):主要应用于核形态参数的测定,用以区别肿瘤的良恶性、区别癌前病变和癌、肿瘤的组织病理分级和判断预后等。 8、分子生物学技术:可应用于遗传性疾病的研究和病原体的检测及肿瘤的病因学、发病学、诊断和治疗等方面的研究提高到了基因分子水平。 五、病理学的发展史 1、器官病理学(organ pathology) 2、细胞病理学(cellular pathology)

相关主题
文本预览
相关文档 最新文档