当前位置:文档之家› 华中科技大学(水质工程学一)课程设计

华中科技大学(水质工程学一)课程设计

华中科技大学(水质工程学一)课程设计
华中科技大学(水质工程学一)课程设计

一.总论

1.1 设计任务及要求

净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。

课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(达到初步设计的深度),并简要写出一份设计计算说明书。

1.2 基本资料

1.2.1 水厂规模

该水厂总设计规模为***万m3/d,分两期建设,近期工程供水能力***万m3/d,,远期工程供水能力为***万m3/d。近期工程设计征地时考虑远期工程用地,预留出远期工程用地。

1.2.2 原水水质资料

1.2.3 厂区地形

地形比例1:500, 按平坦地形和平整后的设计地面高程32.00m 设计,水源取水口位于水厂东北方向150m ,水厂位于城市北面1km 。

1.2.4 工程地质资料

(1)

(2)地震计算强度为186.2kPa 。 (3)地震烈度为9度以下。

(4)地下水质对各类水泥均无侵蚀作用。

1.2.5 水文及水文地质资料

1.2.6 气象资料

该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。常年主导风向为东北偏北(NNE),静风频率为

12%,年平均风速为3.4m/s。土壤冰冻深度:0.4m。

二.总体设计

2.1 净水工艺流程的确定

水厂原水色度约在20度,浊度一般介于65-2000NTU ,原水水质毒理学和放射性指标全部达到《生活饮用水卫生标准》(GB 5749-2006)的要求。总体来说,原水水质较好,为我国《地面水环境质量标准》(GB3838-200)Ⅱ类水源。而水厂出水水质需满足《生活饮用水卫生标准》(GB 5749-2006)的要求。

综合以上考虑,设计初步采用常规水处理工艺,流程图如下: 原水

混 合

絮凝沉淀池

滤 池

混凝剂消毒剂

清水池

二级泵房

用户

图2-1 工艺流程图

2.2 处理构筑物及设备型式选择

2.2.1 药剂溶解池 1.药剂的选择 表2-1 常用混凝剂及其特点

名称

分子式

一般介绍

精制硫酸铝

342)(SO Al .18O H 2

制造工艺复杂,水解作用缓慢;含无水硫酸铝50%—52%;适用于水温为20—40℃。

当PH=4-7时,主要去除有机物;PH=5.7-7.8时,主要去除悬浮物;PH=6.4-7.8时,处理浊度高,色度低(小于30度)的水。

粗制硫

酸铝

342)(SO Al .18

O H 2

制造工艺简单,价格低;设计时,含无水

硫酸铝一般可采用20%—25%;含有20%—30%不溶物,其他同精制硫酸铝。

PAM 等有机高分子混凝剂有毒性,不易控制用量,由于在投混凝剂前加液氯进行预处理,如用硫酸亚铁作混凝剂,易被氧化成三价铁。本次设计的原水水源为河水,其浊度在65-2000之间,PH 值为7.6,结合这些特点,选用聚合氯化铝为混凝剂,该混凝剂腐蚀性较小,原料易得,价格便宜,被大多数水厂所采用,有一定的管理经验,并且劳动条件有保障。

2.投加方式的确定

本设计采用湿投法,其优点为:容易与原水充分混合;不易阻塞入口,管理方便;投量易于调节。投加系统示意图见下图所示:

结合上述优缺点,采用计量泵投加混凝剂,因为其使用方便,操作简单,工作可靠,广泛应用于加药系统。

3.药剂溶解池

设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,池顶宜高出地面0.20m 左右,以减轻劳动强度,改善操作条

件。溶解池的底坡不小于0.02,池底应有直径不小于100mm的排渣管,池壁需设超高,防止搅拌溶液时溢出。

由于药液一般都具有腐蚀性,所以盛放药液的池子和管道及配件都应采取防腐措施。溶解池一般采用钢筋混凝土池体,若其容量较小,可用耐酸陶土缸作溶解池。

2.2.2 混合设备

混合的主要作用是让药剂迅速而均匀地扩散到水中,使其水解产物与原水中的胶体颗粒充分作用完成脱体脱稳,以便进一步去除,对混合的基本要求是快速与均匀,一般混合时间10-30s,混合方式基本分为两大类:水力混合和机械混合,水力混合简单,但不能适应流量的变化,机械混合可进行调节,能适应各种流量的变化,具体采用何种混合方式,应根据净水工艺布置、水质、水量、投加药剂品种及数量以及维修条件等因素确定。

表2-3 各种混合方式比较

综上所述,因为水厂水量变化不大,并且考虑到尽可能的减少能量消耗,以整体经济效益而言是最具有优势的,本设计采用管式静态混合器,它较水泵混合和机械混合能耗低,并且混合效果比管道混合稳定,混合速度快。

2.2.3 絮凝处理构筑物的选择

不同形式的絮凝池的一般介绍如下所示:

表2-4 各种絮凝池的比较

综上所述,由于水厂水量变化不大,为了达到较好的处理效果,故采用机械絮凝池,可以在机械絮凝池的之间设置隔墙,在隔墙的不同位置开设过水方孔,这样不仅可以减少水流形成短流的可能,而且可以在检修时,利用水在隔墙内的曲线流动达到絮凝效果。

2.2.4 沉淀池

选择沉淀池类型时,应根据原水水质、设计生产能力、处理后水质要求,并考虑原水水湿变化、处理水量均匀程度以及是否连续运转等因素,结合当地条件通过技术经济比较确定沉淀池的个数或能够单独排空的分格数不宜少于2个。

经过混凝沉淀的水,在进入滤池前的浑浊度一般不宜超过10度,遇高浊度原

水或低湿低浊度原水时,不宜超过15度。

设计沉淀池时需要考虑均匀配水和均匀集水,沉淀池积泥区的容积,应根据进出水的悬浮物含量、处理水量、排泥周期和浓度等因素通过计算确定。当沉淀池排泥次数较多时,宜采用机械化或自动化排泥装置,应设取样装置。

表2-5 各种沉淀池的比较

近年来,平流式沉淀池被越来越多地水厂所采用,它的沉淀效果较好,维护简单,采用机械除泥,除泥效果理想,管理方便等,所以本设计采用平流式沉淀池

2.2.5 滤池

供生活饮用水的滤池出水水质经消毒后应符合现行《生活饮用水卫生标准》的要求;供生产用水的过滤池出水水质,应符合生产工艺要求;滤池形式的选择,应根据设计生产能力、原水水质和工艺流程的高程布置等因素,结合当地条件,通过技术经济比较确定。

表2-6 各种滤池的比较

综上所述,V型滤池适用范围广且采用气水反冲洗,冲洗效果好,节水出水水质较好,虽然滤料较厚较粗,过滤周期长,但冲洗过程自动控制减少人工管理,操作方便。本设计采用V型滤池均质滤料。。

2.2.6 消毒方法

水的消毒处理是生活饮用水处理工艺中的最后一道工序,其目的在于杀灭水中的有害病原微生物(病原菌、病毒等),防止水致传染病的危害。常用消毒方

法如下表所示:

表2-7 常用消毒方法

在上面所述的各种消毒剂中,液氯是最早被用来作为饮用水消毒的消毒剂,它除了以上的优点之外,在水厂消毒过程中积累的大量的实践经验,可以借鉴,劳动量较小,消毒效果比较稳定。所以,本次设计采用液氯作为消毒剂。

三.混凝沉淀

3.1 混凝剂投配设备的设计

3.1.1 溶液池的设计

采用聚合氯化铝混凝剂,根据给水排水设计手册(第三册),查得武汉长江水的混凝剂最高投加量为64 mg/L ,平均投加量为24.7 mg/L ,采用计量泵投加。水的PH 和碱度恰好在混凝剂的最佳PH 值范围内,故不需要考虑对PH 进行调节。

溶液池一般以高架式设置,以便能依靠重力投加药剂。池周围应有工作台,底部应设置放空管。必要时设溢流装置。

溶液池容积按下式计算:

cn

aQ

417W 2=

; 式中2W -溶液池容积,3m ; Q -处理水量,3/m h ; a -混凝剂最大投加量,mg/L ; c -溶液浓度,取10%;

n -每日调制次数,取n =2。

代入数据得:34206.2424

21041706

.110(((64417W m cn aQ =??????==

(考虑水厂的自用水量6%)

溶液池采用矩形钢筋混凝土结构,设置2个,每个容积为W 2(一备一用),

以便交替使用,保证连续投药。

取有效水深1.15m, 溶液池深度:H =H 1+H 2+H 3=1.15+0.15+0.10=1.40m 。式中H 2为保护高,取0.15m ;H 3为贮渣深度,取0.1m 。

单池尺寸为L ×B ×H=5.0m ×4.2m ×1.4m ,溶液池实际有效容积: W=5.0×4.2×1.15=24.15m 3满足要求。

池旁设工作台,宽1.0-1.5m ,池底坡度为0.03。底部设置DN100mm 放空管,采用硬聚氯乙烯塑料管。池内壁用环氧树脂进行防腐处理。沿池面接入药剂稀释给水管DN60mm ,按1h 放满考虑。

3.1.2 溶解池的设计

溶解池容积:W 1=0.3W 2=0.3×24.06=7.22m 3;

溶解池采用钢筋混凝土结构,设置2个,每个容积为W 1(一备一用)。 取有效水深0.95m, 溶解池深度:H =H 1+H 2+H 3=0.95+0.15+0.10=1.20m ,式中H 2为保护高,取0.15m ;H 3为贮渣深度,取0.1m 。

单池尺寸为:L ×B ×H=2.8m ×2.8m ×1.2m ,溶液池实际有效容积:W=2.8×2.8×0.95=7.45m 3满足要求。

溶解池的放水时间采用t =15min ,则放水流量:

q 0

s L t W /14.4601521045.760231

=???=?=

; 查水力计算表得放水管管径:d 0=80mm ,相应流速V=0.75m/s 。溶解池底部设管径d =100mm 的排渣管一根,搅拌设备采用中心固定式平桨板式搅拌机。

溶解池搅拌装置采用中心固定式平桨板式搅拌机:以电动机驱动浆板或涡轮搅动溶液。

3.1.3 投药管 投药管流量

q s L W /557.060

60241000

206.246060241000

22=????=

????=

查水力计算表得投药管管径:d =25mm ,相应流速为0.83m/s 。

3.1.4 投加泵的选择 计量泵每小时投加药量: q =

122W =12

06.22=1.84 m 3/h ; 式中:W 2——溶液池容积(m 3)

计量泵型号J-D2500/1.6选用2台,一备一用。

3.1.5 加药间及药库的设计

药剂仓库与加药间应连在一起,储存量一般按最大投药期间1-2个月用量计算。仓库内应设有磅秤,并留有1.5m 的过道,尽可能考虑汽车运输的方便。

混凝剂选用聚合氯化铝,每袋质量是40kg ,每袋的体积为0.5×0.4×0.2m 3,

药剂储存期为30d ,药剂的堆放高度取2.0m 。

聚合氯化铝的袋数:

240.0241000Q u t Qut

N W W

???==?

?; 式中: Q -水厂设计水量,3/m h ; u -混凝剂最大投加量,/mg L ; t -药剂的最大储存期,d ; W -每袋药剂的质量,kg ; 将相关数据代入上式得,N=340840

2430

64101.7024.04=?????

袋。 有效堆放面积A :

()

1NV

A H e =

-;

式中:H -药剂得堆放高度,m ; V -每袋药剂得体积,3

m ;

e -堆放孔隙率,袋堆时20%e =

代入数据得:

A=

2.85)

2.01(22

.04.05.03408=-????m 2;

考虑目前使用及日后扩容,可按远期设计及,适当增加面积,取A=160m 2。

3.2 混合设备的设计

使用管式混合器对药剂与水进行混合。在混合方式上,由于混合池占地大,基建投资高;水泵混合设备复杂,管理麻烦,机械搅拌混合耗能大,管理复杂,相比之下,管式混合具有占地极小、投资省、设备简单、混合效果好和管理方便等优点而具有较大的优越性。

在给排水处理过程中原水与混凝剂,助凝剂等药剂的充分混合是使反应完善,从而使得后处理流程取得良好效果的最基本条件,同时只有原水与药剂的充分混合,才能有效提高药剂使用率,从而节约用药量,降低运行成本。

管式静态混合器是处理水与混凝剂、助凝剂、消毒剂实行瞬间混合的理想设备:具有高效混合、节约用药、设备小等特点,它是有二个一组的混合单元件组成,在不需外动力情况下,水流通过混合器产生对分流、交叉混合和反向旋流三个作用,混合效益达90-95%,构造如图3-1所示:

药剂

静态混合器

图3-1 管式静态混合器

设计流量:

Q=

436.03600

24206

.110(((4=????m 3/s ; 静态混合器设在絮凝池进水管中,设计流速v=1.0m/s ,则管径为:

D=

.114.3436

.04??=0.74m ;

采用D=800mm ,则实际流速v=0.868m/s 混合单元数: N 36.2≥v -0.5D -0.3=2.36/(0.8680.5?0.80.3)=2.71取N=3,则混合器的混合长度为:

L=1.1ND=1.18.03??=2.64m ; 混合时间:

T=L/v=2.64/0.868=3.04s ;

水头损失: m N D Q h 180.038

.0436.01184.01184.04

.42

4.42=??==; 校核GT 值

G )700(8.75904.310005.1180.098001

3

≥=???==

--s T h μγ GT=759.804.3?=2310(≥2000)

水力条件符合要求。

3.3 反应设备的设计

3.3.1 机械絮凝池尺寸

采用2座机械搅拌絮凝池,则每座池的设计流量为:

Q s m h m 334436.09.15672

2406

.110(((==???=

; 絮凝时间 T=20min ;絮凝池有效容积:

36.5226020

9.156760

m QT

W =?=

=

为配合沉淀池尺寸,絮凝池分三组,每组四格,每格尺寸:3.4m ×3.4m ; 水深:H=3.7m ,絮凝池超高0.3m ,则池子总高度为4.0m ; 絮凝池实际容积:W=7.34.34.343????=513.3m 3; 实际絮凝时间:T=W /Q=513.3/0.436=1177s=19.62min ; 絮凝池分格隔墙上过水通道上下交错布置,每格设一台搅拌机。为加强搅拌效果,于池子四周壁设置四块固定挡板。

3.3.2 搅拌设备尺寸

为保证叶轮边缘与池子侧壁间距不大于0.25m ,叶轮直径采用:D=3.0m ;

叶轮中心桨板线速度采用:v 1=0.5m ,v 2=0.4m ,v 3=0.3m ,v 4=0.2m ;

桨板长度取l=2.0m (桨板长度与叶轮直径之比:l/D=2.0/3.0=66.7%<75%);

桨板宽度取:b=0.14m(1/15<b/l <1/10); 每根轴上桨板8块,内外各4块。装置尺寸见右图:

旋转桨板面积与过水断面面积之比为:

81.177

.34.314

.00.28=???%;

四块固定挡板宽×高=0.10m ×2.0m ,其面积与过水断面面积之比为:

36.67

.34.310

.00.24=???%;

桨板总面积占过水断面面积的百分比为: 图3—2 垂直轴搅拌设备

17.81%+6.36%=24.17%<25%;

叶轮桨板中心点旋转直径:

D 0=[(1500-680)/2+680]×2=2180mm=2.18m ;

叶轮旋转角速度分别为:w 1=2v 1/D 0=2×0.5/2.18=0.459rad/s ,w 2=0.367rad/s , w 3=0.275rad/s , w 4=0.183rad/s ;

桨板宽长比:b/l=0.14/2<1,查《给水排水设计手册.第三册》表7-25得: ψ=1.10,则:

k=ψρ/2g=1.10×1000/2×9.81=56;

桨板旋转时克服水的阻力所耗功率: 第一格搅拌功率:

()

()

kw

r R r R

yklw N 200.068.082.036.150.1408

459.00.2564408

444434

14142421

1=-+-????=-+-=

第二、三、四格搅拌功率分别为:0.102kw ,0.043kw ,0.013kw 。

四台搅拌机合用一台电动机,则絮凝池所消耗总功率为: N=0.200+0.102+0.043+0.013=0.358kw 。

3.3.3 核算平均速度梯度G 值及GT 值 按水温t=200C ,μ=1.005×10-3N S/m 2

第一格G 1=1

2

61

2.687

.34.3005.110200.0μ-=???=

s v

N 第二、三、四格G 值分别为:48.7s -1、31.6s -1、17.6s -1;

絮凝池平均速度梯度:G=1266.527

.34.3005.110358.03μ-=???=

s

v

N

GT=52.6×19.62×60=61920

经核算,G 值和GT 值较合适。

3.4 沉淀澄清设备的设计

3.4.1 平流式沉淀池尺寸

平流式沉淀池分设2座,每组设计流量:

s m h m Q 334436.09.15672

2406

.110((((==???= ;

沉淀时间T=2.0h ,沉淀池容积:W=QT=1567.9×2=3135.8m 3; 考虑絮凝池尺寸,沉淀池池宽B=3.4×3+0.2×2=10.6m ;

取沉淀池的有效水深:H=3.5m ,超高0.5m ,则池子总高度为4.0m ; 沉淀池长:L=W/Bh=3135.8/(10.6×3.5)=84.52m ,取L=85m ; 此时,沉淀池水平流速:v=L/3600T=85/(3600×2)=0.0118m/s=11.8mm/s 在10~25mm/s 范围内。

沉淀池长宽比:L/B=85/10.6=8.02>4,长深比:L/h=85/3.5=24.28>10 满足设计要求。

沉淀池放空时间以2小时计算,则放空管直径为:

m T

BLH d 40.03600

25.3856.107.07.05

.05

.0=????=

=

采用钢制DN500mm ,排泥管也采用同样的管径。

3.4.2 沉淀池水力条件复核

每池中间设两道200mm 的隔墙将沉淀池分成三格,每格宽3.4m 。 水力半径:R=ω/χ=3.5×3.4/(3.5×2+3.4)=1.14m

弗劳德数:F r =v 2/2g=0.01182/(2×9.81)=1.24×10-5 (在1×10-5~1×10-4之

间)

雷诺数:Re=vR/γ=0.0118×1.14/(1.007×10-6)=1.33×104 (在4000~

15000之间)

沉淀池示意见下图:

图3-3 平流沉淀池示意图

3.4.3 沉淀池的进水设计 进水采用穿孔墙布置,尽量做到在进水断面上水流的均匀分布,避免已形成的絮体破碎。单座池墙长10.6m ,墙高4.0m ,有效水深3.5m ;

根据设计手册:当进水端用穿孔配水墙时,穿孔墙在池底积泥面以上0.3~0.5m 处至池底部分不设孔眼,以免冲动沉泥。本设计采用0.5m ;

孔眼尺寸考虑施工方便,采用尺寸:15cm×8cm ; 单个孔眼的面积:2

00.150.080.012w m =?= ; 孔眼流速采用:10.1/v m s =;

孔眼总面积:0Ω=q/v 1=0.436/0.1=4.36m 2;

孔眼总数:0n =0Ω/ω0=4.36/0.012=363.3个,取364个; 孔眼实际流速:v=q/0n ω0=0.436/(364×0.012)= 0.100m/s ;

孔眼布置成7排,每排孔眼数为364/7=52个。水平方向孔眼的间距取100mm ,则计算的水平长度为:52×0.08+51×0.1=9.26m ;

竖直方向的间距为150mm ,最上一排孔眼的淹没深度假定为0.5m ,最下一排孔眼距池底为0.5m ,则竖向的计算高度为7×0.15+6×0.2+0.5+0.5=3.25m 。

3.4.4 沉淀池的集水系统设计

沉淀池的出口布置要求在池宽方向上均匀集水,并尽量滗取上层澄清水,减小下层沉淀水的卷起,目前采用的办法多为采用指形槽出水。

1.指形槽的个数 : N=7;

2.指形槽的中心距 :a=B/N=10.6/7≈1.5m ;

3.指形槽中的流量:q 0=Q/N=0.436/7=0.0623m 3/s ,考虑到池子的超

载系数

20%,故槽中流量为:q=1.2q 0=0.0623×1.2=0.0747 m 3/s ;

4.指形槽的尺寸

指形槽的槽宽:b=0.9q 00.4=0.9×0.07470.4=0.32m ,为便于施工,取0.4b m =;

取堰上负荷为q 0=250m 3/m.d ,则指形槽长度: L=1.2Q/q 0=1.2×7.1×104×1.06/(250×2)=180.6m

7个集水槽,双侧进水。每根槽长:12.90m ,取13m ; 起点槽中水深:H 1=0.75b=0.75×0.4=0.3m ; 终点槽中水深:H 2=1.25b=1.25×0.4=0.5m ; 为便于施工,槽中水深统一取H 2=0.5m ;

5.总出水槽宽:B=0.9Q 0.4=0.9×0.4360.4=0.64m ,采用1.0m ,则出水渠起

端水深:H=1.73m gB Q 46.0181.9436

.073.132

2322=??=;

为保证自由落水,跌落高度采用0.1m ,溢流堰上淹没水头0.1m ,沉淀池超高0.5m ,则出水渠总深度为:

H=0.46+0.1+0.5+0.1+0.1+0.5=1.76m ;

6.槽的高度

集水方法采用锯齿形三角堰自由出流方式,跌落高度取0.05m ,槽的超高取0.15m 。则指形槽的总高度H=0.5+0.15+0.05=0.70m (说明:该高度为三角堰底到槽底的距离)。

7.三角堰的计算

每个三角堰的流量:q 1=1.343h 2.47=1.343×0.052.47=0.00082m 3/s ; 三角堰的个数:n=Q/q 1=0.436/0.00082=530.8个; 每个指形槽上有530.8/7=75.8≈76个三角堰;

三角堰的中心距:d=13×2/76=0.34m 。

3.4.5 沉淀池排泥

排泥是否顺畅关系到沉淀池净水效果,当排泥不畅、泥渣淤积过多时,将严重影响出水水质。排泥方法有多斗重力排泥、穿孔管排泥和机械排泥。机械排泥具有排泥效果好、可连续排泥、池底结构简单、劳动强度小、操作方便可以配合自动化等优点。故本设计采用虹吸式机械排泥。

采用SXH 型虹吸式吸泥机,轨距l =11000mm 。

排泥管采用和放空管相同的管径:DN500mm 。

四.过滤

4.1 设计参数

设计水量为:Q=7.1×104×1.06=75260m 3/d=0.871 m 3/s ; 设计滤速采用v=9.5m/h ,强制滤速v '≤20/m h ;

滤池采用单层石英砂均质滤料,冲洗方式采用:先气冲洗,再气-水同时冲洗,最后再用水单独冲洗。根据设计手册第三册P612表9-8确定各步气水冲洗强度和冲洗时间,参数具体如下:

1.冲洗强度

第一步气冲冲洗强度q 气1=16L/(sm 2);第二步气-水同时反冲洗,空气强度q 气2=16L/(sm 2),水冲洗强度q 水1=4L/(sm 2);第三步水冲洗强度q 水2=6L/(sm 2)。反冲洗横扫强度为q 反=2L/(sm 2)。

2.冲洗时间

第一步气冲洗时间t 气=3min ,第二步气-水同时反冲洗时间t 气水=4min ,单独水冲时间t 水=5min ;冲洗时间共计为:t =12min=0.2h ;冲洗周期T=48h 。

4.2 池体设计

1.滤池工作时间t ':

t '=24-24t/T=24-0.2 ×24/48=23.9h (式中未考虑排放初滤水); 2. 滤池总面积F :

F=Q /v t =75260/(9.5×23.9)=331.5m 2;

3. 滤池分格

选双格V 型滤池,池底板用混凝土,单格宽B=3.5m ,长L=12m ,面积42m

2,共四座,每座面积284f m =,总面积336m 2; 4. 校核强制滤速'

v : '

v =N v /(N-1)=4×9.5/3=12.67m/h ﹤20m/h 的要求;

5. 滤池的高度确定

滤池超高H 6=0.4m ,滤层上水深5 1.5H m =,滤层厚度H 4=1.2m 。承托层厚取H 3=0.05m 。滤板采用H 2=0.1m 厚预制板。滤板下布水区高度取H 1=0.75m ;

滤池的总高度为:

H=H 1+H 2+H 3+H 4+H 5+H 6=0.75+0.1+0.05+1.2+1.5+0.4=4.0m ;

图4-1 滤池高度计算简图

6. 水封井的设计

滤池采用单层加厚均粒滤料,粒径0.95-1.35mm ,不均匀系数1.2-1.6。均粒滤料清洁滤料层的水头损失按下式计算:

()2

2003

0011180m H l v g m d ν?-??

?=?? ???清

式中: H ?-清水流通过清洁滤料层的水头损失,cm; 2,/,cm s ν-水的运动黏度20℃时为0.01012

/;cm s 22

,981/g cm s -重力加速度;

m 0-滤层空隙率,取0.5;

0,,0.1.d cm cm -与滤料体积相同的球体直径根据厂家提供的数据 l 0-滤层厚度,cm ,l 0=120cm ;

v-虑速,cm/s ,v=9.5m/h=0.26cm/s ;

?-滤料颗粒球度系数,天然砂粒为0.75-0.8,取0.8. 所以:

()cm H 07.1826.01201.08.015.05.0-19810101.01802

3

2

≈?????

? ??????=?

根据经验,滤速为9-10m/h 时,清洁滤料层水头损失一般为30-40cm ,计算值比经验值低,取经验值的底限30cm 为清洁滤料层的过滤水头损失。正常过滤时,通过长柄滤头的水头损失0.22h m ?≤,忽略其他水头损失,则每次反冲洗后刚开始过滤时的水头损失为:0.30.220.52H m ?=+=开始。

为保证滤池正常过滤时池内的液面高出滤料层,水封井出水堰顶标高与滤料层相同,设计水封井平面尺寸2m×2m ,堰底板比滤池底板低0.3m 。

水封井出水堰总高为:

H 水封=0.3+H 1+H 2+H 3=0.3+0.75+0.1+0.05=1.2m ;

因为每座滤池的过滤水量:Q 单=vf=9.5×84=798m 3/h=0.222m

3/s 。所以水封井出水堰上水头由矩形堰的流量公式:Q=1.84bh 3/2计算得:

m 15.0284.1222.0b 84.13

2

3

2

堰单水封=???

? ???=????

?

?=Q h ;

则反冲洗完毕,清洁滤料层过滤时滤池液面比滤料层高0.15+0.52=0.67m 。

4.3 反冲洗管渠系统:

1. 反冲洗水量按水洗强度最大时计算。单独水洗时反洗强度最大,为6L/(s.m 2),则:

Q 反水=q 水2×f=6×84=504L/s=0.504 m 3/s ;

V 型滤池反冲洗时,表面扫洗同时进行,其流量:

Q 表水=q 表水×f=2×84=168L/s=0.168m 3/s ;

Q 反=Q 反水+Q 表水=0.504+0.168=0.672m 3/s ;

2. 反冲洗配水系统的断面计算

配水干管进口流量应为1.5m/s ,配水干管(渠)的截面积:

A 水干=Q 反水/v 水干=0.504/1.5=0.336m 2;

反冲洗配水干管选用钢管DN700,流速为1.31m/s,反冲洗水由反洗配水干管输送到气水分配渠,由气水分配渠底侧的布水方孔配水到滤池底部布水区。反冲洗水通过配水方孔的流速按反冲洗配水支管的流速取值。配水支管或孔口的流速为1-1.5m/s 左右,取v 水支=1m/s 。

则配水支管(渠)的截面积:A 方孔=Q 反水/v=0.504/1=0.504m 2;

此即配水方孔总面积,沿渠长方向两侧各布置20个配水方孔,共40个,孔中心间距0.6m 。

面积:A 小孔=0.504/40=0.0126m 2,每个孔口尺寸取0.11m×0.11m 。

3.反冲洗用气量Q 气的计算

反冲洗用气流量按气冲强度最大时的空气流量计算,这时气冲的强度为()216/.L s m ,Q 反气=q 气f=16×84=1344L/s=1.344m 3

/s ;

4.配气系统的断面计算

配气干管(渠)进口流速应为5m/s 左右,则配气干管(渠)的截面积:

A 气干=Q 反气/v 气干=1.344/5=0.2688m 2;

反冲洗配气干管用钢管DN600,流速为4.75m/s,反冲洗用空气,由反冲洗配气干管输送至气水分配渠,由气水分配渠两侧的布气小孔到滤池底部布水区,布气小孔紧贴滤板下缘,间距与布水方孔相同,共计40个,反冲洗用空气通过配气小孔的流速按反冲洗配气支管的流速取值。

反冲洗配气支管流速或孔口流速应为10m/s 左右,则配气支管(渠)的截面积为:

A 气支=Q 反气/v 气支=1.344/10=0.1344m 2; 每个布气小孔面积:A 气孔=0.1344/40=0.00336m 2; 孔口直径:()1240.00360.065d m ?≈气孔=; 每孔配气量: q 气孔=Q 反气/40=1.344/40=0.0336m 3

/s=120.96 m 3/h ;

5.气水分配渠的断面设计

对气水分配渠断面面积要求的最不利条件发生在气水同时反冲洗时,亦即气水同时反冲洗时要求气水分配渠断面面积最大,因此气水分配渠的断面设计按气水同时反冲洗的情况设计,气水同时反冲洗时反冲洗水量为:

Q 反水=q 水f=4×84=336L/s=0.336m 3/s ; 气水同时反冲洗时,反冲洗时用空气的流量:

Q 反气=q 气f=16×84=1344L/s=1.344m 3/s ;

气水分配渠的气水流速均应按相应的配气配水干管流速取值,则气水分配干

渠的断面积:

2反气

反气

反水

反水

反气水4928.05

344

.11.5336.0v v m Q Q A =+=

+

=

4.4 滤池管渠的布置

4.4.1 反冲洗管渠

1.气水分配渠

气水分配渠起端宽取1.0m ,高取1.5m ,末端宽取1.0m ,高取1.0m ,则起端截面积0.6m 2,末端截面积0.4m 2。两侧沿程各布置20个配气小孔和20个布水方孔,

孔间距0.6m ,共40个配气小孔和40个配水方孔。气水分配渠末端所需最小截

面积0.5/40=0.0125m 2﹤末端截面积0.4m 2,满足要求。

2.排水集水槽

排水集水槽顶端高出滤料层顶面0.5m ,气水分配槽起端高度为1.5m ,则排水集水槽起端槽高:

H 起=H 1+H 2+H 3+H 4+0.5—1.5=0.75+0.1+0.05+1.2+0.5—1.5=1.1m ; 气水分配槽末端高度为1.0m ,则排水槽末端高度为:

H 末=H 1+H 2+H 3+H 4+0.5—1.0=0.75+0.1+0.05+1.2+0.5—1.0=1.6m ;

底坡:(1.6—1.1)/12≈0.04170

3.排水集水槽排水能力校核

由矩形断面暗沟(非满流,n=0.013)计算公式校核集水槽排水能力。 设集水槽超高为0.3m ,则槽内水位高:h=1.1-0.3=0.8m ,

槽宽:b=0.9Q 0.4=0.9×0.8710.4=0.85m ,取b=1.0m ;

湿周:χ=b+2h=1.0+2×0.8=2.6m ;

水流断面:A=bh=1.0×0.8=0.8m ;

水力半径:R=A /χ=0.8/2.6=0.308m ;

华中科技大学(水质工程学一)课程设计

一.总论 1.1 设计任务及要求 净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 水厂规模 该水厂总设计规模为***万m3/d,分两期建设,近期工程供水能力***万m3/d,,远期工程供水能力为***万m3/d。近期工程设计征地时考虑远期工程用地,预留出远期工程用地。 1.2.2 原水水质资料 水源为河流地面水,原水水质分析资料如下:

1.2.3 厂区地形 地形比例1:500,按平坦地形和平整后的设计地面高程32.00m设计,水源取水口位于水厂东北方向150m,水厂位于城市北面1km。 1.2.4 工程地质资料 (1) 表土砂质粘土细砂中砂粗砂粗砂砾石粘土砂岩石层 1m 1.5m 1 m 2 m 0.8m 1 m 2 m 土壤承载力:20 t/m2. (2)地震计算强度为186.2kPa。 (3)地震烈度为9度以下。 (4)地下水质对各类水泥均无侵蚀作用。 序号项目单位数量备注 1 历年最高水位m 34.38 黄海高程系统,下同 2 历年最低水位m 21.47 频率1% 3 历年平均水位m 24.64 4 历年最大流量m3/s 14600 5 历年最小流量m3/s 180 6 历年平均流量m3/s 1340 7 历年最大含砂量kg/m3 4.82 8 历年最大流速m/s 4.00 9 历年每日最大水位涨落m/d 5.69 10 历年三小时最大水位涨落m/3h 1.04 地下水位:在地面以下1.8m 1.2.6 气象资料 该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。常年主导风向为东北偏北(NNE),静风频率为12%,年平均风速为3.4m/s。土壤冰冻深度:0.4m。

水质工程学2课程设计任务书

给排水14级《水质工程学2》课程设计任务书 一、课程设计的内容和深度 本课程设计的目的在于加深理解所学专业知识,培养运用所学专业知识的能力,在设 计、计算、绘图等方面得到锻炼。 针对一座城市污水二级处理厂,要求对主要污水处理构筑物的工艺尺寸进行设计计算, 确定污水厂的平面布置,最后完成设计计算说明书和设计图纸(污水处理厂平面布置图和污 水处理厂流程图)。设计深度为初步设计深度。 二、课程设计任务书 1、设计题目 某城市污水处理厂工艺设计 2、基本资料 (1)污水水量及水质 污水处理水量:30000+50000×% (m3/d)(横线上的数为学号末尾两位数) 污水水质:COD Cr =350+200×%(mg/L),BOD5 =220mg/L,SS =250mg/L,氨氮=15mg/L。(横线上的数为学号末尾两位数) (2)处理要求 城市污水经处理后应达到《污水综合排放标准》(GB8978-1996)一级标准,即:COD Cr ≤ 60mg/L,BOD5 ≤ 20mg/L,SS ≤ 20mg/L,氨氮≤ 5mg/L。 (3)处理工艺流程 污水拟采用传统活性污泥法工艺处理。 (4)气象及水文资料 风向:多年主导风向为东南风。 水文:降水量多年平均为每年728mm;蒸发量多年平均为每年1200mm;地下水位,地面下6~7m。 年平均水温:20℃。 (5)厂区地形 污水厂选址区域海拔标高在19~21m左右,平均地面标高为20m。平均地面坡度为0.3 ‰~0.5‰,地势为西北高,东南低。厂区征地面积为东西长224m,南北长276m。 3、设计内容

(1)对工艺构筑物选型作说明;(2)主要处理设施的工艺计算;(3)污水处理厂的平面布置;(4)污水处理厂工艺流程图的绘制。 4、设计成果 (1)设计计算说明书一份; (2)设计图纸:污水处理厂平面布置图和工艺流程图各一张。 三、污水处理工程设计指导书 1、总体要求 (1)在设计过程中,要发挥独立思考独立工作的能力。 (2)本课程设计重点训练的是污水处理主要构筑物的设计计算和总体布置。 (3)课程设计不要求对设计方案作比较,处理构筑物选型说明按其技术特征加以说明。(4)设计计算说明书应内容完整,简明扼要,文字通顺;设计图纸应按标准绘制、内容完整,主次分明。 2、设计要点 (1)污水处理设施设计的一般规定 ①该市排水系统为合流制,污水流量总变化系数取1.2 ②处理构筑物流量:曝气池之前,各种构筑物按最大日最大时流量设计;曝气池之后,构筑物按平均日平均时流量设计。 ③处理设备设计流量:各种设备选型计算时,按最大日最大时流量设计。 ④管渠设计流量:按最大日、最大时流量设计。 ⑤各处理构筑物不应少于2组。 (2)平面布置 ①功能明确、布置紧凑。布置时力求减少占地面积,减少连接管的长度,便于操作管理。 ②顺流排列,流程简便。指处理构筑物应尽量按流程方向布置,避免与进(出)水方向相反的安排;个构筑物之间的连接管应以最短线路布置,尽量避免不必要的转弯和用水泵提升。 ③充分利用地形,平衡土方,降低工程费用。 ④构筑物布置应注意风向和朝向。将排放异味和有害气体的构筑物布置在居住与办公场所的下风向;为保证良好的自然通风条件,构筑物布置应考虑主导风向。 ⑤污水厂厂区应适当规划设计机房、办公室、机修、仓库等辅助建筑。 3、对设计文件的内容和质量的要求 (1)设计计算说明书

水处理实验技术教学大纲

水处理实验技术教案大纲 一、课程基本信息 课程中文名称:水处理实验技术 课程英文名称: 课程编号: 课程性质:实践教案环节(专业核心课) 课程学时和学分:实验学时:,学分: 适用专业:给排水科学与工程 先修课程:无机化学、有机化学、水分析化学、水力学、环境生物学、水质工程学等 二、本课程的性质和地位 本课程是给水排水工程专业必修课,是水处理教案的重要组成部分,是培养给水排水工程、环境工程技术人员所必需的课程。通过对实验的观察、分析,加深对水处理基本概念、现象、规律与基本原理的理解;所学知识既直接应用于实际工作,又为水质工程学()水质工程学()水质工程学综合性设计性实验等相关课程的学习奠定了基础。 三、本课程教案总的目的和要求 本课程作为给水排水工程专业必选课,加深学生对水处理技术基本原理的理解,培养学生设计和组织水处理实验方案的初步能力,培养学生进行水处理实验的一般技能及使用实验仪器、设备的基本能力;培养学生分析实验数据与处理数据的基本能力。 通过对实验的观察、分析,应力求使学生弄清实验目的、原理、实验仪器、实验步骤,加深对水处理基本概念、现象、规律与基本原理的理解,使学生通过实验,掌握实验方法和实验结论,掌握一般水处理处理实验技能和仪器、设备的使用方法,具有一定的解决实验技术问题的能力;学会设计实验方案和组织实验的方法;学会对实验数据进行测定、分析与处理,从而能得出切合实际的结论;培养实事求是的科学态度和工作作风。

五、实验项目基本要求 ()活性炭吸附实验(学时) 实验目的:加深理解吸附原理,掌握活性炭吸附常熟确定方法。 实验要求:学会使用活性炭吸附装置使用,掌握活性炭吸附工艺处理污水确定设计参数的方法。 ()离子交换软化实验(学时) 实验目的:加深对离子交换容量的理解,掌握测定离子交换容量的方法,掌握离子交换柱的运行。 实验要求:学会使用离子交换设备使用方法,能测定离子交换容量。 ()曝气设备充氧能力测定实验(学时) 实验目的:学习了解曝气设备充氧能力测定的实验方法,加深对曝气充氧机理的认识。 实验要求:掌握曝气设备充氧性能的测定方法,熟悉曝气设备氧总转系数及其他各项评价指标的计算方法。 ()混凝实验(学时) 实验目的:掌握水样混凝的最佳投药量确定方法,观察矾花的形成过程及混凝沉淀

水质工程学课程设计说明书(doc 32页)

水质工程学(一)课程设计说明书 1 设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 1.1 设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 城市用水量资料 1.2.2 原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2 水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3 水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

华中科技大学-IC课程设计实验报告(比例放大器设计)

华中科技大学-IC课程设计实验报告(比例放大器设计)

华中科技大学 题目:比例放大器设计 院系: 专业班: 姓名: 学号: 指导教师: 20XX年XX 月 I

摘要 在模拟电路中对放大器进行设计时,差分放大器由于能够实现两倍放大和能够很好的抑制共模噪声的优良性能而被广为应用。本文利用放大器的“虚短”“虚断”的特性对比例放大器的结构及放大器的构成和基本参数进行了设计,其中放大器采用差分放大结构。 关键词:比例放大器差分放大器一级结构二级结构 I

Abstract When designing an amplifier, differential amplifiers,with its twice higher gain and its restrain to Common-mode disturbance,is more widely used than other kinds of amplifiers.In this report,we make use of the properties of “virtual short cicuit” a nd “virtual disconnection” and design the structure and parameters of the whole circuit as well as the structure of the amplifier. Key Words:Proportion amplifier Differential amplifiers Level 1 Level 2 II

水处理微生物学课程教学大纲

《水处理微生物学》课程教学大纲 一.课程基本情况 课程英文名称:MICROBIOLOGY OF WATER TREATMENT 授课对象:给水排水工程专业本科生 开课学期:第6学期 学时数:44学时(其中含12学时实验) 学分数: 2.5学分 课程性质:必修专业基础课 考核方式:考试 先修课程:生物化学、水分析化学、有机化学 后续课程:水质工程学 开课教研室:给水排水工程教研室 执笔人:田晓燕 二.课程教学目标 1.任务和地位 《水处理微生物学》是《水质工程学》等专业课程的基础。通过学习使学生掌握微生物的形态、结构及其功能,微生物的营养、呼吸、物质代谢、生长繁殖、遗传与变异以及微生物在水体治理、污染土壤的修复等环境工程净化中的作用。 2.知识要求 在有机化学、生物化学理论基础知识的基础上,能运用所学知识分析污水质,并用微生物理论提出粗略的处理意见。 3.能力要求 通过学习掌握本课程的基本理论、基础知识并具备独立设计、实施相关实验的基本能力,为后续课学习打下基础。同时要了解本领域最新发展动态,增强适应能力,自觉地把本课程发展与相关专业发展联系起来。 三.教学内容的基本要求和学时分配 1.教学内容及要求 (1)概述 教学内容: 微生物的概念,微生物的特点,环境工程微生物的研究对象和任务。 基本要求:掌握微生物的概念、微生物的特点以及环境工程微生物的研究对象和任务等污染控制微生物学基本知识和研究范畴,对污染控制微生物学及其在环境科学和环境工程中的地位和作用有一个总体性的认识。 (2)原核微生物 教学内容: 细菌及其一般结构;细菌的特殊结构;放线菌、蓝细菌等其它原核微生物;细菌的分类鉴定。 基本要求:掌握原核微生物的基本特征和细菌的一般结构,细菌的特殊结构及其在环境科学中的重要应用潜力;了解放线菌、蓝细菌等其它原核微生物及其在环境工程中的作用。 (3)真核微生物 教学内容: 真菌、藻类、原生动物和微型后生动物的形态生理特性等。

水质工程学课程设计说明书

水质工程学(一)课程设计说明书 1设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规X等基本技能上得到初步训练和提高。 1.1设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2基本资料 1.2.1城市用水量资料 1.2.2原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

水质工程学课程设计实例

目录 设计任务书 (2) 设计计算说明书 (4) 第一章污水处理厂设计 第一节污水厂选址 (4) 第二节工艺流程 (4) 第二章处理构筑物工艺设计 第一节设计参数 (6) 第二节泵前中格栅设计 (6) 第三节污水提升泵房设计计 (8) 第四节泵后细格栅设计计算 (9) 第五节沉砂池设计计算 (10) 第六节辐流式初沉池设计计算 (12) 反应池设计计算 (14) 第七节O A/ 1 第八节向心辐流式二沉池设计计算 (16) 第九节剩余污泥泵房 (17) 第十节浓缩池 (18) 第十一节贮泥池 (20) 第十二节脱水机房 (21) 第三章处理厂设计 第一节污水处理厂的平面布置 (23) 第二节污水处理厂高程布置 (23) 参考文献 (26)

《水质工程学》课程设计任务书 一、设计题目 某计城市日处理污水量15万m 3污水处理工程设计 二、基本资料 1、污水水量、水质 (1)设计规模 设计日平均污水流量Q=150000m 3/d ; 设计最大小时流量Q max =8125m 3/h (2)进水水质 COD Cr =400mg/L ,BOD 5 =180mg/L ,SS = 300mg/L ,NH 3-N = 35mg/L 2、污水处理要求 污水经过二级处理后应符合《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准的B 标准 ,即: COD Cr ≤ 60mg/L ,BOD 5≤20mg/L ,SS≤20mg/L ,NH 3-N≤8mg/L 。 3、处理工艺流程 污水拟采用活性污泥法工艺处理,具体流程如下: 4、资料 市区全年主导风向为东北风,频率为18%,年平均风速2.55米/秒。污水处理厂场地标 高384.5~383.5米之间, 5、污水排水接纳河流资料: 该污水厂的出水直接排入厂区外部的河流,其最高洪水位(50年一遇)为380.0m ,常水位为378.0m ,枯水位为375.0m 。 三、设计任务 1、对处理构筑物选型做说明; 2、对主要处理设施(格栅、沉砂池、初沉池、生化池、污泥浓缩池)进行工艺计算(附必要的计算草图); 3、按扩初标准,画出污水处理厂平面布置图,内容包括表示出处理厂的范围,全部处理构筑物及辅助建筑物、主要管线的布置、主干道及处理构筑物发展的可能性; 4、按扩初标准,画出污水处理厂工艺流程高程布置图,表示出原污水、各处理构筑物的高程关系、水位高度以及处理出水的出厂方式; 5、编写设计说明书、计算书。 四、设计成果 1、设计计算说明书一份; 2、设计图纸:污水处理厂平面布置图和污水处理厂工艺流程高程布置图各一张。 五、参考资料 1、《给水排水设计手册》第一、五、十、十一册 2、《环境工程设计手册》(水污染卷) 原污水 污泥浓缩池 污泥脱水机房 出水 格栅 污水泵房 沉砂池 二沉池 泥饼外运 曝气池 回流污泥

华中科技大学计算机学院操作系统课程设计报告[1]

华中科技大学 嵌入式操作系统课程设计实验报告 院系: 计算机科学与技术学院 专业: 班级: 姓名: 指导老师: 报告时间:

计算机科学与技术学院 目录 1.课程设计目的 (3) 2.课程设计环境搭建 (3) 3.内容一:熟悉和理解Linux编程环境 3.1 内容要求 (5) 3.2 设计过程及实现 (5) 4.内容二:掌握添加系统调用的方法 4.1 内容要求 (9) 4.2 设计过程及实现 (9) 5.内容三:掌握添加设备驱动程序的方法 5.1 内容要求 (17) 5.2 设计过程及实现 (17) 6.内容四:理解和分析/proc文件 6.1 内容要求 (22) 6.2 设计过程及实现 (22)

1 课程设计目的 (1)掌握Linux操作系统的使用方法; (2)了解Linux系统内核代码结构; (3)掌握实例操作系统的实现方法。 2 课程设计环境搭建 (1)windows 7上,利用虚拟机软件VMware软件搭建的linux平台:◎Ubuntu 11.10 (安装包:ubuntu-11.10-desktop-i386) ◎内核:linux-headers-3.0.0-12-generic (2)更改root登录: 在现阶段Ubuntu的系统中,是不允许直接以root身份登录系统的,但是在做课设的过程中,需要大量的使用root权限来进行命令的操作。如果以普通用户登录ubuntu,会连编辑一个文件都非常周折。为此,我找到了一种修改系统文件,以达到直接使用root身份登录的方法: ◎开始的时候,只能以普通用户登录,用Ctrl+Alt+T打开终端: 初始化/修改root密码 sudo passwd root 用vi编辑器修改这个文件: sudo vi /etc/lightdm/lightdm.conf 在文件最后加入这么一行代码: greeter-show-manual-login=true 然后保存退出,sudo reboot 重启系统。之后就可以输入root用户登录。(3)在添加系统调用中用到的其他内核包: ◎下载和当前实验环境最为接近的系统版本(这点很重要) 使用apt-get install linux-source-3.0.0 命令, ◎下载结果是linux-source-3.0.0.tar.bz2 ◎解压命令:tar –xjvf linux-source-3.0.0.tar.bz2 –C /usr/src ◎解压后,在/usr/src目录下得到内核文件夹linux-source-3.0.0

水质工程学课程设计报告

课程设计 题目:市净水厂工艺设计学院:市政与环境工程专业:给水排水工程 姓名:孔朋月 学号:024213106 指导老师:肖晓存 完成时间:2014年6月20日

实习很快结束了,没有失望,这次实习让我了解、认识学到了很多课本上没有的知识。这种结合日常生活,联系课本知识,与生活环境挂钩学习,让大家都认识到了本专业的重要性。课程设计是我们专业课程知识综合应用的实践训练,是我们迈向社会,从事职业工作前一个必不少的过程。我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础。 此次课程设计,一方面让我对专业课有了新的认识,另一方面也让我提起来是对专业课的兴趣,也让我认识到了水资源的重要性和保护环境的必要性。专业方面,针对给水设备、给水处理工艺流程展开了讨论,进行了一次又一次的有目的的实习。非常感指导老师对我们的指导和耐心解答。实习容有叙述不到位的地方,也请老师们能指出并给予建议和意见。

Practice soon ended, not disappointed, this internship, let me know, knowledge learned without a lot of textbook knowledge. This combination of daily life, with the textbook knowledge, learning and living environment of hook, let us recognize the importance of the professional. Curriculum design is our professional curriculum knowledge comprehensive application of practice, as we move towards society, occupation before a most necessary process. Through the curriculum design, I deeply appreciate the true meaning of the ancient wisdom. I'm serious curriculum design today, stand on solid ground to take this step, it is robust to run and lay a solid foundation in the trend of the society for tomorrow. The curriculum design, on one hand, let me have a new understanding of the professional course, on the other hand, let me put up interest in professional course, also let me realize the necessity and the importance of water resources and Protect environment. Professional, the process of water supply equipment, water treatment were discussed, were once again to practice. Thank a teacher to our guidance and patience to answer. Practice contents are described not in place, also please the teacher can point and give suggestions and comments.

水质工程学课程设计

水质工程学(一)课程设计 说明书 学院:环境科学与工程学院系名:市政工程系专业:给水排水工程姓名: 学号: 班级:给排 1311 指导教师: 指导教师: 2015年12月25 日

目录 第一章设计基本资料和设计任务 0 1.1 设计基本资料........................................... 错误!未定义书签。 1。2设计任务?1 第二章水厂设计规模的确定?错误!未定义书签。 2.1 近期规模?错误!未定义书签。 2。2 水厂设计规模.......................................... 错误!未定义书签。第三章水厂工艺方案的确定. (3) 3。1初步选定两套方案....................................... 错误!未定义书签。 3.2方案构筑物特性比较?错误!未定义书签。 3。3方案确立?错误!未定义书签。 第四章水厂各个构筑物的设计计算?错误!未定义书签。 4。1 一级泵站.............................................. 错误!未定义书签。 4。2 混凝剂的选择和投加?错误!未定义书签。 4。3 管式静态混合器........................................ 错误!未定义书签。 4.4 水力循环澄清池....................................... 错误!未定义书签。 4。5 无阀滤池............................................. 错误!未定义书签。 4.6消毒.............................................. 错误!未定义书签。 4.7 清水池?错误!未定义书签。 4。8二级泵站............................................. 错误!未定义书签。 4.9 附属构筑物?错误!未定义书签。 第五章水厂平面和高程布置?错误!未定义书签。 5.1 平面布置.............................................. 错误!未定义书签。 5.2 高程布置?错误!未定义书签。 参考文献?错误!未定义书签。

北京交通大学1226较大爆炸事故调查报告

2018年12月26日,北京交通大学市政与环境工程实验室发生爆炸燃烧,事故造成3人死亡。 按照市委、市政府领导指示精神,依据《中华人民共和国突发事件应对法》等有关法律、法规,市政府成立了由市应急管理局、市公安局、市教委、市人力社保局、市总工会、市消防总队和海淀区政府组成的事故调查组,并邀请市纪委市监委同步参与事故调查处理工作。 事故调查组按照“科学严谨、依法依规、实事求是、注重实效”和“四不放过”的原则,通过现场勘验、检测鉴定、调查取证、模拟实验,并委托化工、爆炸、刑侦、火灾调查有关领域专家组成专家组进行深入分析和反复论证,查明了事故发生的经过和原因,认定了事故性质和责任,并提出了对有关责任人员和单位的处理建议及事故防范和整改措施。现将有关情况报告如下: 一、事故基本情况 (一)事故现场情况 事故现场位于北京交通大学东校区东教2号楼。该建筑为砖混结构,中间两层建筑为市政与环境工程实验室(以下简称“环境实验室”),东西两侧三层建筑为电教教室(内部与环境实验室不连通)。环境实验室一层由西向东依次为模

型室、综合实验室(西南侧与模型室连通)、微生物实验室、药品室、大型仪器平台;二层由西向东分别为水质工程学Ⅱ、水质工程学Ⅰ、流体力学、环境监测实验室;一层南侧设有5个南向出入口;一、二层由东、西两个楼梯间连接;一层模型室和综合实验室南墙外码放9个集装箱(建筑布局详见下图)。 (二)事发项目情况 事发项目为北京交通大学垃圾渗滤液污水处理横向科研项目,由北京交通大学所属北京交大创新科技中心和北京京华清源环保科技有限公司合作开展,目的是制作垃圾渗滤液硝化载体。该项目由北京交通大学土木建筑工程学院市政与环境工程系教授李德生申请立项,经学校批准,并由李德生负责实施。 2018年11月至12月期间,李德生与北京京华清源环保科技有限公司签订技术合作协议;北京交大创新科技中心和北京京华清源环保科技有限公司签订销售合同,约定15天

水质工程学课程设计

水质工程学课程设计

一.总论 1.1 设计任务及要求 净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 水厂规模 该水厂总设计规模为5万m3/d,分两期建设,近期工程供水能力5万m3/d,,远期工程供水能力为10万m3/d。近期工程设计征地时考虑远期工程用地,预留出远期工程用地。 1.2.2 原水水质资料 水源为河流地面水,原水水质分析资料如下:

1.2.3 厂区地形 地形比例1:500,按平坦地形和平整后的设计地面高程32.00m设计,水源取水口位于水厂东北方向150m,水厂位于城市北面1km。 1.2.4 工程地质资料 表土砂质粘土细砂中砂粗砂粗砂砾石粘土砂岩石层 1m 1.5m 1 m 2 m 0.8m 1 m 2 m 土壤承载力:20 t/m2. (2)地震计算强度为186.2kPa。 (3)地震烈度为9度以下。 (4)地下水质对各类水泥均无侵蚀作用。 序号项目单位数量备注 1 历年最高水位m 34.38 黄海高程系统,下同 2 历年最低水位m 21.47 频率1% 3 历年平均水位m 24.64 4 历年最大流量m3/s 14600 5 历年最小流量m3/s 180 6 历年平均流量m3/s 1340 7 历年最大含砂量kg/m3 4.82 8 历年最大流速m/s 4.00 9 历年每日最大水位涨落m/d 5.69 10 历年三小时最大水位涨落m/3h 1.04 地下水位:在地面以下1.8m 1.2.6 气象资料 该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。常年主导风向为东北偏北(NNE),静风频率为12%,年平均风速为3.4m/s。土壤冰冻深度:0.4m。

武汉理工大学水质工程学I课设

1.设计任务及资料 1.1设计原始资料 长垣镇最高日设计用水量为近期5万吨/天,远期10万吨/天,规划建造水厂一座。已知城区地形平坦,地面标高为21.00米;水源采用长江水;取水构筑物远离水厂,布置在厂外。管网最小服务水头为28.00米;二级泵站采用二级供水到管网系统,其中最大一级供水量占全天用水量的百分数为5.00%,时间为早上6:00~晚上10:00,此时管网系统及水厂到管网的输水管的总水头损失为11.00米;另一级供水时管网系统及水厂到管网的输水管的总水头损失为5.00米。常年主导风向:冬季为东北风、夏季为东南风。水厂大门朝向为北偏西15°。 1.2设计任务 1、设计计算说明书1本。 内容包括任务书、目录、正文、参考资料、成绩评定表等,按要求书写或打印并装订成册。 其中正文内容主要包括:工程项目和设计要求概述,方案比较情况,各构筑物及建筑物的形式、设计计算过程、尺寸和结构形式、各构筑物设计计算草图、人员编制、水厂平面高程设计计算和布置情况以及设计中尚存在的问题等。 2、手工绘制自来水厂平面高程布置图1张(1号铅笔图,图框和图签按标准绘制)。要求:比例选择恰当,图纸布局合理,制图规范、内容完整、线条分明,字体采用仿宋字书写。

2. 设计规模及工艺选择 2.1设计规模 根据所提供的已知资料:最高日用水量为近期5万吨/天,远期10万吨/天。 d Q=Q α α为自用水系数,取决于处理工艺、构筑物类型、原水水质及水厂是否设有 回收水设施等因素,一般在1.05-1.10之间,取α =1.07,则水厂生产水量 近期:Q 0=1.07Q d =1.07×50000=53500m 3/d=2229.2m 3/h 远期:Q 0=1.07Q d =1.07×100000=107000 m 3/d=4458.3m 3/h 水处理构筑物的设计,应按原水水质最不利情况时所需供水量进行校核。 2.2水厂工艺流程选择 2.2.1概述 给水处理的任务是通过必要的处理方法去除水中杂质,使之符合生活饮用或工业使用要求的水质。给水处理工艺方法和工艺的选择,应根据原水水质及设计生产生产能力等选择,由于水源不同,水质各异,生活饮用水处理系统的组成和工艺流程也多种多样。 2.2.2水处理流程选择 水处理方法应根据水源水质的要求确定。所给的设计资料中指出,水源采用 长江水,其水质应该较好,采用一般传统的水处理工艺,即:混合、絮凝、沉淀、过滤、消毒。混凝剂采用硫酸铝,设溶解池和溶液池,计量泵投加药剂,管式静态混合器混合。絮凝池采用水平轴机械絮凝池。沉淀池采用平流沉淀池。滤池采用普通快滤池。

水质工程学实验报告

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:√验证□综合□设计□创新实验日期:实验成绩: 实验一混凝试验 一、实验目的: 1.学会求一般天然水体最佳混凝条件(包括投药量、PH、水流速度梯度)的基本方法; 2.观察混凝现象,加深混凝机理的理解,了解混凝影响因素; 二、实验基本原理: 胶体微粒都带有电荷,它们之间的电斥力是影响胶体稳定性的主要因素,一般天然水体颗粒的电动电位在-30mv以上,投加混凝剂后,只要该电荷点位降到-15mv左右即可得到。 三、主要仪器设备及耗材: 智能型混凝试验搅拌仪(六联搅拌器),酸度计一台,低浊度仪一台,双向磁力搅拌器一台,1000ml烧杯六个,200ml烧杯两个,1000ml量筒一个,1ml、2ml、5ml移液管各一根,酸碱溶液各一瓶,混凝剂溶液一瓶(5%硫酸铝) 四、实验步骤: (1)本次试验选用的是二号水样,将桶中原水搅拌均匀,测定水样的温度、酸碱度、浊度和pH值。 (2) 确定水样中能形成矾花的近似最小混凝剂量,在烧杯中加入200ml水样并将烧杯放在磁力搅拌器上进行搅拌,并且每次增加0.1mL的混凝剂投加量,直至出现矾花。记录生成小矾花是的混凝剂的最小投加量。 (3)在六个大烧杯中分别加入1L的原水,以上一步所得的最小投加量为基准,设置六组梯度试验,每组用量别为最小投加量的1/3、2/3、1、1.5、2、2.5倍。加入到相应的药剂试管中。 (4)设定六联混凝搅拌仪,第一阶段:时间30s,转速500r/min;第二阶段:时间10min,转速为250r/min;第三阶段;时间10min,转速100r/min;第四阶段沉淀10min。启动

水质工程学课程设计概述

水质工程学课程设 计概述

水质工程学课程设计 学生姓名: 学号: 班级: 指导老师: 20xx年6月

目录 1 任务指导 0 1.1 课程设计教学目的及基本要求 0 1.2 设计内容 0 1.3 设计资料 (1) 1.3.1 水源和水质 (1) 1.3.2 城市规划与供水规模 (1) 1.3.3 供水水质及水压 (1) 1.3.4 气象 (1) 2总体设计 (2) 2.1 净水工艺流程的确定 (2) 2.2 处理构筑物及设备型式选择 (2) 2.2.1 药剂溶解池 (2) 2.2.2 混合设备 (3) 2.2.3 絮凝池 (4) 2.2.4 沉淀池....................... 错误!未定义书签。 2.2.5滤池 (6) 2.2.6 消毒方法 (7) 3 混凝沉淀 (8) 3.1 混凝剂投配设备的设计 (8) 3.1.1 溶液池 (9) 3.1.2 溶解池 (10)

3.1.3 投药管 (11) 3.2 混合设备的设计 (11) 3.2.1设计流量 (12) 3.2.2设计流速 (12) 3.3.3 混合单元数 (12) 3.2.4混合时间 (12) 3.2.5水头损失 (12) 3.2.6 校核GT值 (12) 3.3 折板絮凝池的设计 (13) 3.3.1 设计水量 (13) 3.3.2 设计计算 (13) 3.3.3 折板絮凝池布置 (20) 4 斜管沉淀池设计计算 (20) 4.1 设计流量 (20) 4.2 平面尺寸计算 (21) 4.2.1 沉淀池清水区面积 (21) 4.2.2 沉淀池长度及宽度 (21) 4.2.3 沉淀池总高度 (21) 4.3 进出水系统 (22) 4.3.1 沉淀池进水设计 (22) 4.3.2 沉淀池出水设计 (23) 4.3.3 沉淀池斜管选择 (24)

腹股沟局解实验报告

腹股沟局解实验报告 解剖腹股沟区设计性试验 一解剖腹股沟区的程序 1. 解剖腹外斜肌腱膜先修结腱膜表面的筋膜,观察腱膜纤维走向。在髂前上棘与耻 骨结节之间寻认腹外斜肌腱膜下缘向下反折增厚形成的腹股沟韧带。在耻骨嵴外上方,找 出男性的精索或女性的子宫圆韧带穿出腹外斜肌腱膜处,此即腹股沟管浅环处所在。剖开 精索外筋膜至腹股沟浅环的边缘,观察浅环的形态,修洁浅环的内外侧脚,以及位于浅环 外上方的脚间纤维。提起精索,观察位于后方的腹股沟韧带内侧端腱纤维自耻骨结节向内 上方形成的反转韧带,纤维融合于腹直肌鞘前层。 检查已做的腹外斜肌腱膜下的横切口,自此切口的内侧端至腹股沟浅环内侧脚的内侧 切开腹外斜肌腱膜,注意勿切损腹股沟管浅环的内侧脚。向下外翻开腹外斜肌腱膜,显露 腹股沟管,找出腹内斜肌和腹横肌的弓状下缘,精索。分离并提起精索,以其为标志辨认:(1)腹股沟管,即容纳精索的部位;(2)腹股沟管后壁,即精索后方的腹横筋膜与联合建;(3)精索外侧端的前面被腹内斜肌起始部所覆盖。 2. 解剖腹内斜肌和腹横肌的下部修洁腹内斜肌表面的筋膜,验明起自腹股沟韧带外 侧1/2的腹内斜肌下部纤维,在精索(或子宫圆韧带)上方找出其下缘的纤维与腹横肌下 缘的纤维呈 弓状走行,越过精索走向其后内方。提起精索,在腹股沟管后壁内侧份观察两肌纤维 彼此融合形成腹股沟镰(联合腱),并至精索的后方,止于耻骨梳内侧份,成为加强腹股 沟管后壁的一部分。修洁腹内斜肌和腹横肌的下缘,观察其发出的部分肌纤维随精索下行,共同形成提睾肌。 约在髂前上棘内侧2.5cm 处,于腹内斜肌表面找出髂腹下神经,将其修洁至穿出腹外斜肌腱膜处。 3. 解剖腹横筋膜沿附着点切开腹内斜肌起始部并向上翻起,用手指将精索游离后, 提起精索,观察腹横筋膜。约在腹股沟韧带中点的上方一横指处,腹横筋膜包绕精索呈漏 斗状向外突出,随精索下降形成精索内筋膜。此漏斗状突出的开口即腹股沟管深环(腹环)。切开此筋膜可见输精管、睾丸血管通过腹股沟管深环(腹环)。 4. 观察腹股沟管的内容翻开腹外斜肌腱膜后,在男性标本找出精索,在精索的前上 方找到髂腹股沟神经,随精索穿出腹股沟浅环。在精索的后内方找出生殖股神经生殖支, 与精索伴行穿出腹股沟浅环。在女性标本找出子宫圆韧带,追踪至腹股沟浅环为止。 5. 观察腹股沟三角再腹股沟深环内侧,分开腹横筋膜深面,找出腹壁下血管,可看 见由腹壁下血管、腹直肌外侧缘和腹股沟韧带内侧半围成的三角形区域,即腹股沟三角。

华中科技大学电机学课程设计

《电机学》课程设计 单绕组变极双速异步电机 学院电气与电子工程学院专业电气工程及其自动化班级 学号U201111954 姓名 日期2014年2月20日成绩 指导教师周理兵

电机学课程设计任务书 (201107班-周理兵组19位同学用)2014.1.10 课题:单绕组变极双速三相交流绕组设计 说明:一台三相鼠笼型交流异步电动机,定子一套绕组,若采用绕组(引出线)改接变极调速实现双速运行,则称为单绕组变极双速交流绕组。 任务要求: (1)定子48槽,4/8极,采用双层叠绕组,支路数、相带和节距自选; (2)绕组引出线6根; (3)画出两种极数下对应的槽电势星型图和三相绕组联接图; (4)根据所选节距和绕组方案,分析两种极对数下气隙基波磁密关系; (5)计算两种情况下相应的绕组系数,并分析谐波情况。 ***每位同学必须独立完成设计和提交报告; 设计报告必须在下学期开学第一周五下午5点钟之前交到电机楼202; 若设计报告出现雷同(含部分雷同),则相互雷同的同学均取消成绩

目录 【题目分析】 (1) 【变级原理】 (1) 【接线方式】 (2) 【绘制槽电动势星型图】 (3) 【分相】 (4) 【节距的分析与确定】 (4) 【绘制绕组展开图】 (5) 【分析气隙基波磁密】 (8) 【绕组系数与谐波分析】 (9) 【小结】 (9)

【题目分析】 三相鼠笼型交流异步电动机,转子是鼠笼型,其相数、极对数自动与定子保持一致,异步电动机的转差率,又因为s很小,这样=。由此可见,当极对数改变后,异步电动机的转速会发生改变。 【变级原理】 参见课本《电机学(第三版)》中P262-P263有如下的变极原理。 如图1.1有一个四级电机的A像绕组示意图,在如图的电流方向a1→x1→a2→x2下,它产生了磁动势基波级数2p=4。 如图1.2 改接,即a1与x2连接作为首端A,x1与a2相连接,作为末端X,则它产生的磁动势基波极数2p=2,这样就实现了单绕组变极。 图1.1 变极原理 2p=4 图1.2 变极原理 2p=2 注:(a)(b)两个图只是说明变极的原理,本题目中单绕组变极双速要求引出线是6根,所以其接线不能按照以上的简单方式。应该让X,Y,Z三个末端连接起来,当处于8极时选取a=1,使其在A---X的中间引出一根导线作为A1,当A、B、C接三相电,此时电动机处于8极,慢速运行。当将A、B、C短接,A1、B1、C1接三相电,这样电机就处于4极,高速运行。具体如下:

相关主题
文本预览
相关文档 最新文档