当前位置:文档之家› 钢筋混凝土原理和分析 第三版课后答案

钢筋混凝土原理和分析 第三版课后答案

钢筋混凝土原理和分析 第三版课后答案
钢筋混凝土原理和分析 第三版课后答案

思考与练习

1.基本力学性能

1-1

混凝土凝固后承受外力作用时,由于粗骨料和水泥砂浆的体积比、形状、排列的随机性,弹性模量值不同,界面接触条件各异等原因,即使作用的应力完全均匀,混凝土内也将产生不均匀的空间微观应力场。在应力的长期作用下,水泥砂浆和粗骨料的徐变差使混凝土内部发生应力重分布,粗骨料将承受更大的压应力。

在水泥的水化作用进行时,水泥浆失水收缩变形远大于粗骨料,此收缩变形差使粗骨料受压,砂浆受拉,和其它应力分布。这些应力场在截面上的合力为零,但局部应力可能很大,以至在骨料界面产生微裂缝。

粗骨料和水泥砂浆的热工性能(如线膨胀系数)的差别,使得当混凝土中水泥产生水化热或环境温度变化时,两者的温度变形差受到相互约束而形成温度应力场。由于混凝土是热惰性材料,温度梯度大而加重了温度应力。环境温度和湿度的变化,在混凝土内部形成变化的不均匀的温度场和湿度场,影响水泥水化作用的速度和水分的散发速度,产生相应的应力场和变形场,促使内部微裂缝的发展,甚至形成表面宏观裂缝。混凝土在应力的持续作用下,因水泥凝胶体的粘性流动和内部微裂缝的开展而产生的徐变与时俱增,使混凝土的变形加大,长期强度降低。

另外,混凝土内部有不可避免的初始气孔和缝隙,其尖端附近因收缩、温湿度变化、徐变或应力作用都会形成局部应力集中区,其应力分布更复杂,应力值

更高。

1-2

解:若要获得受压应力-应变全曲线的下降段,试验装置的总线刚度应超过试件下降段的最大线刚度。

采用式(1-6)的分段曲线方程,则下降段的方程为:

20.8(1)x

y x x

=

-+ ,其中c y f σ= p x εε= ,1x ≥ 混凝土的切线模量d d d d c

ct p

f y E x σεε=

=? 考虑切线模量的最大值,即

d d y

x

的最大值: 222222d 0.8(1)(1.60.6)0.8(1) , 1d [0.8(1)][0.8(1)]y x x x x x x x x x x x -+----==≥-+-+ 令22d 0d y

x =,即:

223221.6(1)(1.60.6) 1.60[0.8(1)][0.8(1)]x x x x x x x ---=-+-+ 221.6(1)(1.60.6) 1.6[0.8(1)]x x x x x ∴--=-+

整理得:30.8 2.40.60 , 1x x x -+=≥ ;解得: 1.59x ≈

222

max 1.59d d 0.8(1.591)0.35d d [0.8(1.591) 1.59]

x y y x x =-?-??

===- ??-+?? 2,max 3

max max d d 260.355687.5N/mm d d 1.610c ct p f y E x σεε-????

∴==?=?= ? ?????? 试件下降段的最大线刚度为:

22

2,max 100mm 5687.5N/mm 189.58kN/mm >150kN/mm 300mm

ct A E L ?=?= 所以试件下降段最大线刚度超过装置的总线刚度,因而不能获得受压应力-应变全曲线(下降段)。

1-3

解:计算并比较混凝土受压应力-应变全曲线的以下几种模型:( , )p c

x y f εσε=

= ① Hognestad :22 ,01

110.15 ,11u y x x x x y x x ?=-≤≤?

??

?-=-≥ ??-???

(取2u x =) ② R üsch :22 ,01

1 ,

1y x x x y x ?=-≤≤?=≥?

③ Kent-Park :23

0.52 ,01

20.672=10 ,

16.89c c y x x x f x f ε-?=-≤≤?

+??≥?-?

(取0.5 2.5p εε=) ④ Sahlin :1x y x e -=? ⑤ Young :sin()2y x π

= ⑥ Desayi :2

21x

y x =+

⑦ 式(1-6):222 ,01 ,10.6(1)y x x x x

y x x x ?=-≤≤?

?=≥?-+?

令0 , 0.5 , 1 5x =… ,计算y ,结果如表1-3。

表1-3 几种混凝土受压应力-应变全曲线的计算结果

⑦00.7510.910.770.650.560.480.430.380.34

将7种曲线在同一坐标图内表示出来,进行比较,见图1-3。

图1-3 几种混凝土受压应力-应变全曲线

1-4

解:棱柱体抗压强度

c

f采用不同的计算式计算结果如下:

(1)2

30

(0.85)(0.85)3020.267N/mm

172172

cu

c cu

f

f f

=-=-?=

(2)2

13013030

3020.426N/mm

1453145330

cu

c cu

cu

f

f f

f

++

==?=

++?

(3)2

0.84 1.620.8430 1.6223.58N/mm

c cu

f f

=-=?-=

峰值应变

p

ε采用本书建议计算式,取2

20.267N/mm

c

f=:

663

(700172)10(70017220.267)10 1.47410 p c

f

ε---=+?=+?=?

受压应力-应变曲线关系采用分段式:

23

2

(32)(2) 01

1

(1)

a a a

d

y x x x x

x

y x

x x

ααα

α

?=+-+-≤≤

?

?

=>

?-+

?

对于C30混凝土,3

1.47410

p

ε-

≈?,取 2.2

a

α=,0.4

d

α=

即:2322.2 1.40.2 01 1

0.4(1)y x x x x x

y x x x ?=-+≤≤??=>?-+?

初始弹性模量42

03

20.2672.2 3.02510N/mm 1.47410

c

a p

f E αε-=?

=?

=?? 峰值割线模量423

20.267

1.37510N/mm 1.47410

c

p p

f E ε-=

=

=?? 轴心抗拉强度2/3

2/320.260.2630 2.510N/mm t cu

f f ==?= 受拉应力-应变曲线为:61.71.20.2 1 1

(1)t y x x x x

y x x x α?=-≤?

?=>?-+?

,其中,t p x εε=

,t

y f σ

=。 220.3120.312 2.510 1.966t t f α==?=

即:6

1.71.20.2 1 1

1.966(1)y x x x x

y x x x ?=-≤??=>?-+?

抗剪强度0.57

0.5720.390.3930 2.710N/mm p cu f τ==?=

剪应力-剪应变曲线为:341.9 1.70.8y x x x =-+,其中p x γγ=

,p

y τ

τ=。 峰值割线剪切模量6

2106720N/mm 176.8

83.56 2.710P p p G τγ=

==+ 初始切线剪切模量20 1.9 1.9672012768N/mm p G G ==?=

2.主要因素的影响

2-1

解:①推导式2-3:

根据要求,弹性状态下,根据:c

e e

f h bh

e N bh N =?+2

1

12

130,得:

)6(10h

e

bh f N c e +=

②推导式2-4:

弹性状态下,根据:e

e

e e e e x h x h

bh e N bh N h bh e N bh N -=?+?-2112

12

11213030,得:

125.0e h h x e += 2-2

解:①偏心受压:根据研究得出的结论,偏心受压试验中,应力-应变全曲线的

形状与试件偏心距或应变梯度无关,即偏心受压与轴心受压可采用相同的曲线方程:

x ≤1时:32)2()23(x x x y a a a -+-+=ααα;

x ≥1时:x

x x

y d +-=

2)1(α;

而根据我国的设计规范,采用6.0,2==d a αα。据此得到的应力-应变全曲线如图2-2a 所示:

图2-2a 偏心受压应力-应变全曲线

同时,建议采用混凝土偏心抗压强度(e c f ,)和相应的峰值应变(e p ,ε)随偏心距的(0e )而变化的简化计算式:

)

/6(12.02.10,,h e f f p e p c e

c +-==εε 根据题设,此时,

1286.13

.0612

.02.1)/6(12.02.10,,=?+-=+-==

h e f f p e p c

e c εε ,,,21.1286,,2, 2.2572p e p e p e p p p

x x εεε

εεεεε=====

1

2.2572

23

2

011

2.2572

2

20

1

(32)(2)(1) (2) 1.7581

0.6(1)a

a a d x

S x x x dx dx x x

x

x x dx dx x x

αααα??=+-+-+??-+=-+=-+????

②偏心受拉:混凝土的偏心受拉仍采用轴心受拉的计算公式:

x ≤1时:y =1.2x -0.26x

x ≥1时,y =

x

x x t +-7.1)1(α,其中2

312.0t t f =α。 此处假设采用30C 混凝土,则a 1.43MP t f =,得:

638.043.1312.0312.022=?==t t f α

据此得到的应力-应变全曲线如图2-2b 所示:

图2-2b 偏心受拉应力-应变全曲线

钢筋混凝土原理与分析

页眉 《钢筋混凝土原理和分析》读书笔记经过一个学期的课程学习,我在《钢筋混凝土原理和分析》教材及本科基础专业知识储备的基础上,外加查阅的其它一些相关钢筋混凝土内容的学习资料,包括教材、专著及论文等,基本掌握了书中所讲述的关于钢筋混凝土的基础知识,深化了原有的知识理论,形成较为完整的混凝土知识理论系统。由于在课程学习过程中,贺东青教授是安排我在课堂上讲解“钢筋的力学性能”与“钢筋与混凝土的粘结”的部分内容,因此,本报告后续内容也主要围绕“钢筋的力学性能”与“钢筋与混凝土的粘结”这一方面作细致展开,其他内容知识仅作一概括。 随着建筑科技的快速发展和各类工程建筑的迅速崛起,混凝土结构经历了很长时间的发展,现已经广泛应用于诸多民用和工业用建筑,为社会发展和人类生活水平提高做出了卓越贡献。在本科阶段学习的《混凝土结构设计原理》课程中,我大致了解了混凝土结构的分类、应用、构件的基本设计原理以及方法等。所涵盖的理论知识、学习方法以及思维方式都对作为结构工程方向的我们以后专业课的学习以及工作起到重要的积极的作用。 一、对《高等混凝土结构》课程的认知 在本科学习期间,有关钢筋混凝土结构的课程中,一般先简要的介绍钢筋和混凝土的材性,后以较大篇幅着重说明各种基本构件的性能、计算方法、设计和构造要求等,较多地遵循结构设计规范的体系和方法,以完成结构设计为主要目标。 《钢筋混凝土原理和分析》是以研究和分析钢筋混凝土结构的性能及一般规律,并以解决工程中出现的各种问题为目标,本书中用大量的篇幅系统地介绍主要材料—混凝土在单轴和多轴应力状态下,以及各种特殊条件下的强度和变形的一般规律,以此作为了解和分析构件性能的基础。在表述钢筋混凝土构件在各种受力条件下的性能时,强调以试验结果为依据,着重介绍其受力变形和破坏的全过程、各种因素的影响、机理分析、重要技术指标的确定、计算原则和方法等。 本书是研究和设计钢筋混凝土结构的主要理论基础和试验依据,其内容和作用如同匀质线弹性结构的“材料力学”。但是钢筋混凝土是由非线性的、且拉压强度相差悬殊的混凝土和钢筋组合而成,受力性能复杂多变,因而课程的内容更为丰富。 钢筋混凝土结构作为结构工程的一个学科分支,必定服从结构工程学科的一般规律:从工程实践中提出要求或问题,通过调查统计、实验研究、理论分析、计算对比等多种手段予以解决。总结其一般变化规律,揭示作用机理,建立物理模型和数学表达,确定计算方法和构造措施,再回到工程实践中进行验证,并加以改进和补充。一般需经过实践—研究—实践的多次反复,渐臻完善,最终为工程服务。 钢筋混凝土既然是由性质迥异的两种材料组合而成,必定具有区别于单一材料结构(如钢结构、木结构等)的特殊性。所以,钢筋混凝土的性能不仅依赖于两种材料本身的性质,还在更大程度上取决于二者的相互关系和配合。钢筋混凝土的承载力和变形性能的变化幅度很大。有时甚至可以按照所规定的性能指标设计专门的钢筋混凝土,合理选用材料和配筋构造,以满足具体工程的特定要求。 总所周知,混凝土是非匀质的、非线性的人工混合材料,力学性能复杂,且随时间而变化,性能指标的离散性又大;而钢筋和混凝土的配合又呈多样性,更使得钢筋混凝土的性能十分复杂多变。至今,钢筋混凝土构件在不同受力状态和环境条件下的性能反应已有较多的实验和理论研究结果,

华东师大数学分析习题解答2

《数学分析选论》习题解答 第 二 章 连 续 性 1. 设n y x ? ∈,,证明: )|| |||| ||(2|| ||||||2 2 2 2 y x y x y x +=-++. 证 由向量模的定义, ∑∑==-+ += -++n i i i n i i i y x y x y x y x 1 2 12 2 2 ) () (|||||| || ∑=+=+=n i i i y x y x 1 2 2 22 )|| |||| ||(2)(2 . □ 2*. 设n n x S ?∈??点,到集合S 的距离定义为 ),(inf ),(y x S x S y ρ=ρ∈. 证明:(1)若S 是闭集,S x ?,则0),(>S x ρ; (2)若d S S S ?=( 称为S 的闭包 ),则 {}0 ),(|=ρ? ∈= S x x S n . 证 (1)倘若0),(=S x ρ,则由),(S x ρ的定义,S y n ∈?,使得 ,2,1,1 ),(=< ρn n y x n . 因 S x ?,故x y n ≠,于是x 必为S 的聚点;又因S 是闭集,故S x ∈,这就导致矛盾.所以证得0),(>S x ρ. (2)S x ∈?.若S x ∈,则0),(=ρS x 显然成立.若S x ?,则d S x ∈(即x 为S 的聚点),由聚点定义,?≠?ε>ε?S x U );(,0 ,因此同样有 0),(),(inf =ρ=ρ∈S x y x S y . 反之,凡是满足0),(=ρS x 的点x ,不可能是S 的外点( 若为外点,则存在正

数0ε,使?=?εS x U );(0,这导致0),(inf 0>ε≥ρ∈y x S y ,与0),(=ρS x 相 矛盾).从而x 只能是S 的聚点或孤立点.若x 为聚点,则S S x ?∈d ;若x 为孤立点, 则S S x ?∈.所以这样的点x 必定属于S . 综上,证得 { } 0),(|=ρ?∈=S x x S n 成立. □ 3.证明:对任何n S ? ?,d S 必为闭集. 证 如图所示,设0x 为d S 的任一聚点, 欲证∈0x d S ,即0x 亦为S 的聚点. 这是因为由聚点定义,y ?>ε?,0,使得 d S x U y ?ε∈);(0 . 再由y 为S 的聚点,);();(0ε?δ?x U y U ,有 ?≠?δS y U );( . 于是又有?≠?εS x U );(0 ,所以0x 为S 的聚点,即∈0x d S ,亦即d S 为闭 集. □ 4.证明:对任何n S ? ?,S ?必为闭集. 证 如图所示,设0x 为S ?的任一聚点,欲证S x ?∈0,即0x 亦为S 的界点. 由聚点定义,y ?>ε?,0,使 S x U y ??ε∈);(0 . 再由y 为界点的定义,);();(0ε?δ?x U y U , 在);(δy U 内既有S 的内点,又有S 的外点.由此证得在);(0εx U 内既有S 的内点,又有S 的外点,所以0x 为S 的界点,即S ?必为闭集. □ *5.设n S ??,0x 为S 的任一内点,1x 为S 的任一外点.证明:联结0x 与1 x 的直线段必与S ?至少有一交点. 0x );(δy U );(0εx U S S ? );(δy U );(0εx U S d S 0x

应用回归分析,第8章课后习题参考答案

第8章 非线性回归 思考与练习参考答案 8.1 在非线性回归线性化时,对因变量作变换应注意什么问题? 答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。如: (1) 乘性误差项,模型形式为 e y AK L αβε =, (2) 加性误差项,模型形式为y AK L αβ ε = + 对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。 一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。 8.2为了研究生产率与废料率之间的关系,记录了如表8.15所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。 表8.15 生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%) 5.2 6.5 6.8 8.1 10.2 10.3 13.0 解:先画出散点图如下图: 5000.00 4000.003000.002000.001000.00x 12.00 10.00 8.006.00 y

从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。 (1)二次曲线 SPSS 输出结果如下: Model Summ ary .981 .962 .942 .651 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x. ANOVA 42.571221.28650.160.001 1.6974.424 44.269 6 Regression Residual Total Sum of Squares df Mean Square F Sig.The independent variable is x. Coe fficients -.001.001-.449-.891.4234.47E -007.000 1.417 2.812.0485.843 1.324 4.414.012 x x ** 2 (Constant) B Std. E rror Unstandardized Coefficients Beta Standardized Coefficients t Sig. 从上表可以得到回归方程为:72? 5.8430.087 4.4710y x x -=-+? 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。 由x 2的系数检验P 值小于0.05,得到x 2的系数通过了显著性检验。 (2)指数曲线 Model Summ ary .970 .941 .929 .085 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x.

钢筋混凝土原理和分析第三版课后答案

思考与练习 1.基本力学性能 1-1 混凝土凝固后承受外力作用时,由于粗骨料和水泥砂浆的体积比、形状、排列的随机性,弹性模量值不同,界面接触条件各异等原因,即使作用的应力完全均匀,混凝土也将产生不均匀的空间微观应力场。在应力的长期作用下,水泥砂浆和粗骨料的徐变差使混凝土部发生应力重分布,粗骨料将承受更大的压应力。 在水泥的水化作用进行时,水泥浆失水收缩变形远大于粗骨料,此收缩变形差使粗骨料受压,砂浆受拉,和其它应力分布。这些应力场在截面上的合力为零,但局部应力可能很大,以至在骨料界面产生微裂缝。 粗骨料和水泥砂浆的热工性能(如线膨胀系数)的差别,使得当混凝土中水泥产生水化热或环境温度变化时,两者的温度变形差受到相互约束而形成温度应力场。由于混凝土是热惰性材料,温度梯度大而加重了温度应力。环境温度和湿度的变化,在混凝土部形成变化的不均匀的温度场和湿度场,影响水泥水化作用的速度和水分的散发速度,产生相应的应力场和变形场,促使部微裂缝的发展,甚至形成表面宏观裂缝。混凝土在应力的持续作用下,因水泥凝胶体的粘性流动和部微裂缝的开展而产生的徐变与时俱增,使混凝土的变形加大,长期强度降低。 另外,混凝土部有不可避免的初始气孔和缝隙,其尖端附近因收缩、温湿度变化、徐变或应力作用都会形成局部应力集中区,其应力分布更复杂,应力值更高。 1-2 解:若要获得受压应力-应变全曲线的下降段,试验装置的总线刚度应超过试件下降段的最大线刚度。 采用式(1-6)的分段曲线方程,则下降段的方程为: 20.8(1)x y x x = -+ ,其中c y f σ= p x εε= ,1x ≥ 混凝土的切线模量d d d d c ct p f y E x σεε= =? 考虑切线模量的最大值,即 d d y x 的最大值: 222222 d 0.8(1)(1.60.6)0.8(1) , 1d [0.8(1)][0.8(1)]y x x x x x x x x x x x -+----==≥-+-+

应用回归分析第2章课后习题参考答案

2.1 一元线性回归模型有哪些基本假定? 答:1. 解释变量 1x , ,2x ,p x 是非随机变量,观测值,1i x ,,2 i x ip x 是常数。 2. 等方差及不相关的假定条件为 ? ? ? ? ? ? ??????≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1, 0)(2 σεεε 这个条件称为高斯-马尔柯夫(Gauss-Markov)条件,简称G-M 条件。在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计等。 3. 正态分布的假定条件为 ???=相互独立 n i n i N εεεσε,,,,,2,1),,0(~212 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。 4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。 在整个回归分析中,线性回归的统计模型最为重要。一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。因此,线性回归模型的理论和应用是本书研究的重点。 1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i =求出p ββββ,,,,210 及方差2σ的估计; 2. 对回归方程及回归系数的种种假设进行检验; 3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。 2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1 =+=εβ误差n εεε,,,21 仍满足基本假定。求1β的最小二 乘估计。 答:∑∑==-=-=n i n i i i i x y y E y Q 1 1 2112 1)())(()(ββ

钢筋混凝土原理及分析

《钢筋混凝土原理和分析》读书笔记 经过一个学期的课程学习,我在《钢筋混凝土原理和分析》教材及本科基础专业知识储备的基础上,外加查阅的其它一些相关钢筋混凝土容的学习资料,包括教材、专著及论文等,基本掌握了书中所讲述的关于钢筋混凝土的基础知识,深化了原有的知识理论,形成较为完整的混凝土知识理论系统。由于在课程学习过程中,贺东青教授是安排我在课堂上讲解“钢筋的力学性能”与“钢筋与混凝土的粘结”的部分容,因此,本报告后续容也主要围绕“钢筋的力学性能”与“钢筋与混凝土的粘结”这一面作细致展开,其他容知识仅作一概括。 随着建筑科技的快速发展和各类工程建筑的迅速崛起,混凝土结构经历了很长时间的发展,现已经广泛应用于诸多民用和工业用建筑,为社会发展和人类生活水平提高做出了卓越贡献。在本科阶段学习的《混凝土结构设计原理》课程中,我大致了解了混凝土结构的分类、应用、构件的基本设计原理以及法等。所涵盖的理论知识、学习法以及思维式都对作为结构工程向的我们以后专业课的学习以及工作起到重要的积极的作用。 一、对《高等混凝土结构》课程的认知 在本科学习期间,有关钢筋混凝土结构的课程中,一般先简要的介绍钢筋和混凝土的材性,后以较大篇幅着重说明各种基本构件的性能、计算法、设计和构造要求等,较多地遵循结构设计规的体系和法,以完成结构设计为主要目标。 《钢筋混凝土原理和分析》是以研究和分析钢筋混凝土结构的性能及一般规律,并以解决工程中出现的各种问题为目标,本书中用大量的篇幅系统地介绍主要材料—混凝土在单轴和多轴应力状态下,以及各种特殊条件下的强度和变形的一般规律,以此作为了解和分析构件性能的基础。在表述钢筋混凝土构件在各种受力条件下的性能时,强调以试验结果为依据,着重介绍其受力变形和破坏的全过程、各种因素的影响、机理分析、重要技术指标的确定、计算原则和法等。 本书是研究和设计钢筋混凝土结构的主要理论基础和试验依据,其容和作用如同匀质线弹性结构的“材料力学”。但是钢筋混凝土是由非线性的、且拉压强度相差悬殊的混凝土和钢筋组合而成,受力性能复杂多变,因而课程的容更为丰富。 钢筋混凝土结构作为结构工程的一个学科分支,必定服从结构工程学科的一般规律:从工程实践中提出要求或问题,通过调查统计、实验研究、理论分析、计算对比等多种手段予以解决。总结其一般变化规律,揭示作用机理,建立物理模型和数学表达,确定计算法和构造措施,再回到工程实践中进行验证,并加以改进和补充。一般需经过实践—研究—实践的多次反复,渐臻完善,最终为工程服务。 钢筋混凝土既然是由性质迥异的两种材料组合而成,必定具有区别于单一材料结构(如钢结构、木结构等)的特殊性。所以,钢筋混凝土的性能不仅依赖于两种材料本身的性质,还在更大程度上取决于二者的相互关系和配合。钢筋混凝土的承载力和变形性能的变化幅度很大。有时甚至可以按照所规定的性能指标设计专门的钢筋混凝土,合理选用材料和配筋构造,以满足具体工程的特定要求。 总所知,混凝土是非匀质的、非线性的人工混合材料,力学性能复杂,且随时间而变化,性能指标的离散性又大;而钢筋和混凝土的配合又呈多样性,更使得钢筋混凝土的性能十分复杂多变。至今,钢筋混凝土构件在不同受力状态和环境条件下的性能反应已有较多的实验和理论研究结果,建立了相应的计算法和构造措施,可以解决工程问题。但是,还缺乏一个完善的、统一的理论法来概括和解决普遍的工程问题。 考虑到混凝土材性和钢筋混凝土构件性能的这些特点,应遵循以下原则:

数学分析课本(华师大三版)-习题及答案第二十二章

第二十二章 曲面积分 一、证明题 1.证明:由曲面S 所包围的立体V 的体积等于 V= ()??+β+αS ds r cos z cos y cos x 31其中αcos ,βcos , cpsr 为曲面S 的外法线方向余弦. 2.若S 为封闭曲面,L 为任何固定方向,则 ()??S ds L ,n cos =0 其中n 为曲面S 的外法线方向. 3. 证明 公式 ???V r dx dydz =()??S ds n ,r cos 21 其中S 是包围V 的曲面,n 为S 的外法线方向. r=222z y x ++,r=(x,y,z). 4.证明: 场A=()(z y x 2yz ++,()z y 2x zs ++, ())z 2y x x y ++是有势场并求其势函数. 二、计算题 1.计算下列第一型曲面积分: (1) ()??++S ds z y x ,其中S 为上半球面 222z y x ++=2a 0z ≥; (2) () ??+S 22ds y x ,其中S 为主体1z y x 22≤≤+的边界曲面; (3) ?? +S 22ds y x 1,其中S 为柱面222R y x =+被平面Z=0,Z=H 所截取的P 分; (4) ??S xyzds ,其中S 为平面在第一卦限中的部分.

2.计算??S 2ds z ,其中S 为圆锥表面的一部分. S:?? ???θ=θ?=θ?=cos r z sin sin r y sin cos r x D:???π≤?≤≤≤20a r 0 这里θ为常数(0<θ<2 π). 3.计算下列第二型曲面积分 (1) ()?? -S dydz z x y +dzdx x 2+()dx dy x z y 2+,其中S 为x=y=z=0,x=y=z=a 平成所围成的正方体并取处侧为正向; (2)()()()??+++++S dxdy x z dzdx z y dydz y x ,其中S 是以原点中心,边长为2的正方体 表面并取外侧正向; (3)??++S zxdxdy yzdzdx xydydz ,其中S 是由平面x=y=z=0和x+y+z=1所围的四面体 表面并取外侧为正向; (4) ??S yzdzdx ,其中S 是球面,222z y x ++=1的上半部分并取外侧为正向; (5)?? ++S 222dxdy z dzdx y dydz x ,其中S 是球面()2a x - +()2b y -+()2c x -=R 2并取外侧为正向. 4.设某流体的流速为V=(x,y,0),求单位时间内从球面x 2+y 2 +z 2=4的内部流过球面的流量 5.计算第二型曲面积分 I=()??S dydz x f +()dzdx y g +()dx dy z h 其中S 是平行分面体(a x 0≤≤,b y 0≤≤,c z 0≤≤)表面并取外侧,f(x),g(y),h(z)为S 上的连续函数, 6.设磁场强度为E(x,y,z),求从球内出发通过上半球面x 2+y 2 +z 2=a 2,z=0的磁通量, 7.应用高斯公式计算下列曲面积分: (1) ??++S sydxdy zxdzds yzdydz ,其中S 为单位球面x 2+y 2+z 2=1的外侧; (2) ??++S 222dxdy z dzds y dydz x ,其中S 是立方体≤0x,y,z a ≤的表面取外侧; (3) ??++S 222dxdy z dzds y dydz x ,其中S 为锥面x 2+y 2 =z 2与平面z=h 所围的空间区域(h z 0≤≤)的表面方向取外侧; (4) ??++S 332dxdy z dzds y dydz x ,其中S 是单位球面x 2+y 2+z 2=1的外侧; (5) ??++S dxdy 2ydzds xdydz ,其中S 为上半球面Z=222y x a --的外侧.

应用回归分析课后答案

应用回归分析课后答案 第二章一元线性回归 解答:EXCEL结果: SUMMARY OUTPUT 回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值5 方差分析 df SS MS F Significance F 回归分析125 残差3 总计410 Coefficients标准误差t Stat P-value Lower 95%Upper 95%下限%上限% Intercept X Variable 15 RESIDUAL OUTPUT 观测值预测Y残差 1 2 3 4 5 SPSS结果:(1)散点图为:

(2)x 与y 之间大致呈线性关系。 (3)设回归方程为01y x ββ∧ ∧ ∧ =+ 1β∧ = 12 2 1 7()n i i i n i i x y n x y x n x -- =- =-=-∑∑ 0120731y x ββ-∧- =-=-?=- 17y x ∧ ∴=-+可得回归方程为 (4)22 n i=1 1()n-2i i y y σ∧∧=-∑ 2 n 01i=1 1(())n-2i y x ββ∧∧=-+∑ =222 22 13???+?+???+?+??? (10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1 169049363 110/3= ++++= 1 330 6.13 σ∧=≈ (5)由于2 11(, )xx N L σββ∧ :

t σ ∧ == 服从自由度为n-2的t分布。因而 /2 |(2)1 P t n α α σ ?? ?? <-=- ?? ?? 也即: 1/211/2 (p t t αα βββ ∧∧ ∧∧ -<<+=1α - 可得 1 95% β∧的置信度为的置信区间为(7-2.3537+2.353即为:(,) 2 2 00 1() (,()) xx x N n L ββσ - ∧ + : t ∧∧ == 服从自由度为n-2的t分布。因而 /2 (2)1 P t n α α ∧ ?? ?? ?? <-=- ?? ?? ?? ?? ?? 即 0/200/2 ()1 pβσββσα ∧∧∧∧ -<<+=- 可得 1 95%7.77,5.77 β∧- 的置信度为的置信区间为() (6)x与y的决定系数 2 21 2 1 () 490/6000.817 () n i i n i i y y r y y ∧- = - = - ==≈ - ∑ ∑ (7)

数学分析课本(华师大三版)-习题及答案第六章

数学分析课本(华师大三版)-习题及答案第六章

第六章 微分中值定理及其应用 一、 填空题 1.若0,0>>b a 均为常数,则=??? ? ? ?+→x x x x b a 3 2 lim ________。 2.若2 1 sin cos 1lim 0 =-+→x x b x a x ,则=a ______,=b ______。 3.曲线x e y =在0=x 点处的曲率半径=R _________。 4.设2442 -+=x x y ,则曲线在拐点处的切线方程为 ___________。 5.= -+→x e x x x 10 )1(lim ___________。 6.设) 4)(1()(2 --=x x x x f ,则0)(='x f 有_________个根, 它们分别位于________ 区间; 7.函数x x x f ln )(=在[]2,1上满足拉格朗日定理条件的 __________=ξ; 8.函数3 )(x x f =与2 1)(x x g +=在区间[]2,0上满足柯西定 理条件的_____=ξ; 9.函数x y sin =在[]2,0上满足拉格朗日中值定理条件的____=ξ; 10.函数 2 )(x e x f x =的单调减区间是__________; 11.函数x x y 33 -=的极大值点是______,极大值是

_______。 12.设x xe x f =)(,则函数) () (x f n 在=x _______处取得 极小值_________。 13.已知bx ax x x f ++=23 )(,在1=x 处取得极小值2-, 则=a _______,=b _____。 14.曲线2 2)3(-=x k y 在拐点处的法线通过原点,则 =k ________。 15.设)2,1()1()(Λ=-?=n x n x f n ,n M 是)(x f 在[]1,0上的最 大值,则=∞ →n n M lim ___________。 16.设)(x f 在0 x 可导,则0)(0 ='x f 是)(x f 在点0 x 处取得 极值的______条件; 17.函数x bx x a x f ++=2 ln )(在1=x 及2=x 取得极值,则 ___ ___,==b a ; 18. 函数 3 2 2 3 )(x x x f -=的极小值是_________; 19.函数x x x f ln )(=的单调增区间为__________; 20. 函数x x x f cos 2)(+=在?? ??? ?2,0π上的最大值为______, 最小值为_____; 21. 设点 ) 2,1(是曲线 b a x y +-=3)(的拐点,则 ______ _____,==b a ; 22. 曲线x e y =的下凹区间为_______,曲线的拐点为

应用回归分析,第7章课后习题参考答案

第7章岭回归 思考与练习参考答案 7.1 岭回归估计是在什么情况下提出的? 答:当自变量间存在复共线性时,|X’X|≈0,回归系数估计的方差就很大,估计值就很不稳定,为解决多重共线性,并使回归得到合理的结果,70年代提出了岭回归(Ridge Regression,简记为RR)。 7.2岭回归的定义及统计思想是什么? 答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其统计思想是对于(X’X)-1为奇异时,给X’X加上一个正常数矩阵 D, 那么X’X+D接近奇异的程度就会比X′X接近奇异的程度小得多,从而完成回归。但是这样的回归必定丢失了信息,不满足blue。但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。 7.3 选择岭参数k有哪几种方法? 答:最优 是依赖于未知参数 和 的,几种常见的选择方法是: 岭迹法:选择 的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太多;

方差扩大因子法: ,其对角线元 是岭估计的方差扩大因子。要让 ; 残差平方和:满足 成立的最大的 值。 7.4 用岭回归方法选择自变量应遵循哪些基本原则? 答:岭回归选择变量通常的原则是: 1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小。我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量; 2. 当k值较小时,标准化岭回归系数的绝对值并不很小,但是不稳定,随着k的增加迅速趋近于零。像这样岭回归系数不稳定、震动趋于零的自变量,我们也可以予以剔除; 3. 去掉标准化岭回归系数很不稳定的自变量。如果有若干个岭回归系数不稳定,究竟去掉几个,去掉那几个,要根据去掉某个变量后重新进行岭回归分析的效果来确定。

钢筋混凝土原理习题

钢筋混凝土原理习题 第一章绪论 1.1混凝土梁破坏时有哪些特点?钢筋和混凝土是如何共同工作的? 1.2钢筋混凝土有哪些优点和缺点? 1.3本课程主要包括哪些内容?学习本课程要注意哪些问题? 第二章混凝土结构材料的物理力学性能 2.1 混凝土的立方抗压强度。轴心抗压强度和抗拉强度是如何确定的?为什么低于?与有何关系?与有何关系? 2.2 混凝土的强度等级是根据什么确定的?我国新《规范》规定的混凝土强度等级有哪些? 2.3 某方形钢筋混凝土短柱浇筑后发现混凝土强度不足,根据约束混凝土原理如何加固该柱? 2.4 单向受力状态下,混凝土的强度与哪些因素有关?混凝土轴心受压应力-应变曲线有何特点?常用的表示应力-应变关系的数学模型有哪几种? 2.5 混凝土的变形模量和弹性模量是怎样确定的? 2.6什么是混凝土的疲劳破坏?疲劳破坏时应力-应变曲线有何特点? 2.7什么是混凝土的徐变?徐变对混凝土构件有何影响?通常认为影响徐变的主要因素有哪些?如何减少徐变? 2.8 混凝土收缩对钢筋混凝土构件有何影响?收缩与哪些因素有关?如何减少收缩?

2.9 软钢和硬钢的应力-应变曲线有何不同?二者的强度取值有何不同?我国新规范中将钢筋按强度分为哪些类型?了解钢筋的应力-应变曲线的数学模型。 2.10 钢筋有哪些形式?钢筋冷加工的方法有哪几种?冷拉和冷拔后钢筋的力学性能有何变化? 2.11 钢筋混凝土结构对钢筋的性能有哪些要求? 2.12 什么是钢筋和混凝土之间的粘结力?影响钢筋和混凝土粘结强度的主要因素有哪些?为保证钢筋和混凝土之间有足够的粘结力要采取哪些措施? 第三章按近似概率理论的极限状态设计法 3.l 结构可靠性的含义是什么?它包含哪些功能要求?结构超过极限状态会产生什么后果?建筑结构安全等级是按什么原则划分的? 3.2 “作用”和“荷载”有什么区别?影响结构可靠性的因素有哪些?结构构件的抗力与哪些因素有关?为什么说构件的抗力是一个随机变量? 3.3 什么是结构的极限状态?结构的极限状态分为几类,其含义各是什么? 3.4 建筑结构应该满足哪些功能要求?结构的设计工作寿命如何确定?结构超过其设计工作寿命是否意味着不能再使用?为什么? 3.5 正态分布概率密度曲线有哪些数字特征?这些数字特征各表示什么意义?正态分布概率密度曲线有何特点? 3.6 材料强度是服从正态分布的随机变量,其概率密度为,怎样计算材料强度大于某一取值的概率P(>)? 3.7 什么是保证率?什么叫结构的可靠度和可靠指标?我国《建筑结构设计统一标准》对结构可靠度是如何定义的?

应用回归分析第三章课后习题整理

y1 1 x11 x12 x1p 0 1 3.1 y2 1 x21 x22 x2p 1 + 2 即y=x + yn 1 xn1 xn2 xnp p n 基本假定 (1) 解释变量x1,x2…,xp 是确定性变量,不是随机变量,且要求 rank(X)=p+1

n 注 tr(H) h 1 3.4不能断定这个方程一定很理想,因为样本决定系数与回归方程中 自变量的数目以及样本量n 有关,当样本量个数n 太小,而自变量又较 多,使样本量与自变量的个数接近时, R 2易接近1,其中隐藏一些虚 假成分。 3.5当接受H o 时,认定在给定的显著性水平 下,自变量x1,x2, xp 对因变量y 无显著影响,于是通过x1,x2, xp 去推断y 也就无多大意 义,在这种情况下,一方面可能这个问题本来应该用非线性模型去描 述,而误用了线性模型,使得自变量对因变量无显著影响;另一方面 可能是在考虑自变量时,把影响因变量y 的自变量漏掉了,可以重新 考虑建模问题。 当拒绝H o 时,我们也不能过于相信这个检验,认为这个回归模型 已经完美了,当拒绝H o 时,我们只能认为这个模型在一定程度上说明 了自变量x1,x2, xp 与自变量y 的线性关系,这时仍不能排除排除我 们漏掉了一些重要的自变量。 3.6中心化经验回归方程的常数项为0,回归方程只包含p 个参数估计 值1, 2, p 比一般的经验回归方程减少了一个未知参数,在变量较 SSE (y y)2 e12 e22 1 2 1 E( ) E( - SSE* - n p 1 n p n 2 [D(e) (E(e ))2 ] 1 n (1 1 n 2 en n E( e 1 1 n p 1 1 n p 1 1 "1 1 n p 1 J (n D(e) 1 (p 1)) 1_ p 1 1 1 n p 1 2 2 n E(e 2 ) (1 h ) 2 1

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

应用回归分析课后习题参考答案

应用回归分析课后习题 参考答案 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第二章一元线性回归分析 思考与练习参考答案 一元线性回归有哪些基本假定 答:假设1、解释变量X是确定性变量,Y是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(ε i )=0 i=1,2, …,n Var (ε i )=2i=1,2, …,n Cov(ε i, ε j )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X之间不相关: Cov(X i , ε i )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 ε i ~N(0, 2) i=1,2, …,n 考虑过原点的线性回归模型 Y i =β 1 X i +ε i i=1,2, …,n 误差εi(i=1,2, …,n)仍满足基本假定。求β1的最小二乘估计解: 得: 证明(式),e i =0 ,e i X i=0 。 证明: ∑ ∑+ - = - = n i i i n i X Y Y Y Q 1 2 1 2 1 )) ? ?( ( )? (β β 其中: 即:e i =0 ,e i X i=0 2 1 1 1 2) ? ( )? ( i n i i n i i i e X Y Y Y Qβ ∑ ∑ = = - = - = ) ? ( 2 ?1 1 1 = - - = ? ?∑ = i i n i i e X X Y Q β β ) ( ) ( ? 1 2 1 1 ∑ ∑ = = = n i i n i i i X Y X β 01 ?? ?? i i i i i Y X e Y Y ββ =+=- 01 00 ?? Q Q ββ ?? == ??

钢筋混凝土原理和分析第三版课后答案

思考与练习 1. 基本力学性能 1- 1 混凝土凝固后承受外力作用时,由于粗骨料和水泥砂浆的体积比、形状、排列的随机性,弹性模量值不同,界面接触条件各异等原因,即使作用的应力完全均匀,混凝土内也将产生不均匀的空间微观应力场。在应力的长期作用下,水泥砂浆和粗骨料的徐变差使混凝土内部发生应力重分布,粗骨料将承受更大的压应力。 在水泥的水化作用进行时,水泥浆失水收缩变形远大于粗骨料,此收缩变形差使粗骨料受压,砂浆受拉,和其它应力分布。这些应力场在截面上的合力为零,但局部应力可能很大,以至在骨料界面产生微裂缝。 粗骨料和水泥砂浆的热工性能(如线膨胀系数)的差别,使得当混凝土中水泥产生水化热或环境温度变化时,两者的温度变形差受到相互约束而形成温度应力场。由于混凝土是热惰性材料,温度梯度大而加重了温度应力。环境温度和湿度的变化,在混凝土内部形成变化的不均匀的温度场和湿度场,影响水泥水化作用的速度和水分的散发速度,产生相应的应力场和变形场,促使内部微裂缝的发展,甚至形成表面宏观裂缝。混凝土在应力的持续作用下,因水泥凝胶体的粘性流动和内部微裂缝的开展而产生的徐变与时俱增,使混凝土的变形加大,长期强度降低。 另外,混凝土内部有不可避免的初始气孔和缝隙,其尖端附近因收缩、温湿度变化、徐变或应力作用都会形成局部应力集中区,其应力分布更复杂,应力值更高。 1- 2

解:若要获得受压应力-应变全曲线的下降段,试验装置的总线刚度应超过试件 下降段的最大线刚度。 采用式(1-6 )的分段曲线方程,贝U 下降段的方程为: y 0.8(x x 1)2 x ,其中 y 试件下降段的最大线刚度为: E -t,max - 5687.5N/mm 2 100 亦 189.58kN/mm >150kN/mm L 300mm 所以试件下降段最大线刚度超过装置的总线刚度,因而不能获得受压应力 应变全曲线(下降段)。 1-3 解:计算并比较混凝土受压应力- 应变全曲线的以下几种模型:(x : , y f -) 混凝土的切线模量E ct - d dy f c dx p 考虑切线模量的最大值,即 月的最大值: Qdx 0.8(x 1)2 x x(1.6x 0.6) [0.8( x 1)2 x]2 0^ (x 22 1) 2 ,x 1 [0.8( x 1)2 x]2 0,即: 2 1.6(x 1)(1.6x 0.6) 2 3 [0.8( x 1)2 x]3 [0.8( x 1)2 x]2 1.6(x 2 1)(1.6x 0.6) 1.6x[0.8(x 1)2 x] 整理得: 0.8x 3 2.4x 0.6 0 , x 1 ;解得:x 1.59 dy dx max dy dx x 1.59 E ct,max d_ d max 0.8 (1.592 1) [0.8 (1.5于 1) 1.59]2 0.35 dy dx max p - 0.35 5687.5N/mm 2 1.6 10 3

第一章课后习题解答(应用回归分析)

1、 变量间统计关系和函数关系的区别是什么 答:函数关系是一种确定性的关系,一个变量的变化能完全决定另一个变量的变化;统计关系是非确定的,尽管变量间的关系密切,但是变量不能由另一个或另一些变量唯一确定。 2、 回归分析与相关分析的区别和联系是什么 答:联系:刻画变量间的密切联系; 区别:一、回归分析中,变量y 称为因变量,处在被解释的地位,而在相关分析中,变量y 与x 处于平等地位;二、相关分析中y 与x 都是随机变量,而回归分析中y 是随机的,x 是非随机变量。三、回归分析不仅可以刻画线性关系的密切程度,还可以由回归方程进行预测和控制。 3、 回归模型中随机误差项ε的意义是什么主要包括哪些因素 答:随机误差项ε的引入,才能将变量间的关系描述为一个随机方程。主要包括:时间、费用、数据质量等的制约;数据采集过程中变量观测值的观测误差;理论模型设定的误差;其他随机误差。 4、 线性回归模型的基本假设是什么 答:1、解释变量非随机;2、样本量个数要多于解释变量(自变量)个数;3、高斯-马尔科夫条件;4、随机误差项相互独立,同分布于2(0,)N σ。 5、 回归变量设置的理论根据在设置回归变量时应注意哪些问题 答:因变量与自变量之间的因果关系。需注意问题:一、对所研究的问题背景要有足够了解;二、解释变量之间要求不相关;三、若某个重要的变量在实际中没有相应的统计数据,应考虑用相近的变量代替,或者由其他几个指标复合成一个新的指标;四、解释变量并非越多越好。 6、 收集、整理数据包括哪些内容 答:一、收集数据的类型(时间序列、截面数据);二、数据应注意可比性和数据统计口径问题(统计范围);三、整理数据时要注意出现“序列相关”和“异

钢筋混凝土原理和分析读书报告

钢筋混凝土原理和分析 读书报告

强度和变形的一般规律 钢筋混凝土原理和分析读书报告混凝土的多轴强度是指试件破坏时三向主应力的最大值: 用 f1, f2,f3 表示,相应的峰值主应变为:ε1p,ε2p,ε3p。符号规则为: 0000 国内外发表的混凝土多轴试验资料已为数不少,但由于所用的三轴试验装置、试验方法、试件的形状和材料等都有很大差异,混凝土多轴性能的试验数据有较大离散性。尽管如此,混凝土的多轴强度和变形随应力状态的变化仍有规律可循,且得到普遍的认同。 4.3.1二轴应力状态 1.二轴受压(C/C, σ1 =0) 混凝土在二轴拉/压应力不同组合下的强度试验结果如图。 混凝土二轴抗压强度对比图。 混凝土的二轴抗压强度( f3 )均超过其单轴抗压强度( fc ):C/C 随应力比例的变化规律为: σ2 /σ3 =0~0. 2 f3随应力比的增大而提高较快;

σ2 /σ3 =0. 2 - 0. 7 f3变化平缓,最大抗压强度为(1. 25~1. 60) fc,发生在σ2 /σ3 =0.3~0.6之间,σ2 /σ3 =0. 7~1. 0 f3随应力比的增大而降低。 σ2 /σ3 = 1 (二轴等压) fcc=(1.15~1.35) fc 1混凝土二轴受压的应力-应变曲线为抛物线形,有峰点和下降段,与单轴受压的应力-应变全曲线相似。 2试件破坏时,最大主压应力方向的强度f3和峰值应变ε3p,大于单轴受压的相应值(f c,εp ); 3初始斜率随应力比σ 2 / σ3增大;双轴压状态下的抗拉延性比单轴压状态下大得多;

1两个受力方向的峰值应变ε2p,ε3p随应力比例(σ2/σ3 )而变化; 2ε3p的变化曲线与二轴抗压强度的曲线相似,最大应变值发生在σ2/σ3≈0.25处,应变ε3p在数值上最大; 因为:σ2/σ3 =0.5~1.0σ2/σ3 =0~0.2 3只有σ2/σ3≈0.25左右,由于σ2值适中,限制了该方向的拉断,又不致引起σ3方向的突然崩碎,从而使σ3方向的峰值应变值ε3p最大。 4而ε2p由单轴受压(σ2/σ3=0)时的拉伸逐渐转为压缩变形,至二轴等压(σ2/σ3 =1)时达最大压应变ε2p= ε3p,近似直线变化。 1混凝土二轴受压的体积应变(εv≈ε1+ε2+ε3)曲线也与单轴

相关主题
文本预览
相关文档 最新文档