当前位置:文档之家› 水质工程学课程设计实例

水质工程学课程设计实例

水质工程学课程设计实例
水质工程学课程设计实例

目录

设计任务书 (2)

设计计算说明书 (4)

第一章污水处理厂设计

第一节污水厂选址 (4)

第二节工艺流程 (4)

第二章处理构筑物工艺设计

第一节设计参数 (6)

第二节泵前中格栅设计 (6)

第三节污水提升泵房设计计 (8)

第四节泵后细格栅设计计算 (9)

第五节沉砂池设计计算 (10)

第六节辐流式初沉池设计计算 (12)

反应池设计计算 (14)

第七节O

A/

1

第八节向心辐流式二沉池设计计算 (16)

第九节剩余污泥泵房 (17)

第十节浓缩池 (18)

第十一节贮泥池 (20)

第十二节脱水机房 (21)

第三章处理厂设计

第一节污水处理厂的平面布置 (23)

第二节污水处理厂高程布置 (23)

参考文献 (26)

《水质工程学》课程设计任务书

一、设计题目

某计城市日处理污水量15万m 3污水处理工程设计

二、基本资料

1、污水水量、水质 (1)设计规模

设计日平均污水流量Q=150000m 3/d ; 设计最大小时流量Q max =8125m 3/h (2)进水水质

COD Cr =400mg/L ,BOD 5 =180mg/L ,SS = 300mg/L ,NH 3-N = 35mg/L 2、污水处理要求

污水经过二级处理后应符合《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准的B 标准 ,即:

COD Cr ≤ 60mg/L ,BOD 5≤20mg/L ,SS≤20mg/L ,NH 3-N≤8mg/L 。 3、处理工艺流程

污水拟采用活性污泥法工艺处理,具体流程如下:

4、资料

市区全年主导风向为东北风,频率为18%,年平均风速2.55米/秒。污水处理厂场地标

高384.5~383.5米之间, 5、污水排水接纳河流资料:

该污水厂的出水直接排入厂区外部的河流,其最高洪水位(50年一遇)为380.0m ,常水位为378.0m ,枯水位为375.0m 。 三、设计任务

1、对处理构筑物选型做说明;

2、对主要处理设施(格栅、沉砂池、初沉池、生化池、污泥浓缩池)进行工艺计算(附必要的计算草图);

3、按扩初标准,画出污水处理厂平面布置图,内容包括表示出处理厂的范围,全部处理构筑物及辅助建筑物、主要管线的布置、主干道及处理构筑物发展的可能性;

4、按扩初标准,画出污水处理厂工艺流程高程布置图,表示出原污水、各处理构筑物的高程关系、水位高度以及处理出水的出厂方式;

5、编写设计说明书、计算书。 四、设计成果

1、设计计算说明书一份;

2、设计图纸:污水处理厂平面布置图和污水处理厂工艺流程高程布置图各一张。 五、参考资料 1、《给水排水设计手册》第一、五、十、十一册 2、《环境工程设计手册》(水污染卷)

原污水 污泥浓缩池 污泥脱水机房 出水 格栅 污水泵房 沉砂池 二沉池 泥饼外运 曝气池 回流污泥

3、室外排水设计规范

设计计算说明书

第一章城市污水处理厂设计

第一节污水厂选址

未经处理的城市污水任意排放,不仅会对水体产生严重污染,而且直接影响城市发展发展和生态环境,危及国计民生。所以,在污水排入水体前,必须对城市污水进行处理。而且工业废水排入城市批水管网时,必须符合一定的排放标准。最后流入管网的城市污水统一送至污水处理厂处理后排入水体。

在设计污水处理厂时,厂址对周围环境、基建投资及运行管理都有很大影响。

选择厂址应遵循如下原则:

1.为保证环境卫生的要求,厂址应与规划居住区或公共建筑群保持一定的卫生防护距离,一般不小于300米。

2.厂址应设在城市集中供水水源的下游不小于500米的地方。

3.厂址应尽可能设在城市和工厂夏季主导风向的下方。

4.要充分利用地形,把厂址设在地形有适当坡度的城市下游地区,以满足污水处理构筑物之间水头损失的要求,使污水和污泥有自流的可能,以节约动力。

5.厂址如果靠近水体,应考虑汛期不受洪水的威胁。

6.厂址应设在地质条件较好、地下水位较低的地区。

7.厂址的选择要考虑远期发展的可能性,有扩建的余地。

因为该市区全年主导风向为东北风,所以将厂址选在西南方向。

第二节工艺流程

1.污水处理工艺流程

处理厂的工艺流程是指在到达所要求的处理程度的前提下,污水处理个单元的有机结合,构筑物的选型则是指处理构筑物形式的选择,两者是互有联系,互为影响的。

城市生活污水一般以BOD物质为其主要去除对象,因此,处理流程的核心是二级生物处理法——活性污泥法为主。

生活污水和工业废水中的污染物质是多种多样的,不能预期只用一种方法就能把所有的污染物质去除干净,一种污水往往需要通过由几种方法组成的处理系统,才能达到处理要求的程度。

具体的流程为:污水进入水厂,经过格栅至集水间,由水泵提升到平流沉砂池经,经初沉池沉淀后,大约可去初SS 45%,BOD 25%,污水进入曝气池中曝气,从一点进水,采用传统活性污泥法。在二次沉淀池中,活性污泥沉淀后,回流至污泥泵房。

2.污泥处理工艺流程

污泥是污水处理的副产品,也是必然的产物,如从沉淀池排出的沉淀污泥,从生物处理排出的剩余活性污泥等。这些污泥如果不加以妥善处理,就会造成二次污染。污泥处理的方法是厌氧消化,消化后的污泥含水率仍然很高,不宜长途输送和使用,因此,还需要进行脱水和干化等处理。

具体过程为:二沉池的剩余污泥由螺旋泵提升至浓缩池,浓缩后的污泥进入贮泥池,再

由泥控室投泥泵提升入消化池,进行中温二级消化。一级消化池的循环污泥进行套管加热,并用搅拌。二级消化池不加热,利用余热进行消化,消化后污泥送至脱水机房脱水,压成泥饼,泥饼运至厂外。

本设计采用的工艺流程如下图所示。

中格栅进水泵房细格栅沉砂池

初沉池

缺氧池好氧池二沉池排放河道

栅渣

剩余污泥

初沉泥

剩余污泥泵房

污泥浓缩池

贮泥池

脱水机房垃圾填埋场

第二章 处理构筑物工艺设计

第一节 设计参数

1. 平均日流量

d Q =15万d /m 3

2. 最大时流量

最大时流量 h m Q /81253max

第二节 泵前中格栅设计计算

中格栅用以截留水中的较大悬浮物或漂浮物,以减轻后续处理构筑物的负荷,用来去除那些可能堵塞水泵机组驻管道阀门的较粗大的悬浮物,并保证后续处理设施能正常运行的装置。

1.格栅的设计要求

(1)水泵处理系统前格栅栅条间隙,应符合下列要求:

1) 人工清除 25~40mm 2) 机械清除 16~25mm 3) 最大间隙 40mm

(2)过栅流速一般采用0.6~1.0m/s. (3)格栅倾角一般取600

(4)格栅前渠道内的水流速度一般采用0.4~0.9m/s. (5)通过格栅的水头损失一般采用0.08~0.15m 。

α

1

进水

工作平台

栅条

α

图1 中格栅计算草图

α

2. 格栅尺寸计算 设计参数确定:

设计流量Q 1=2.257m 3/s (设计2组格栅),以最高日最高时流量计算;

栅前流速:v 1=0.7m/s , 过栅流速:v 2=1m/s ; 渣条宽度:s=0.01m , 格栅间隙:e=0.02m ; 栅前部分长度:0.5m , 格栅倾角:α=60°; 单位栅渣量:w 1=0.07m 3栅渣/103m 3污水。 设计中的各参数均按照规范规定的数值来取的。

(1)确定格栅前水深,根据最优水力断面公式212

11v B Q =计算得:

栅前槽宽111

2Q B v =

=

12.21

257

.22=?m ,则栅前水深06.1212.22h 1==

=B m (2)栅条间隙数: 10506

.1102.060sin 257.2sin n 21=???==

ehv Q α

(3)栅槽有效宽度:B 0=s (n-1)+en=0.01×(105-1)+0.02×105=3.14m

(4)进水渠道渐宽部分长度:

进水渠宽:

m B B L 4.120tan 212

.214.3tan 2'11=?

-=-=

α

(其中α1为进水渠展开角,取α1=?20)

(5)栅槽与出水渠道连接处的渐窄部分长度

06.12

12.22L 12===L m

(6)过栅水头损失(h 1)

设栅条断面为锐边矩形截面,取k=3,则通过格栅的水头损失:

m g v k kh h 13.060sin 81

.921)02.001.0(42.23sin 22

34

201=?????===αε

其中: 4/3(/)s e εβ=

h 0:水头损失;

k :系数,格栅受污物堵塞后,水头损失增加倍数,取k=3;

ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42。 (7)栅后槽总高度(H )

本设计取栅前渠道超高h 2=0.3m ,则栅前槽总高度H 1=h+h 2=1.06+0.3=1.36m

H=h+h 1+h 2=1.06+0.13+0.3=1.49m

(8)栅槽总长度

L=L 1+L 2+0.5+1.0+(1.06+0.30)/tan α

=1.4 +0.7+0.5+1.0+(1.06+0.3/tan60°=3.385m

(9)每日栅渣量

在格栅间隙在20mm 的情况下,每日栅渣量为:

d m K w W z /2.053.81000

6.186400

07.0257.2100086400Q 31max >=???=???=

,所以宜采用机械清渣。

第三节污水提升泵房设计计算

1.设计参数

设计流量:Q=2.257m/s,泵房工程结构按远期流量设计

2.泵房设计计算

采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。污水经提升后进入细格栅,再进入平流沉砂池,然后自流通过A/O池、二沉池及接触池。污水提升前水位380.15m(既泵站吸水池最底水位),提升后水位387.82m(即细格栅前水面标高)。

所以,提升净扬程Z=387.82-380.15=7.67m

水泵水头损失取2m 沿程损失0.6m

从而需水泵扬程H=Z+h=10.27m

再根据设计流量2.257m3/s=8125m3/h,采用4台MF系列污水泵,单台提升流量542m3/s。采用ME系列污水泵(8MF-13B)4台,四用两备。该泵提升流量540~560m3/h,扬程11.9m,转速970r/min,功率30kW。

占地面积为π52=78.54m2,即为圆形泵房D=10m,高12m,泵房为半地下式,地下埋深7m,水泵为自灌式。

计算草图如下:

±0.00

中格栅

进水总管

吸水池最

底水位

图2 污水提升泵房计算草图

第四节 泵后细格栅设计计算 1.细格栅设计说明

污水由进水泵房提升至细格栅沉砂池,细格栅用于进一步去除污水中较小的颗粒悬浮、漂浮物。细格栅的设计和中格栅相似。 2.设计参数确定:

已知参数:Q max =8125m 3/h=2.257 m 3/s 。栅条净间隙为3-10mm ,取e=10mm ,格栅安装倾角600 过栅流速一般为0.6-1.0m/s ,取V=0.9m/s,栅条断面为矩形,选用平面A 型格栅,栅条宽度S=0.01m ,其渐宽部分展开角度为200

设计流量Q=1983.6m 3/s=551L/s

栅前流速v 1=0.7m/s , 过栅流速v 2=0.9m/s ; 栅条宽度s=0.01m , 格栅间隙e=10mm ; 栅前部分长度0.5m , 格栅倾角α=60°;

单位栅渣量ω1=0.10m 3栅渣/103m 3

污水。 3. 设计计算

污水由一根污水总管引入厂区,故细格栅设计一组,设计流量为:Q=2.257/s 。 (1) 确定格栅前水深,根据最优水力断面公式2

1112

B v Q =计算得栅前槽宽

111

2Q B v =

=

54.27

.0257

.22=?m ,则栅前水深27.1254.22h 1==

=B m (2)栅条间隙数929

.027.102.060sin 257.2sin n 21=???==

ehv Q α

(3)栅槽有效宽度B=s (n-1)+en=0.01(92-1)+0.01×92=1.83m (4)进水渠道渐宽部分长度m B B L 54.120tan 227

.183.1tan 2'11=?

-=-=

α

(其中α1为进水渠展开角,取α1=?20)

(5)栅槽与出水渠道连接处的渐窄部分长度915.02

83

.12L 12==

=L m (6)过栅水头损失(h 1)

因栅条边为矩形截面,取k=3,则

m g v k kh h 26.060sin 81.929.0)01.001.0(42.23sin 22

34

201=?????===αε

其中:4/3(/)s e εβ=

h 0:计算水头损失

k :系数,格栅受污物堵塞后,水头损失增加倍数,取k=3

ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42 (7)栅后槽总高度(H )

取栅前渠道超高h 2=0.3m ,则栅前槽总高度H 1=h+h 2=1.27+0.3=1.57m 栅后槽总高度H=h+h 1+h 2=1.27+0.26+0.3=1.83m

(8)格栅总长度

L=L 1+L 2+0.5+1.0+ H 1/tan α

=1.54+0.77+0.5+1+(1.27+0.3)/tan60° =4.7m

(9)每日栅渣量

1510001.01500001=÷?==w Q w a m 3/d>0.2m 3/d

所以宜采用机械格栅清渣。

第五节 沉砂池设计计算

采用平流式沉砂池 1. 设计参数

z K :污水流量总变化系数为1.5

每个沉砂斗容积: 设计流量:Q=2.257s m /3(,设计2组)则每组Q=1.1285s m /3 设计流速:v=0.25m/s 水力停留时间:t=40s 2. 设计计算

(1)沉砂池长度:L=vt=0.25?40=10m (2)水流断面积:A=Q/v=1.1285/0.25=4.5m 2

(3)池总宽度:设计n=4格,每格宽取b=1.2m>0.6m ,池总宽B=4b=4.8m (4)有效水深:h 2=A/B=4./4.8=0.94m (介于0.25~1m 之间) (5)贮泥区所需容积:

6

max 10

86400

z K XT Q V ?= =

6

10

5.186400

2301285.1???? =3.93m

式中 X :单位城市污水沉沙量,取303m /6103m 污水; T :设计T=2d ,即考虑排泥间隔天数为2天;

设每一个分格有2个沉砂斗,共有8个沉砂斗 则 1V =3.9/8=0.48753m

(6)沉砂斗各部分尺寸及容积:

设计斗底宽a 1=0.6m ,斗壁与水平面的倾角为60°,斗高h d =0.6m , 则沉砂斗上口宽:m a h a d 3.16.060tan 6

.0260tan 21=+?

?=+?= 沉砂斗容积:

3222

112566.0)6.026.03.123.12(6

6.0)222(6m a aa a h V d =?+??+?=++=

(略大于0.48753m 错误!未找到引用源。,符合要求)

(7)沉砂池高度:采用重力排砂,设计池底坡度为0.06,坡向沉砂斗长度为

m a L L 7.32

3

.1210222=?-=-=

则沉泥区高度为h 3=h d +0.06L 2 =0.6+0.06×3.7=0.822m

池总高度H :设超高h 1=0.3m ,H=h 1+h 2+h 3=0.3+0.94+0.822=2.062m (8)进水渐宽部分长度:m B B L 1.320tan 254

.28.420tan 211=?

-=?-=

(9)出水渐窄部分长度:L 3=L 1=3.1m (10)校核最小流量时的流速:

最小流量即平均日流量Q 平均日=150000d m /3=1.743m /s 则v min =Q 平均日/A=1.74/2/4.5=0.19>0.15m/s ,符合要求 (11)计算草图如下:

进水

图4 平流式沉砂池计算草图

出水

第六节 辐流式初沉池设计计算

辐流式初沉池拟采用中心进水,沿中心管四周花墙出水,污水由池中心向池四周辐射流动,流速由大变小,水中悬浮物流动中在重力作用下沉降至沉淀池底部,然后用刮泥机将污泥推至污泥斗排走,澄清水从池周溢流入出水渠。辐流沉淀池由进水装置、中心管、穿孔花墙、沉淀区、出水装置、污泥斗及排泥装置组成。

本设计选择四组辐流式沉淀池,每组设计流量为0.56m 3/s ,从沉砂池流出来的污水进入集配水井,经过集配水井分配流量后流入辐流沉淀池。

1. 沉淀部分水面面积

表面负荷采用1.2-2.032/()m m h ?,本设计取q '=2.032/()m m h ?,沉淀池座数n=4。

210162

43600

257.2'3600m nq Q F =??=?=

α

r 1R

i =0.0

5

r 2

h 1h 2

h 3

h 4h 5

图5 辐流式沉淀池计算草图

2. 池子直径 D =

4F π = m 97.3510164=?π

(D 取36m ) 3. 沉淀部分有效水深

设沉淀时间t = 2h ,有效水深: h 2 =q t =2×2=4m 4. 沉淀部分有效容积

Q = F 2h =406441016=?m 3 5. 污泥部分所需的容积

由任务书知进水SS 浓度C 为300L mg /,出水SS 浓度以进水的50%计,初沉池污泥含水

率p 0=97%,污泥容重取r=1000kg/m 3,取贮泥时间T=4h ,污泥部分所需的容积:

3

621128.8124

)97100(1104

10024)150300(4064)

100(10024)(max V m r T c c Q o =?-?????-?=

?

-??-?='ρ

6. 污泥斗容积

设污泥斗上部半径r 1=2m ,污泥斗下部半径r 2=1m ,倾角取α=60°,则 污泥斗高度:

h 5 = (r 2- r 1)tg α=(2-1)×tg60°=1.73m

污泥斗容积:

V 1 =

πh 53 (r 12+r 2r 1+r 22)= 3.14×1.73

3

×(22+2×1 +12)=12.68m 3 7. 污泥斗以上圆锥体部分污泥容积

池底坡度采用0.05-0.10,本设计径向坡度i=0.05,则圆锥体的高度为:

h 4 = (R- r 1)i=(18-2)×0.05 = 0.8m

圆锥体部分污泥容积:

V 2 = πh 43 (R 2+Rr 1+r 12)=322

3052218183

8.0m =+?+?)(π

污泥总体积:

V= V 1+ V 2 =12.68+305 =317.68 m 3>81.28m 3 ,满足要求。

8. 沉淀池总高度

设沉淀池超高h 1=0.3m ,缓冲层高h 3 =0.5m ,沉淀池总高度: H = h 1+h 2 +h 3+h 4 +h 5=0.3+4+0.5+0.8+1.73=7.33 m 9. 沉淀池池边高度

H ‘= h 1+h 2 + h 3 = 0.3+4+0.5 = 4.8 m 10. 径深比

D/ h 2 = 36/4 = 9(符合要求) 11. 进水管及配水花墙

沉淀池分为四组,每组沉淀池采用池中心进水,通过配水花墙和稳流罩向池四周流动。进水管道采用钢管,管径DN=600mm ,进水管道顶部设穿孔花墙处的管径为800mm 。

沉淀池中心管配水采用穿孔花墙配水,穿孔花墙位于沉淀池中心管上部,布置8个穿孔花墙,过孔流速:

s m n h B Q v /389.08

6.03.056

.0''''4=??=

= 式中: B '— 孔洞的宽度(m ); h '— 孔洞的高度(m ); n '—孔洞个数(个)。

v 4— 穿孔花墙过孔流速(m/s ),一般采用0.2-0.4m/s ;

12. 集水槽堰负荷校核

设集水槽双面出水,则集水槽出水堰的堰负荷为:

q 0 =

Q h 2n πD =0025.036

14.34236008125=????[m 3

/(m ·s)] = 2.5[L/(m ·S)]< 2.9 [L/(m ·S)] 符合要求 13.出水渠道

出水槽设在沉淀池四周,双侧收集三角堰出水,距离沉淀池内壁0.4m ,出水槽宽0.5m ,深0.6m ,有效水深0.5m ,水平速度0.8m/s ,出水槽将三角堰出水汇集送入出水管道,出水管道采用钢管,管径DN600mm 14. 排泥管

沉淀池采用重力排泥,排泥管管径DN200,排泥管伸入污泥斗底部,排泥静压头采用1.0m ,连续将污泥排出池外贮泥池内。

第七节 O A /1反应池设计计算 1.设计参数

采用O A /1工艺反应池。

处理水量150000d m /3,最大时流量max Q 为8125h m /3,COD Cr =400mg/L ,BOD 5 =180mg/L , SS = 300mg/L ,NH 3-N = 35mg/L 。

经过一级处理后,%20%,25%,50%,305====TN COD SS BOD cr ηηηη

污水经过二级处理后应符合《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准的B 标准 ,即:

COD Cr ≤ 60mg/L ,BOD 5≤20mg/L ,SS ≤20mg/L ,NH 3-N ≤8mg/L 。

2.设计计算

(1)确定设计参数 O A /1反应池进水水质

5BOD =180?70%=126mg/L COD Cr =400?75%=300mg/L SS=300?50%=150mg/L NH 3-N=35?80%=28mg/L

选取污泥 BOD 负荷为0.15kg (5BOD )/[kg(MLSS)·d],查SVI=150mL/g ,则回流污泥浓度R X =l mg SVI /6600/106=。

去污泥回流比R=100%,则混合液污泥浓度

X=

l mg X R R

R /33001=+ TN 去除率 =TN η(28-8)/28=71.4%

混合液回流比N R N R =

TN

TN

ηη-1 =[0.714/(1-0.714)]?100%=250% (2)计算O A /1工艺反应池的主要工艺尺寸。 总的有效容积V ==

X

N QS K V S a

d (8125?24?1260)/(0.15?3300)=496363m 有效水深1H 取5m ,则反应池的总有效面积 ==

1

H V

S 总49636/5=99272m 分四组,则每组的有效面积 S=9927/4=24822m

设廊道宽6m ,廊道数位4,则单组生物池长度 1L =S/(1H ·b )=2482/(6?4)=103.42m 污水停留时间

t=V/Q=49636/8125=6.1h 1A :O=1:4

则1A 段的水力停留时间为1.22h ,O 段的水力停留时间为4.64h 。 (3)计算剩余污泥干重和剩余污泥量W

100

50

)()(00?

-+--=Q C C bVX Q S S a W e V e =[0.55(126-20)?150000÷1000-0.05×49636×3300×0.75/1000 +(0.15-0.02)×150000×50/100]kg/d =8745-6142.5+9750 =12352kg/d

每天产生的活性污泥量W X =2602.5kg/d 设剩余污泥含水率为99.4%,则剩余污泥量 q=W/[(1-P)×1000]=2058.75d m /3 污泥龄为

==W V c X VX /θ49636×3300×0.75/(2602.5×1000)d=47.2d (4)需氧量计算

W W r r cX bX bN aS O --+=124.02

=1.47×8125×(0.126-0.02)+4.6×8125×(0.028-0.008) -0.124×4.6×2602.5/24-1.42×2602.5/24 =1266+747.5-62-154 =1797.5kg/d (5)曝气系统计算

第八节 向心辐流式二沉池设计计算

为了使沉淀池内水流更稳、进出水配水更均匀、存排泥更方便,常采用圆形辐流式二沉池。该沉淀池采用周边进水,中心出水的幅流式沉淀池,采用吸泥机排泥。 1.沉淀部分水面面积 F ,根据生物处理段的特性,选取二沉池表面负荷

))/((5.123h m m q ?=,(其中q=1.0~1.5)/(23h m m ?) 设四座辐流式沉淀池, n=4,则有 )(13545

.148125

2m q n Q F =?=?= 2.池子直径 D

)(5.411354

44m F

D =?=

=

π

π

3.沉淀部分的有效水深h , 设沉淀时间: )(5.2h t =(其中t=1.5~2.5h ),则

)(75.35.25.1m t q h =?=?= (3)贮泥斗容积:

为了防止磷在池中发生厌氧释放,故贮泥时间采用T w =2h ,二沉池污泥区所需存泥容

积:

36.2256600

33003300242031

)11(22)1(2m X X QX

R T V r

w w =+??

+??=

++=

则污泥区高度为 m F V h w 17.01354

6.2252=== (4)二沉池总高度:

取二沉池缓冲层高度h 3=0.4m ,超高为h 4=0.3m

则池边总高度为

h=h 1+h 2+h 3+h 4=3.75+0.17+0.4+0.3=4.62m

设池底度为i=0.05,则池底坡度降为

m i d b h 99.005.02

2

5.4125=?-=-=

则池中心总深度为

H=h+h 5=4.62+0.99=5.61m

(5)校核堰负荷: 径深比

1015

.45.4131==+h h D 6.932

.45

.41321==++h h h D

堰负荷

)./(2)./(18.0)./(36.155

.4114.325.2031m s L m s L m d m D Q <==?=π 以上各项均符合要求 (6)辐流式二沉池计算草图如下:

图6 辐流式沉淀池

进水

排泥

出水

第九节 剩余污泥泵房

1.设计说明

二沉池产生的剩余活性污泥及其它处理构筑物排出污泥由地下管道自流入集泥井,剩余污泥泵(地下式)将其提升至污泥浓缩池中。

处理厂设两座剩余污泥泵房(每两座二沉池共用一座泵房)

污水处理系统每日排出污泥干重为2602.5kg/d,即为按含水率为99%计的污泥流量Q w

=2×2602.5÷10m 3/d =520.5m 3/d =21.7m 3/h

2.设计选型 (1)污泥泵扬程:

辐流式浓缩池最高泥位(相对地面为)-0.4m ,剩余污泥泵房最低泥位为 -(5.61-0.

3-0.6)=4.71m,则污泥泵静扬程为H 0=4.71-0.4=4.31m ,污泥输送管道压力损失为4.0m ,自由水头为1.0m ,则污泥泵所需扬程为H=H0+4+1=9.31m 。 (2)污泥泵选型:

选两台,2用1备,单泵流量Q>2Q w /2=5.56m 3/h 。选用1PN 污泥泵Q 7.2-16m 3/h,

H 14-12m, N 3kW (3)剩余污泥泵房:

占地面积L ×B=4m ×3m ,集泥井占地面积m m H3.00.32

1

第十节 浓缩池

1.设计要点

1. 污泥在最终处置前必须处理,而处理的最终目的是降低污泥中有机物含量并减少其水 分,使之在最终处置时对环境的危害减至最小限度,并将其体积减小以便于运输和处置.

2.重力式浓缩池用于浓缩二沉池出来的剩余活性污泥的混合污泥.

3.浓缩池的上清液应重新回至初沉池前进行处理.

4.连续流污泥浓缩池可采用沉淀池形式,一般为竖流式或辐流式.

5. 浓缩后的污泥含水率可到96%,当为初次沉淀池污泥及新鲜污泥的活性污泥的混合污泥时,

其进泥的含水率,污泥固体负荷及浓缩后的污泥含水率,可按两种污泥的比例效应进行计算.

6. 浓缩池的有效水深一般采用4m ,当为竖流式污泥浓缩池时,其水深按沉淀部分的上升流

速一般不大于0.1mm/s 进行核算.浓缩池的容积并应按10~16h 进行核算,不宜过长. 2.浓缩池的设计:

采用两座幅流式圆形重力连续式污泥浓缩池,用带栅条的刮泥机刮泥,采用静压排泥,剩余污泥泵房将污泥送至浓缩池。 1.设计参数 进泥浓度:10g/L

污泥含水率P 1=99.0%

每座污泥总流量:Q ω=2602.5×2kg/d=520.5m 3/d=21.7m 3/h 设计浓缩后含水率P 2=96.0% 污泥固体负荷:q s =45kgSS/(m 2.d) 污泥浓缩时间:T=13h

贮泥时间:t=4h 2.设计计算

(1)浓缩池池体计算:

每座浓缩池所需表面积

7.11545

25.2602=?==

s w q Q A m 2 ? 浓缩池直径 m A

D 14.1214

.37

.11544=?=

=

π

取D=12.2m 水力负荷 )./(27.0)./(4.61

.55.5202

3232h m m d m m A Q u w ====

π ? 有效水深

h 1=uT=0.27?13=3.31m 取h 1=3.6m

浓缩池有效容积

V 1=A ?h 1=115.7×3.6=416.52m 3

(2)排泥量与存泥容积:

浓缩后排出含水率P 2=96.0%的污泥,则

Q w ′=

h m d m Q w /42.5/1305.52096

10099

100P -100P -1003321==?--=

按3h 贮泥时间计泥量,则贮泥区所需容积

V 2=4Q w ′=3×5.42=16.26m 3错误!未找到引用源。 泥斗容积

)(3

2

221214

3r r r r h V ++=π

=

56.6)8.08.06.16.1(3

4.114.322=+?+?? m 3

式中:

h 4——泥斗的垂直高度,取1.4m

r 1——泥斗的上口半径,取1.6m r 2——泥斗的下口半径,取0.8m 设池底坡度为0.08,池底坡降为: h 5=

m 36.02

)

2.32.12(08.0=-

故池底可贮泥容积: )(3

2

111215

4r r R R h V ++=π

=3229.47)6.16.11.61.6(3

36

.014.3m =+?+?? 因此,总贮泥容积为

3234326.1646.5456.69.47m V m V V V w =>=+=+=

(满足要求) (3)浓缩池总高度:

浓缩池的超高h 2取0.30m ,缓冲层高度h 3取0.30m ,则浓缩池的总高度H 为 54321h h h h h H ++++= =3.6+0.3+0.3+1.4+0.36 =5.96m (4)浓缩池排水量:

Q=21.7-16.26=5.5m 3/h

华中科技大学(水质工程学一)课程设计

一.总论 1.1 设计任务及要求 净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 水厂规模 该水厂总设计规模为***万m3/d,分两期建设,近期工程供水能力***万m3/d,,远期工程供水能力为***万m3/d。近期工程设计征地时考虑远期工程用地,预留出远期工程用地。 1.2.2 原水水质资料 水源为河流地面水,原水水质分析资料如下:

1.2.3 厂区地形 地形比例1:500,按平坦地形和平整后的设计地面高程32.00m设计,水源取水口位于水厂东北方向150m,水厂位于城市北面1km。 1.2.4 工程地质资料 (1) 表土砂质粘土细砂中砂粗砂粗砂砾石粘土砂岩石层 1m 1.5m 1 m 2 m 0.8m 1 m 2 m 土壤承载力:20 t/m2. (2)地震计算强度为186.2kPa。 (3)地震烈度为9度以下。 (4)地下水质对各类水泥均无侵蚀作用。 序号项目单位数量备注 1 历年最高水位m 34.38 黄海高程系统,下同 2 历年最低水位m 21.47 频率1% 3 历年平均水位m 24.64 4 历年最大流量m3/s 14600 5 历年最小流量m3/s 180 6 历年平均流量m3/s 1340 7 历年最大含砂量kg/m3 4.82 8 历年最大流速m/s 4.00 9 历年每日最大水位涨落m/d 5.69 10 历年三小时最大水位涨落m/3h 1.04 地下水位:在地面以下1.8m 1.2.6 气象资料 该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。常年主导风向为东北偏北(NNE),静风频率为12%,年平均风速为3.4m/s。土壤冰冻深度:0.4m。

水质工程学2课程设计任务书

给排水14级《水质工程学2》课程设计任务书 一、课程设计的内容和深度 本课程设计的目的在于加深理解所学专业知识,培养运用所学专业知识的能力,在设 计、计算、绘图等方面得到锻炼。 针对一座城市污水二级处理厂,要求对主要污水处理构筑物的工艺尺寸进行设计计算, 确定污水厂的平面布置,最后完成设计计算说明书和设计图纸(污水处理厂平面布置图和污 水处理厂流程图)。设计深度为初步设计深度。 二、课程设计任务书 1、设计题目 某城市污水处理厂工艺设计 2、基本资料 (1)污水水量及水质 污水处理水量:30000+50000×% (m3/d)(横线上的数为学号末尾两位数) 污水水质:COD Cr =350+200×%(mg/L),BOD5 =220mg/L,SS =250mg/L,氨氮=15mg/L。(横线上的数为学号末尾两位数) (2)处理要求 城市污水经处理后应达到《污水综合排放标准》(GB8978-1996)一级标准,即:COD Cr ≤ 60mg/L,BOD5 ≤ 20mg/L,SS ≤ 20mg/L,氨氮≤ 5mg/L。 (3)处理工艺流程 污水拟采用传统活性污泥法工艺处理。 (4)气象及水文资料 风向:多年主导风向为东南风。 水文:降水量多年平均为每年728mm;蒸发量多年平均为每年1200mm;地下水位,地面下6~7m。 年平均水温:20℃。 (5)厂区地形 污水厂选址区域海拔标高在19~21m左右,平均地面标高为20m。平均地面坡度为0.3 ‰~0.5‰,地势为西北高,东南低。厂区征地面积为东西长224m,南北长276m。 3、设计内容

(1)对工艺构筑物选型作说明;(2)主要处理设施的工艺计算;(3)污水处理厂的平面布置;(4)污水处理厂工艺流程图的绘制。 4、设计成果 (1)设计计算说明书一份; (2)设计图纸:污水处理厂平面布置图和工艺流程图各一张。 三、污水处理工程设计指导书 1、总体要求 (1)在设计过程中,要发挥独立思考独立工作的能力。 (2)本课程设计重点训练的是污水处理主要构筑物的设计计算和总体布置。 (3)课程设计不要求对设计方案作比较,处理构筑物选型说明按其技术特征加以说明。(4)设计计算说明书应内容完整,简明扼要,文字通顺;设计图纸应按标准绘制、内容完整,主次分明。 2、设计要点 (1)污水处理设施设计的一般规定 ①该市排水系统为合流制,污水流量总变化系数取1.2 ②处理构筑物流量:曝气池之前,各种构筑物按最大日最大时流量设计;曝气池之后,构筑物按平均日平均时流量设计。 ③处理设备设计流量:各种设备选型计算时,按最大日最大时流量设计。 ④管渠设计流量:按最大日、最大时流量设计。 ⑤各处理构筑物不应少于2组。 (2)平面布置 ①功能明确、布置紧凑。布置时力求减少占地面积,减少连接管的长度,便于操作管理。 ②顺流排列,流程简便。指处理构筑物应尽量按流程方向布置,避免与进(出)水方向相反的安排;个构筑物之间的连接管应以最短线路布置,尽量避免不必要的转弯和用水泵提升。 ③充分利用地形,平衡土方,降低工程费用。 ④构筑物布置应注意风向和朝向。将排放异味和有害气体的构筑物布置在居住与办公场所的下风向;为保证良好的自然通风条件,构筑物布置应考虑主导风向。 ⑤污水厂厂区应适当规划设计机房、办公室、机修、仓库等辅助建筑。 3、对设计文件的内容和质量的要求 (1)设计计算说明书

水质工程学复习题整理

BOD —容积负荷率:为单位曝气池容积m3,在单位时间d 内接受的有机物量. 单位:[质量][体积] [时间] = = = 2 污泥沉降比 SV :混合液在量筒内静置 30 分钟后所形成沉淀污泥的容积占原混合液容积的百分率。 混合液悬浮固体浓度 MLSS :在曝气池单位容积混合液内所含有的活性污泥固体物的总质量。 混合液挥发性悬浮固体浓度 MLVSS :混合液中活性污泥有机性固体物质部分的浓度。 BOD 污泥负荷率:曝气池内单位重量(kg )的活性污泥,在单位时间(d )内接受的有机物量(kgBOD )。有时也以 COD 表示有机物的量,以MLVSS 表示活性污泥的量。 单位:kgBOD/(kgMLSS·d ) 公式Ns=F/M=QS 0/VX 污泥容积指数:从曝气池出口处取出的混合液,经过 30min 静沉后,每克干污泥形成的沉淀污泥所占有的容积。 单位 mL 公式 SVI=SV/MLSS 氧转移效率 (EA):通过鼓风曝气转移到混合液中的氧量占总供氧量的百分比。 活性污泥的比耗氧速率:单位重量的活性污泥在单位时间内所能消耗的溶解氧量, 单位为mgO 2/(gMLVSS·h)或mgO 2/(gMLSS·h) 污泥龄:在反应系统内,微生物从其生成到排出系统的平均停留时间,也就是反应系统内的微生物全部更新一次所需要 的时间。从工程上来说,在稳定条件下,就是曝气池内活性污泥总量与每日排放的剩余污泥量之比。 污泥回流比:污泥回流比(R )是指从二沉池返回到曝气池的回流污泥量 QR 与污水流量 Q 之比。 -1 d -1 污泥解体:当活性污泥处理系统的处理水质浑浊,污泥絮凝体微细化,处理效果变坏等为污泥解体现象。 污泥膨胀:污泥的沉降性能发生恶化,不能在二沉池内进行正常的泥水分离的现象。 污泥上浮:污泥(脱氮)上浮是由于曝气池内污泥泥龄过长,硝化进程较高,但却没有很好的反硝化,因而污泥在二沉池 底部产生反硝化,硝酸盐成为电子受体被还原,产生的氮气附于污泥上,从而使污泥比重降低,整块上浮。另,曝气池 内曝气过度,使污泥搅拌过于激烈,生成大量小气泡附聚于絮凝体上,或流入大量脂肪和油类时,也可能引起污泥上浮。 氧垂曲线:水体受到污染后,水体中的溶解氧逐渐被消耗,到临界点后又逐步回升的变化过程。 同步驯化法:为缩短培养和驯化时间,把培养和驯化这两个阶段合并进行,即在培养开始就加入少量工业废水,并在培 养过程中逐渐增加比重,使活性污泥在增长过程中,逐渐适应工业废水并具有处理它的能力。 生物膜法:生物膜法处理废水就是使废水与生物膜接触,进行固、液相的物质交换,利用膜内微生物将有机物氧化,使 废水获得净化,同时,生物膜内的微生物不断生长与繁殖。 生物转盘:一种好氧处理污水的生物反应器,由许多平行排列浸没在氧化槽中的塑料圆盘(盘片)所组成,圆盘表面生 长有生物群落,转动的转盘周而复始地吸附和生物氧化有机污染物,使污水得到净化。 生物转盘容积面积比(G):又称液量面积比,是接触氧化槽的实际容积 V(m3)与转盘盘片全部表面积 A(m2)之比, G=(V/A)*1000 (L/m2)。当 G 值低于 5 时,BOD 去除率即将有较大幅度的下降。所以对城市污水,G 值以介于 5 至 9 之间 为宜。 稳定塘:是人工适当修正或人工修建的设有围堤和防渗层的污水池塘,主要依靠自然生物净化功能。污水在池塘内流动 缓慢,贮存时间较长,以太阳能为初始能源,通过污水中存活的微生物的代谢活动和包括水生植物在内的多种生物的综 合作用,使有机污染物的易降解。 污水土地处理:污水有节制的投配到土地上,通过土壤-植物系统的物理的、化学的、生物的吸附、过滤与净化作用和自 我调控功能,使污水可生物降解的污染物得以降解净化,氮磷等营养物质和水分得以再利用,促进绿色植物增长并获得 增产。 慢速渗滤处理系统:将污水投配到种有作物的土地表面,污水缓慢的在土地表面流动并向土壤中渗滤,一部分污水直接 为作物所吸收,一部分则渗入土壤中,从而使污水达到净化目的的一种土地处理工艺。 消化池的投配率:投加量和总量的比数,每天需要投加的投加量和消化池的有效容积的比就是投配率。 熟污泥:消化污泥。在好氧或厌氧条件下进行消化,使污泥中挥发物含量降低到固体相对不易腐烂和不发恶臭时的污泥。 污泥含水率(计算公式):污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 P1,V1,W1,C1—污泥含水率为 p2 时的污泥体积、重量与固体物浓度; P2,V2,W2,C2—污泥含水率变为 p2 时的污泥体积、重量与团体物浓度; 有机物负荷率( S ):有机物负荷率是指每日进入的干泥量与池子容积之比。 V 1 V 2 W 1 W 2 100 p 2 100 p 1 C C 1 挥发性固体和灰分:挥发性固体, 即 VSS ,通常用于表示污泥中的有机物的量;灰分表示无机物含量。 湿污泥比重:湿污泥比重等于湿污泥量与同体积的水重量之比值。 填空 活性污泥法有多种处理系统,如 传统活性污泥法、 吸附再生活性污泥法、 完全混合性污泥法、 分段进水活性污泥法、 渐减曝气活性污泥法。 活性污泥法对营养物质的需求如下,BOD 5:N:P =100:5:1。 活性污泥微生物增殖分为 适应期、对数增殖期、稳定期、内源呼吸期。

水处理实验技术教学大纲

水处理实验技术教案大纲 一、课程基本信息 课程中文名称:水处理实验技术 课程英文名称: 课程编号: 课程性质:实践教案环节(专业核心课) 课程学时和学分:实验学时:,学分: 适用专业:给排水科学与工程 先修课程:无机化学、有机化学、水分析化学、水力学、环境生物学、水质工程学等 二、本课程的性质和地位 本课程是给水排水工程专业必修课,是水处理教案的重要组成部分,是培养给水排水工程、环境工程技术人员所必需的课程。通过对实验的观察、分析,加深对水处理基本概念、现象、规律与基本原理的理解;所学知识既直接应用于实际工作,又为水质工程学()水质工程学()水质工程学综合性设计性实验等相关课程的学习奠定了基础。 三、本课程教案总的目的和要求 本课程作为给水排水工程专业必选课,加深学生对水处理技术基本原理的理解,培养学生设计和组织水处理实验方案的初步能力,培养学生进行水处理实验的一般技能及使用实验仪器、设备的基本能力;培养学生分析实验数据与处理数据的基本能力。 通过对实验的观察、分析,应力求使学生弄清实验目的、原理、实验仪器、实验步骤,加深对水处理基本概念、现象、规律与基本原理的理解,使学生通过实验,掌握实验方法和实验结论,掌握一般水处理处理实验技能和仪器、设备的使用方法,具有一定的解决实验技术问题的能力;学会设计实验方案和组织实验的方法;学会对实验数据进行测定、分析与处理,从而能得出切合实际的结论;培养实事求是的科学态度和工作作风。

五、实验项目基本要求 ()活性炭吸附实验(学时) 实验目的:加深理解吸附原理,掌握活性炭吸附常熟确定方法。 实验要求:学会使用活性炭吸附装置使用,掌握活性炭吸附工艺处理污水确定设计参数的方法。 ()离子交换软化实验(学时) 实验目的:加深对离子交换容量的理解,掌握测定离子交换容量的方法,掌握离子交换柱的运行。 实验要求:学会使用离子交换设备使用方法,能测定离子交换容量。 ()曝气设备充氧能力测定实验(学时) 实验目的:学习了解曝气设备充氧能力测定的实验方法,加深对曝气充氧机理的认识。 实验要求:掌握曝气设备充氧性能的测定方法,熟悉曝气设备氧总转系数及其他各项评价指标的计算方法。 ()混凝实验(学时) 实验目的:掌握水样混凝的最佳投药量确定方法,观察矾花的形成过程及混凝沉淀

水质工程学课程设计说明书(doc 32页)

水质工程学(一)课程设计说明书 1 设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 1.1 设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 城市用水量资料 1.2.2 原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2 水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3 水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

水质工程学计算实例

3 物理处理单元工艺设计计算 3.1格栅 格栅用以去除废水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质,以保证后续处理单元和水泵的正常运行,减轻后续处理单元的处理负荷,防止阻塞排泥管道。 3.1.1 设计参数及其规定 ○ 1水泵前格栅栅条间隙,应根据水泵要求确定。 ○ 2污水处理系统前格栅栅条间隙,应符合:(a)人工清除25~40mm ;(b)人工清除16~25mm ;(c)最大间隙40mm 。 污水处理厂亦可设置两粗细两道格栅,粗格栅栅条间隙50~150mm 。 ○ 3如水泵前格栅间隙不大于25mm ,污水处理系统前可不再设置格栅。 ○ 4栅渣量与地区的特点、格栅的间隙大小、污水流量以及下水道系统的类型等因素有关。在无当地运行资料时,可采用:(a)格栅间隙16~25mm ,0.10~0.06m 3/103m 3 (栅渣/污水); (b)格栅间隙30~50mm ,0.03~0.01m 3/103m 3 (栅渣/污水)。 栅渣的含水率一般为80%,容重约为960kg/m 3 。 ○5在大型污水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m 3),一般应采用机械清 渣。 ○ 6机械格栅不宜少于2台,如为1台时,应设人工清除格栅备用。 ○ 7过栅流速一般采用0.6~1.0m/s 。 ○ 8格栅前渠道内水流速度一般采用0.4~0.9m/s 。 ○ 9格栅倾角一般采用45o~75o。国内一般采用60o~70o。 ○ 10通过格栅水头损失一般采用0.08~0.15m 。 ○ 11格栅间必须设置工作台,台面应高出栅前最高设计水位0.5m 。工作台上应有安全设施和冲洗设施。 ○ 12格栅间工作台两侧过道宽度不应小于0.7m 。工作台正面过道宽度:(a)人工清除不应小于 1.2m (b) 机械清除不应小于1.5m 。 ○ 13机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。 ○ 14设置格栅装置的构筑物,必须考虑设有良好的通风设施。 ○ 15格栅间内应安设吊运设备,以进行格栅及其他设备的检修和栅渣的日常清除。 3.1.2 格栅的计算 【例题】 已知某城市污水处理厂的最大污水量Q max =0.2m 3 /s ,总变化系数K z =1.50,求格栅各部分尺寸。 【解】 (1) 栅条的间隙数(n) 设栅前水深h=0.4m ,过栅流速v=0.9m/s ,栅条间隙宽度b=0.021m ,格栅倾α=60o。 max 260.0210.40.9 Q n bhv ==≈??(个) (2) 栅槽宽度(B) 设栅条宽度S=0.01m 。 B=S(n-1)+bn=0.01×(26-1)+0.021×26=0.8(m) (3) 进水渠道渐宽部分的长度

水处理微生物学课程教学大纲

《水处理微生物学》课程教学大纲 一.课程基本情况 课程英文名称:MICROBIOLOGY OF WATER TREATMENT 授课对象:给水排水工程专业本科生 开课学期:第6学期 学时数:44学时(其中含12学时实验) 学分数: 2.5学分 课程性质:必修专业基础课 考核方式:考试 先修课程:生物化学、水分析化学、有机化学 后续课程:水质工程学 开课教研室:给水排水工程教研室 执笔人:田晓燕 二.课程教学目标 1.任务和地位 《水处理微生物学》是《水质工程学》等专业课程的基础。通过学习使学生掌握微生物的形态、结构及其功能,微生物的营养、呼吸、物质代谢、生长繁殖、遗传与变异以及微生物在水体治理、污染土壤的修复等环境工程净化中的作用。 2.知识要求 在有机化学、生物化学理论基础知识的基础上,能运用所学知识分析污水质,并用微生物理论提出粗略的处理意见。 3.能力要求 通过学习掌握本课程的基本理论、基础知识并具备独立设计、实施相关实验的基本能力,为后续课学习打下基础。同时要了解本领域最新发展动态,增强适应能力,自觉地把本课程发展与相关专业发展联系起来。 三.教学内容的基本要求和学时分配 1.教学内容及要求 (1)概述 教学内容: 微生物的概念,微生物的特点,环境工程微生物的研究对象和任务。 基本要求:掌握微生物的概念、微生物的特点以及环境工程微生物的研究对象和任务等污染控制微生物学基本知识和研究范畴,对污染控制微生物学及其在环境科学和环境工程中的地位和作用有一个总体性的认识。 (2)原核微生物 教学内容: 细菌及其一般结构;细菌的特殊结构;放线菌、蓝细菌等其它原核微生物;细菌的分类鉴定。 基本要求:掌握原核微生物的基本特征和细菌的一般结构,细菌的特殊结构及其在环境科学中的重要应用潜力;了解放线菌、蓝细菌等其它原核微生物及其在环境工程中的作用。 (3)真核微生物 教学内容: 真菌、藻类、原生动物和微型后生动物的形态生理特性等。

水质工程学课程设计说明书

水质工程学(一)课程设计说明书 1设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规X等基本技能上得到初步训练和提高。 1.1设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2基本资料 1.2.1城市用水量资料 1.2.2原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

水质工程学课程设计实例

目录 设计任务书 (2) 设计计算说明书 (4) 第一章污水处理厂设计 第一节污水厂选址 (4) 第二节工艺流程 (4) 第二章处理构筑物工艺设计 第一节设计参数 (6) 第二节泵前中格栅设计 (6) 第三节污水提升泵房设计计 (8) 第四节泵后细格栅设计计算 (9) 第五节沉砂池设计计算 (10) 第六节辐流式初沉池设计计算 (12) 反应池设计计算 (14) 第七节O A/ 1 第八节向心辐流式二沉池设计计算 (16) 第九节剩余污泥泵房 (17) 第十节浓缩池 (18) 第十一节贮泥池 (20) 第十二节脱水机房 (21) 第三章处理厂设计 第一节污水处理厂的平面布置 (23) 第二节污水处理厂高程布置 (23) 参考文献 (26)

《水质工程学》课程设计任务书 一、设计题目 某计城市日处理污水量15万m 3污水处理工程设计 二、基本资料 1、污水水量、水质 (1)设计规模 设计日平均污水流量Q=150000m 3/d ; 设计最大小时流量Q max =8125m 3/h (2)进水水质 COD Cr =400mg/L ,BOD 5 =180mg/L ,SS = 300mg/L ,NH 3-N = 35mg/L 2、污水处理要求 污水经过二级处理后应符合《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准的B 标准 ,即: COD Cr ≤ 60mg/L ,BOD 5≤20mg/L ,SS≤20mg/L ,NH 3-N≤8mg/L 。 3、处理工艺流程 污水拟采用活性污泥法工艺处理,具体流程如下: 4、资料 市区全年主导风向为东北风,频率为18%,年平均风速2.55米/秒。污水处理厂场地标 高384.5~383.5米之间, 5、污水排水接纳河流资料: 该污水厂的出水直接排入厂区外部的河流,其最高洪水位(50年一遇)为380.0m ,常水位为378.0m ,枯水位为375.0m 。 三、设计任务 1、对处理构筑物选型做说明; 2、对主要处理设施(格栅、沉砂池、初沉池、生化池、污泥浓缩池)进行工艺计算(附必要的计算草图); 3、按扩初标准,画出污水处理厂平面布置图,内容包括表示出处理厂的范围,全部处理构筑物及辅助建筑物、主要管线的布置、主干道及处理构筑物发展的可能性; 4、按扩初标准,画出污水处理厂工艺流程高程布置图,表示出原污水、各处理构筑物的高程关系、水位高度以及处理出水的出厂方式; 5、编写设计说明书、计算书。 四、设计成果 1、设计计算说明书一份; 2、设计图纸:污水处理厂平面布置图和污水处理厂工艺流程高程布置图各一张。 五、参考资料 1、《给水排水设计手册》第一、五、十、十一册 2、《环境工程设计手册》(水污染卷) 原污水 污泥浓缩池 污泥脱水机房 出水 格栅 污水泵房 沉砂池 二沉池 泥饼外运 曝气池 回流污泥

水质工程学课程设计报告

课程设计 题目:市净水厂工艺设计学院:市政与环境工程专业:给水排水工程 姓名:孔朋月 学号:024213106 指导老师:肖晓存 完成时间:2014年6月20日

实习很快结束了,没有失望,这次实习让我了解、认识学到了很多课本上没有的知识。这种结合日常生活,联系课本知识,与生活环境挂钩学习,让大家都认识到了本专业的重要性。课程设计是我们专业课程知识综合应用的实践训练,是我们迈向社会,从事职业工作前一个必不少的过程。我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础。 此次课程设计,一方面让我对专业课有了新的认识,另一方面也让我提起来是对专业课的兴趣,也让我认识到了水资源的重要性和保护环境的必要性。专业方面,针对给水设备、给水处理工艺流程展开了讨论,进行了一次又一次的有目的的实习。非常感指导老师对我们的指导和耐心解答。实习容有叙述不到位的地方,也请老师们能指出并给予建议和意见。

Practice soon ended, not disappointed, this internship, let me know, knowledge learned without a lot of textbook knowledge. This combination of daily life, with the textbook knowledge, learning and living environment of hook, let us recognize the importance of the professional. Curriculum design is our professional curriculum knowledge comprehensive application of practice, as we move towards society, occupation before a most necessary process. Through the curriculum design, I deeply appreciate the true meaning of the ancient wisdom. I'm serious curriculum design today, stand on solid ground to take this step, it is robust to run and lay a solid foundation in the trend of the society for tomorrow. The curriculum design, on one hand, let me have a new understanding of the professional course, on the other hand, let me put up interest in professional course, also let me realize the necessity and the importance of water resources and Protect environment. Professional, the process of water supply equipment, water treatment were discussed, were once again to practice. Thank a teacher to our guidance and patience to answer. Practice contents are described not in place, also please the teacher can point and give suggestions and comments.

水质工程学考试复习题

水质工程学考试复习题 一、选择题: 1 给水工程的规划应在服从城市总体规划的前提下,近远期结合,以近期为主进行设计。近期设计年限宜采用( )年,远期规划年限宜采用( )年。 ( A ) A.5~10;10~20 B.5~10;15~20 C.5~10;10~15 D.10~20;20~30 2 设计供水量应根据下列各种用水确定( C )。 (1)综合生活用水 (2)工业企业生产用水和工作人员生活用水 (3)消防用水 (4)浇洒道路和绿地用水 (5)未预见用水量及管网漏失水量。 (6)公共建筑用水 A.全部 B.(1)、(2)、(4) C.(1)、(2)、(3)、(4)、(5) D.(1)、(2)、(3)、(4)、(5)、(6) 3 药剂仓库的固定储备量,应按当地供应、运输等条件确定,一般可按最大投药量的( B )天用量计算。其周转储备量应根据当地具体条件确定。 A.5~10 B.7~15 C.15~30 D.10~20 4 设计沉淀池和澄清池时应考虑( A )的配水和集水。 A.均匀 B.对称 C.慢速 D.平均 5 设计隔板絮凝池时,絮凝池廊道的流速,应按由大到小的渐变流速进行设计,起端流速一般宜为( B )m/s,末端流速一般宜为0.2~0.3m/s。 6 异向流斜管沉淀池,斜管沉淀池的清水区保护高度一般不宜小于( A )m;底部配水区高度不宜小于1.5m。 A.1.0 B.1.2 C.1.5 D.0.8 7 快滤池宜采用大阻力或中阻力配水系统。大阻力配水系统孔眼总面积与滤池面积之比为( C )。 8 地下水除铁一般采用接触氧化法或曝气氧化法。当受到硅酸盐影响时,应采用( A )氧化法。 A.接触 B.曝气 C.自然 D.药剂 9 当采用氯胺消毒时,氯和氨的投加比例应通过( C )确定,一般可采用重量比为3:1~6:

水质工程学课程设计

水质工程学(一)课程设计 说明书 学院:环境科学与工程学院系名:市政工程系专业:给水排水工程姓名: 学号: 班级:给排 1311 指导教师: 指导教师: 2015年12月25 日

目录 第一章设计基本资料和设计任务 0 1.1 设计基本资料........................................... 错误!未定义书签。 1。2设计任务?1 第二章水厂设计规模的确定?错误!未定义书签。 2.1 近期规模?错误!未定义书签。 2。2 水厂设计规模.......................................... 错误!未定义书签。第三章水厂工艺方案的确定. (3) 3。1初步选定两套方案....................................... 错误!未定义书签。 3.2方案构筑物特性比较?错误!未定义书签。 3。3方案确立?错误!未定义书签。 第四章水厂各个构筑物的设计计算?错误!未定义书签。 4。1 一级泵站.............................................. 错误!未定义书签。 4。2 混凝剂的选择和投加?错误!未定义书签。 4。3 管式静态混合器........................................ 错误!未定义书签。 4.4 水力循环澄清池....................................... 错误!未定义书签。 4。5 无阀滤池............................................. 错误!未定义书签。 4.6消毒.............................................. 错误!未定义书签。 4.7 清水池?错误!未定义书签。 4。8二级泵站............................................. 错误!未定义书签。 4.9 附属构筑物?错误!未定义书签。 第五章水厂平面和高程布置?错误!未定义书签。 5.1 平面布置.............................................. 错误!未定义书签。 5.2 高程布置?错误!未定义书签。 参考文献?错误!未定义书签。

北京交通大学1226较大爆炸事故调查报告

2018年12月26日,北京交通大学市政与环境工程实验室发生爆炸燃烧,事故造成3人死亡。 按照市委、市政府领导指示精神,依据《中华人民共和国突发事件应对法》等有关法律、法规,市政府成立了由市应急管理局、市公安局、市教委、市人力社保局、市总工会、市消防总队和海淀区政府组成的事故调查组,并邀请市纪委市监委同步参与事故调查处理工作。 事故调查组按照“科学严谨、依法依规、实事求是、注重实效”和“四不放过”的原则,通过现场勘验、检测鉴定、调查取证、模拟实验,并委托化工、爆炸、刑侦、火灾调查有关领域专家组成专家组进行深入分析和反复论证,查明了事故发生的经过和原因,认定了事故性质和责任,并提出了对有关责任人员和单位的处理建议及事故防范和整改措施。现将有关情况报告如下: 一、事故基本情况 (一)事故现场情况 事故现场位于北京交通大学东校区东教2号楼。该建筑为砖混结构,中间两层建筑为市政与环境工程实验室(以下简称“环境实验室”),东西两侧三层建筑为电教教室(内部与环境实验室不连通)。环境实验室一层由西向东依次为模

型室、综合实验室(西南侧与模型室连通)、微生物实验室、药品室、大型仪器平台;二层由西向东分别为水质工程学Ⅱ、水质工程学Ⅰ、流体力学、环境监测实验室;一层南侧设有5个南向出入口;一、二层由东、西两个楼梯间连接;一层模型室和综合实验室南墙外码放9个集装箱(建筑布局详见下图)。 (二)事发项目情况 事发项目为北京交通大学垃圾渗滤液污水处理横向科研项目,由北京交通大学所属北京交大创新科技中心和北京京华清源环保科技有限公司合作开展,目的是制作垃圾渗滤液硝化载体。该项目由北京交通大学土木建筑工程学院市政与环境工程系教授李德生申请立项,经学校批准,并由李德生负责实施。 2018年11月至12月期间,李德生与北京京华清源环保科技有限公司签订技术合作协议;北京交大创新科技中心和北京京华清源环保科技有限公司签订销售合同,约定15天

水质工程学课程设计

水质工程学课程设计

一.总论 1.1 设计任务及要求 净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 水厂规模 该水厂总设计规模为5万m3/d,分两期建设,近期工程供水能力5万m3/d,,远期工程供水能力为10万m3/d。近期工程设计征地时考虑远期工程用地,预留出远期工程用地。 1.2.2 原水水质资料 水源为河流地面水,原水水质分析资料如下:

1.2.3 厂区地形 地形比例1:500,按平坦地形和平整后的设计地面高程32.00m设计,水源取水口位于水厂东北方向150m,水厂位于城市北面1km。 1.2.4 工程地质资料 表土砂质粘土细砂中砂粗砂粗砂砾石粘土砂岩石层 1m 1.5m 1 m 2 m 0.8m 1 m 2 m 土壤承载力:20 t/m2. (2)地震计算强度为186.2kPa。 (3)地震烈度为9度以下。 (4)地下水质对各类水泥均无侵蚀作用。 序号项目单位数量备注 1 历年最高水位m 34.38 黄海高程系统,下同 2 历年最低水位m 21.47 频率1% 3 历年平均水位m 24.64 4 历年最大流量m3/s 14600 5 历年最小流量m3/s 180 6 历年平均流量m3/s 1340 7 历年最大含砂量kg/m3 4.82 8 历年最大流速m/s 4.00 9 历年每日最大水位涨落m/d 5.69 10 历年三小时最大水位涨落m/3h 1.04 地下水位:在地面以下1.8m 1.2.6 气象资料 该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。常年主导风向为东北偏北(NNE),静风频率为12%,年平均风速为3.4m/s。土壤冰冻深度:0.4m。

水质工程计算题

水质工程学(上) 考试试卷一 1、平流沉淀池设计流量为720m 3/h 。要求沉速等于和大于0.4mm/s 的颗粒全部去除。试按理想沉淀条件,求: (1)所需沉淀池平面积为多少m 2? (2)沉速为0.1mm/s 的颗粒,可去除百分之几?(10’) 解:已知 Q=720m 3/h=0.2m 3/s u 0=0.4mm/s u i =0.1mm/s 1) 所需沉淀池平面积为2 3 05010 4.02.0m u Q A =?== - 2) 沉速为0.1mm/s 的颗粒的去除率为25.04 .01.00=== u u E i 2、原水泥砂沉降试验数据见下表。取样口在水面180cm 处。平流沉淀池设计流量为900m 3/h ,表面积为500m 2,试按理想沉淀池条件,求该池可去除泥砂颗粒约百分之几?(0C 表示泥砂初始浓度,C 表示取样浓度)。(20’) 取样时间(min ) 0 15 20 30 60 120 180 C /0C 1 0.98 0.88 0.70 0.30 0.12 0.08 解:已知 h=180cm Q=900m 3/h A=500m 2 沉速计算 取样时间(min ) 0 15 20 30 60 120 180 u=h/t(cm/min) _ 12 9 6 3 1.5 1 沉速分布见下图。

2 46810 12 00.10.20.30.40.50.60.70.8 0.91沉降速度(cm/min ) 小于该沉速的颗粒组成分数 截留沉速u 0= A Q =60 500100900??=3cm/min 从图上查得u 0=3cm/min 时,小于该沉速的颗粒组成部分等于p 0=0.30。从图上,相当于积分式 ? p u dp 的面积为 0.506。因此得到总去除百分数为: P=(1-0.30)+ 3 1 (0.506)=86.9% 水质工程学(上)考试试卷二 1、河水总碱度0.1mmol/L (按CaO 计)。硫酸铝(含Al 2O 3为16℅)投加量为25mg/L ,问是否需要投加石灰以保证硫酸铝顺利水解?设水厂日生产水量50000m 3,试问水厂每天约需要多少千克石灰(石灰纯度按50℅计)。(处理水剩余碱度要求不得低于0.47 mmol/L (按CaO 计)) 解:投入药剂量折合Al 2O 3 为25mg/l ×16%=4mg , Al 2O 3 的分子量为102 。 故投入药剂量相当于4/102=0.039mmol/l , 剩余碱度取0.37mmol/l ,则得[CaO]=3×0.039+1×0.37=0.487(mmol/l), CaO 的分子量为56, 则石灰投量为0.487×56×50000/0.5=2.3×106(g)=2.3×103(kg) 2、(2)设初沉池为平流式,澄清部分高为H ,长为L ,进水量为Q ,试按理想沉淀理论对比: ①出水渠设在池末端 ②如图所示,设三条出水渠时,两种情况下可完全分离掉的最小颗粒沉速u o 。

水质工程学实验报告

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:√验证□综合□设计□创新实验日期:实验成绩: 实验一混凝试验 一、实验目的: 1.学会求一般天然水体最佳混凝条件(包括投药量、PH、水流速度梯度)的基本方法; 2.观察混凝现象,加深混凝机理的理解,了解混凝影响因素; 二、实验基本原理: 胶体微粒都带有电荷,它们之间的电斥力是影响胶体稳定性的主要因素,一般天然水体颗粒的电动电位在-30mv以上,投加混凝剂后,只要该电荷点位降到-15mv左右即可得到。 三、主要仪器设备及耗材: 智能型混凝试验搅拌仪(六联搅拌器),酸度计一台,低浊度仪一台,双向磁力搅拌器一台,1000ml烧杯六个,200ml烧杯两个,1000ml量筒一个,1ml、2ml、5ml移液管各一根,酸碱溶液各一瓶,混凝剂溶液一瓶(5%硫酸铝) 四、实验步骤: (1)本次试验选用的是二号水样,将桶中原水搅拌均匀,测定水样的温度、酸碱度、浊度和pH值。 (2) 确定水样中能形成矾花的近似最小混凝剂量,在烧杯中加入200ml水样并将烧杯放在磁力搅拌器上进行搅拌,并且每次增加0.1mL的混凝剂投加量,直至出现矾花。记录生成小矾花是的混凝剂的最小投加量。 (3)在六个大烧杯中分别加入1L的原水,以上一步所得的最小投加量为基准,设置六组梯度试验,每组用量别为最小投加量的1/3、2/3、1、1.5、2、2.5倍。加入到相应的药剂试管中。 (4)设定六联混凝搅拌仪,第一阶段:时间30s,转速500r/min;第二阶段:时间10min,转速为250r/min;第三阶段;时间10min,转速100r/min;第四阶段沉淀10min。启动

相关主题
文本预览
相关文档 最新文档