当前位置:文档之家› 含参二次函数中绝对值问题

含参二次函数中绝对值问题

含参二次函数中绝对值问题
含参二次函数中绝对值问题

2016浙江高考数学含参二次函数中绝对值问题 1设函数R b a b a x x x f ∈+-=,,)(.

(1)当0>a 时,讨论函数)(x f 的零点个数;

(2)若对于给定的实数)01(<<-a a ,存在实数b ,使不等式2

1)(21+≤≤-x x f x 对于任意的[]12,12+-∈a a x 恒成立试将最大实数b 表示为关于a 的函数)(a m ,并求)(a m 的取值范围。

2已知函数.)(2b x x ax x f -+=

(1)当1-=b 时,若不等式12)(--≥x x f 恒成立,求实数a 的最小值;

(2)若0

1)(=-m x f 在]3,3[-上有6个互不相同的解,求实数a 的取值范围。

(1)若方程x x f 2)(=恰有三个不同的实数根,求实数a 的值;

(2)当0>a 时,若对任意的],0[+∞∈x ,不等式)(2)1(x f x f ≤-恒成立,求实数a 的取值范围.

4已知0≥a ,函数a a x x x f 25)(2+--=.

(1)若函数)(x f 在]3,0[上单调,求实数a 的取值范围;

(2)若存在实数2,1x x ,满足)()(0))((2121x f x f a x a x =<--且,求当a 变化时

21x x +的取值范围.

(1)若函数)]([)(x f f x F =与)(x f 在R x ∈时有相同值域,求实数b 的取值范围;

(2)若方程21)(2=-+x x f 在)2,0(上有两个不同实数根2,1x x , ①求实数b 的取值范围; ②求证:

41121<+x x

6已知函数),()(2R b R a b ax x x f ∈∈--=+.

(1) 若,2,2≥=b a 且函数)(x f 的定义域,值域均为],1[b ,求b 的值;

(2) 若函数)(x f 的图像与直线1=y 在)2,0(∈x 上有2个不同的交点,试求a

b 的范围.

(1)若0,1==a m ,讨论函数)(x f 的单调性; (2)若1=a ,试讨论函数)(x f 的零点的个数.

8已知函数)(4)(2R x a x x x f ∈-+= (1)存在实数]1,1[,21-∈x x 使得)()(21x f x f =成立,求实数a 的取值范围.

(2)对任意的]1,1[,21-∈x x ,都有k x f x f ≤-)()(21成立,求实数k 的最小值.

(1)当0,21==b a 时,求函数)(x f 在)4

10](1,[<<+∈m m m x 上的值域; (2)当]1,0[∈x 时,0)(

10已知函数R b a b x ax x f ∈>--=,0,2)(2. (1)若1=b 时函数)(x f 在],0[+∞上单调递增,求实数a 的最小值; (2)若对任意的实数]1,21[∈b ,总存在实数a ,使得函数)(x f 在]2,[m 上有4个不同的零点,求实数m 的取值范围.

初三数学二次函数知识点总结及经典习题含答案77699

人教版九年级下册数学 二次函数知识点总结教案 主讲人:李霜霜

一、教学目标: (1)了解二次函数的意义,掌握二次函数的图象特征和性质,能确定函数解析式,并能解决简单的实际问题. (2)通过练习及提问,复习二次函数的基础知识;通过对典型例题的分析,培养学生分析问题、解决问题、综合运用数学知识的能力;继续渗透数学思想. 二、教学重点、难点 教学重点:二次函数的图像,性质和应用 教学难点:运用二次函数知识解决较综合性的数学问题. 三、教学过程 复习巩固 (一)二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. (二)二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: (三)二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律

含参二次函数中绝对值问题

2016浙江高考数学含参二次函数中绝对值问题 1设函数R b a b a x x x f ∈+-=,,)(. (1)当0>a 时,讨论函数)(x f 的零点个数; (2)若对于给定的实数)01(<<-a a ,存在实数b ,使不等式2 1)(21+≤≤-x x f x 对于任意的[]12,12+-∈a a x 恒成立试将最大实数b 表示为关于a 的函数)(a m ,并求)(a m 的取值范围。 2已知函数.)(2b x x ax x f -+= (1)当1-=b 时,若不等式12)(--≥x x f 恒成立,求实数a 的最小值; (2)若0

(1)若方程x x f 2)(=恰有三个不同的实数根,求实数a 的值; (2)当0>a 时,若对任意的],0[+∞∈x ,不等式)(2)1(x f x f ≤-恒成立,求实数a 的取值范围. 4已知0≥a ,函数a a x x x f 25)(2+--=. (1)若函数)(x f 在]3,0[上单调,求实数a 的取值范围; (2)若存在实数2,1x x ,满足)()(0))((2121x f x f a x a x =<--且,求当a 变化时 21x x +的取值范围.

(1)若函数)]([)(x f f x F =与)(x f 在R x ∈时有相同值域,求实数b 的取值范围; (2)若方程21)(2=-+x x f 在)2,0(上有两个不同实数根2,1x x , ①求实数b 的取值范围; ②求证: 41121<+x x 6已知函数),()(2R b R a b ax x x f ∈∈--=+. (1) 若,2,2≥=b a 且函数)(x f 的定义域,值域均为],1[b ,求b 的值; (2) 若函数)(x f 的图像与直线1=y 在)2,0(∈x 上有2个不同的交点,试求a b 的范围.

二次函数绝对值问题

常见绝对值类问题汇总 ——辽宁数学小丸子编辑 【题1】已知32()(0)f x ax bx cx d a =+++≠,当1x ≤时,'()f x M ≤恒成立,求a 的最大值 【题2】设1()4 2(,)x x f x a b a b R +=+?+∈,若对于1[0,1],()2x f x ?∈≤都成立,求b 【题3】2()f x x bx c =++在定区间[,]m n 上的最大值为M ,则M 有一个最小值2 ()8 m n -,当且仅【题4】设,,a b c R ∈,对任意满足1x ≤的实数x ,都有21ax bx c ++≤,则a b c ++的最大可能值为___ 【题5】设函数(),,f x x ax b a b R =--∈,若对任意实数,a b ,总存在实数0[0,4]x ∈使得不等式0()f x m ≥成立,求实数m 的取值范围 【题6】设2 ()(0)f x ax bx c a =++≠,当1x ≤时,总有()1f x ≤,求证:当2x ≤时,()7 f x ≤【推广】设2()(0)f x ax bx c a =++≠,当1x ≤时,总有()f x k ≤,求证:当x n ≤时,2()(21)f x n k ≤-【题7】已知二次函数22(),(),(1)1,(0)1,(1)1f x ax bx c g x cx bx a f f f =++=++-≤≤≤求证:当11x -≤≤时, (1)5 ()4f x ≤(2)()2 g x ≤【题8】设函数2()f x ax bx c =++对一切[1,1]x ∈-都有()1f x ≤,求证对一切[1,1]x ∈-都有 24 ax b +≤【推广】设函数2 ()f x ax bx c =++对一切[1,1]x ∈-都有()1f x ≤,求证对一切[1,1]x ∈-都有2(*) nax b n n N +≤∈【题9】设,,a b c R ∈,对任意满足01x ≤≤的实数x ,都有21ax bx c ++≤,则a b c ++的最大可能值为___ 【题10】设函数1()(1,)f x x c b c R x b =++<-∈-,函数()()g x f x =在区间[1,1]-上的最大值为M ,若M k ≥对任意的,b c 成立,求k 最大

2020年人教版中考复习之含参二次函数练习试题(无答案)

含参二次函数 类型一 函数类型确定型 1. 已知抛物线y =3ax 2+2bx +c . (1)若a =3k ,b =5k ,c =k +1,试说明此类函数图象都具有的性质; (2)若a =13,c =2+b ,且抛物线在-2≤x ≤2区间上的最小值是-3,求b 的值; (3)若a +b +c =1,是否存在实数x ,使得相应的y 值为1,请说明理由. 2. 在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴、y 轴分别相交于A (-3,0)、B (0,-3)两点,二次函数y =x 2+mx +n 的图象经过点A . (1)求一次函数y =kx +b 的表达式; (2)若二次函数y =x 2+mx +n 的图象顶点在直线AB 上,求m ,n 的值; (3)①设m =-2,当-3≤x ≤0时,求二次函数y =x 2+mx +n 的最小值; ②若当-3≤x ≤0时,二次函数y =x 2+mx +n 的最小值为-4,求m ,n 的值. 3. 在平面直角坐标系中,二次函数y 1=x 2+2(k -2)x +k 2-4k +5. (1)求证:该二次函数图象与坐标轴仅有一个交点;

(2)若函数y 2=kx +3经过y 1图象的顶点,求函数y 1的表达式; (3)当1≤x ≤3时,二次函数的最小值是2,求k 的值. 4. 已知二次函数y =ax 2+bx +c (a ≠0)的图象经过A (1,1)、B (2,4)和C 三点. (1)用含a 的代数式分别表示b 、c ; (2)设抛物线y =ax 2+bx +c 的顶点坐标为(p ,q ),用含a 的代数式分别表示p 、q ; (3)当a >0时,求证:p <32,q ≤1. 5. 已知抛物线y 1=ax 2+bx +c (a ≠0,a ≠c )过点A (1,0),顶点为B ,且抛物线不经过第三象限. (1)用含a 、c 的代数式表示b ; (2)判断点B 所在象限,并说明理由; (3)若直线y 2=2x +m 经过点B ,且与该抛物线交于另一点C (c a ,b +8),求 当x ≥1时,y 1的取值范围.

二次函数含参问题

二次函数含参问题(1) 姓名_________ 班级 __________ 学号________________ 1?“动轴定区间”型的二次函数最值 例函数f(x) x2 2ax 3在x [0,4]上的最值。 ax2(2a 1)x 3在区间[|,2]上最大值为1,求实数a的值 例函数f (x) 2 “动区间定轴”型的二次函数最值例求函数f (x) x2 2x 3在x €[a,a+2 [上的最值。

3?“动轴动区间”型的二次函数最值 a [3,),求实数 b 的范围. 巩固习题 1 ?已知函数f x x 2 2x 2,若x a, a 2, a R ,求函数的最小值,并作出最小 值的函数图象。 范围。 2 3 ?已知k 为非零实数,求二次函数 y kx 2kx 1, x ( 2?已知函数f (x) x 2 3,若f (x) 2kx 6在区间 1,2上恒成立,求实数k 的取值 已知函数f (x) 2 2 9x 6ax a 10a 6在[-,b ]上恒大于或等于0,其中实数 3 ,2]的最小值。

2 x x 2 2ax 1在 1,3 上的最大值为 M a ,最小值为 m a , m a ,求 g a 的表达式。 ax 1,若 f x 0恒成立,求实数 a 的取值范围。 3,在0 x m 时有最大值3,最小值2,求实数m 的取值范 6. 当 0 x 2 时,函数 取值 范围。 f x ax 2 4 a 1 x 3在x 2时,取得最大值,求实数 a 的 4.已知 a 3 ,若函数 f 又已知函数 g a M a 2 5. 已知函数 f x ax

2 7. 已知函数y x 2 2x 围。

二次含参问题经典

二次含参问题经典集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

不等式恒成立、存在性问题(一元二次不等式) 一、知识、方法回顾 (一)一元二次不等式 1.定义:含有一个未知数且未知数的最高次数为_____的不等式叫一元二次不等式. 2.解法:一般地,当0 a>时 (二)解分式不等式的常见方法:

法一:符号法则 其它情况类比分析,结论如下: ()0__________()f x g x ,由符号法则可知,()()f x g x 、同号,从而()()0f x g x ?>,其它情况类比分析,结论如下: () 0()()0() f x f x g x g x >??>; ()0________()f x g x ++a bx cx 解集为 . 2.若不等式220ax bx ++>的解集为11 (,)23 -,则a b +的值为_____________. 3.若不等式22210x x k -+->对一切实数x 恒成立,则实数k 的范围为__________.

二次函数中绝对值问题的求解策略

二次函数中绝对值问题的 求解策略 This model paper was revised by the Standardization Office on December 10, 2020

二次函数中绝对值问题的求解策略 二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。 一、适时用分类,讨论破定势 分类讨论是中学数学中的重要思想。它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。 例1 已知f(x)=x 2+bx+c (b,c ∈R), (1)当b<-2时,求证:f(x)在(-1,1)内单调递减。 (2)当b<-2时,求证:在(-1,1)内至少存在一个x0,使得|f(x0)|≥ 2 1. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)内单调递减。 (2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。 当x=0时,|f(0)|=|c|,|c|与 2 1 的大小关系如何呢对|c|进行讨论: (i )若|c|≥ 21,即|f(0)|≥2 1 ,命题成立。 (ii )若|c|< 21,取x 0=-21,则2 1432145|||2141||2141||)21(|>=->--≥+-=-c b c b f . 故不论|c|≥ 21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥2 1 成立。 本题除了取x=- 2 1 外,x 还可取那些值呢留给读者思考。

中考数学专项突破——含参二次函数(word版+详细解答)

中考数学专项突破——含参二次函数 类型一 函数类型确定型 1. 已知抛物线y =3ax 2+2bx +c . (1)若a =3k ,b =5k ,c =k +1,试说明此类函数图象都具有的性质; (2)若a =13,c =2+b ,且抛物线在-2≤x ≤2区间上的最小值是-3,求b 的值; (3)若a +b +c =1,是否存在实数x ,使得相应的y 值为1,请说明理由. 解:(1)∵a =3k ,b =5k ,c =k +1, ∴抛物线y =3ax 2+2bx +c 可化为y =9kx 2+10kx +k +1=(9x 2+10x +1)k +1, ∴令9x 2+10x +1=0, 解得x 1=-1,x 2=-19, ∴图象必过点(-1,1),(-19,1), ∴对称轴为直线x =-10k 2×9k =-59; (2)∵a =13,c =2+b , ∴抛物线y =3ax 2+2bx +c 可化为y =x 2+2bx +2+b , ∴对称轴为直线x =-2b 2=-b ,

当-b >2时,即b <-2, ∴x =2时,y 取到最小值为-3. ∴4+4b +2+b =-3,解得b =-95(不符合题意,舍去),当-b <-2时即b >2, ∴x =-2时,y 取到最小值为-3. ∴4-4b +2+b =-3,解得b =3; 当-2<-b <2时,即-2<b <2,当x =-b 时,y 取到最小值 为-3,∴4(2+b )-4b 24 =-3, 解得b 1=1+212(不符合题意,舍去),b 2=1-212, 综上所述,b =3或1-212; (3)存在.理由如下:∵a +b +c =1, ∴c -1=-a -b , 令y =1,则3ax 2+2bx +c =1. ∴Δ=4b 2-4(3a )(c -1)=4b 2+4(3a )(a +b )=9a 2+12ab +4b 2+3a 2=(3a +2b )2+3a 2, ∵a ≠0, ∴(3a +2b )2+3a 2>0, ∴Δ>0, ∴必存在实数x ,使得相应的y 值为1. 2. 在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴、y 轴分

中考数学压轴系列--二次函数含参问题

二次函数含参问题 1.(2016?温州)如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC. (1)用含m的代数式表示BE的长. (2)当m=时,判断点D是否落在抛物线上,并说明理由. (3)若AG∥y轴,交OB于点F,交BD于点G. ①若△DOE与△BGF的面积相等,求m的值. ②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值 是.

2.(2016?广州)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B (1)求m的取值范围; (2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标; (3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.

3.(2016?福州)已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0). (1)当h=1,k=2时,求抛物线的解析式; (2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式; (3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.

4.(2016?吉林)如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点 (1)当m=2时,a= ,当m=3时,a= ; (2)根据(1)中的结果,猜想a与m的关系,并证明你的结论; (3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ 的长度为2n,当△APQ为等腰直角三角形时,a和n的关系式为;(4)利用(2)(3)中的结论,求△AOB与△APQ的面积比.

二次函数及含有绝对值练习

二次函数及含有绝对值练习 的取值范围; 恒成立,求实数、若函数a a x x x f ≥-++=|2|1)(1 2、的取值范围;成立,求实数使若存在一个a a x ≥+|2x |-|1-x | 3、的值 ,求实数的最小值为若函数a a x x x f 3|2||1|)(+++= 的最小值是 函数|2018||2017||4||3||2||1|)(-+-++-+-+-+-=x x x x x x x f Λ [)) 1()1()(-.)1()1()(-.)1()1()(-.)1()1()(-.,0|,)1()(|)1()()(0)().(4a F a F a F a F D a F a F a F a F C a F a F a F a F B a F a F a F a F A a x g x f x g x f x F x g x f -≤+≤-≥+≤-≤+≥-≥+≥>----+=∞+且)(且)(且)(且)(则()若设函数上单调递增, ,都是偶函数,且在、已知 的值求实数的最小值为、已知函数a ax x x a x x f , 2 111)4()(522+-++-+=

的取值范围 求实数有四个不同的根,若方程 、已知函数a a ax x g x f x g x f x x g x x f 03|)()(|)()(,34)(,)(62=----+-== ) ,()),(),,((.|||||)||,(|.|;||||)||,(|.),(),(.. 2 ),(,2 ),(,,7b a m b a m b a M m D b a b a b a M C b a b a b a m B b a b a m b a M A b a b a b a m b a b a b a M R b a =+=-+-=-++=+--+= -++=∈) 下列式子错误的是( 定义:、设 的取值范围是 则有两个不同的零点,、已知m m x x x f x x ----+-=23 4234)(8 的取值范围 求实数,的最小值为、已知a x x a x x a x x x f 1)0(321 1)(9>-+--+-+ =

中考 二次函数含参问题小综合~2018年九年级中考数学模拟篇

专题:二次函数含参问题小综合~2018年九年级中考数学模拟篇 1.(2018武昌模拟一16题)已知抛物线y=x2-2x-1在-1≤x≤4之间的图像与抛物线y=-x2+2x+1+a的图像有且只有一个交点,则a的取值范围是_________________________ 2.(2018江汉模拟一16题)无论x为何值,关于x的代数式x2+2ax-3b的值都是非负数,则a +b的最大值为 3.(2018硚口模拟二16题)已知a、b为y关于x的二次函数y=(x-c)(x-c-1)-3的图象与x 轴两个交点的横坐标,则|a-c|+|c-b|的值为___________ 4.(2018二中广雅模拟一16题)已知当-1<x<0时,二次函数y=x2-4mx+3的值恒大于1,则m的取值范围是________ 5.(2018文华中学模拟一16题)已知二次函数y=x2-2nx+n+2的最小值大于0,则n的取值范围是___________ 6.(2018文华中学模拟二16题)已知二次函数y=(x-h)2-h+2,当自变量x的取值在0≤x≤2的范围中时,函数有最小值h,则h的值为___________

7.(2018青山模拟一16题)已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x ≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为_________ 8.(2018勤学早模拟一16题)已知抛物线y =-x 2+(m -1)x +m 的顶点坐标为(x 0,y 0),当4 25410≤≤y 时,m 的取值范围是___________ 9.(2018勤学早模拟二16题)抛物线2 3212++=bx x y ,当0≤x ≤1时抛物线上的点到x 轴距离的最大值为3,则b 的值为_______________ 10.(2018新观察模拟五16题)关于x 的二次函数y =-(x -m )2+2,当2≤x ≤4时函数有最大值-m ,则m 的最大值为____ 11.(2018新观察模拟六16题)二次函数42 12-+-= m mx x y 与x 轴交于A 、B 两点,则AB 的最小值为___________ 12.(2018新观察模拟七16题)已知函数|3)(3 1|2--=h x y ,当0≤x ≤2时,函数y 随x 的增大而增大,则实数h 的最大值为___________

(完整版)二次函数含参问题

二次函数含参问题 本质:解决二次函数含参问题就是解决对称轴与定义域的问题。 课堂例题: 1. 若函数a ax x x f --=2)(在区间[0,2]上的最大值为1,则实数=a ; 2. 若函数x x x f 3)(2-=,在[]m ,0上的值域为?? ????-0,49,则m 的取值范围为 ; 当堂练习: 1. 若函数)0(22 ≠-=a ax ax y 在区间]3,0[上有最大值3,则a 的值是 ; 2. 已知函数22)(22++-=a ax x x f [])3,1(-∈x 有最大值18,则实数a 的值为 ;

1. 若函数f(x)=4 x?12?a ·2x +272在区间[]2,0上的最大值为9,求实数a 的值; 当堂练习: 1. 已知函数)0(4 9433)(22>+ +--=b b x x x f 在区间[-b, 1-b]上的最大值为25,求b 的值; 2. 已知函数2244)(22+-+-=a a ax x x f 在区间[]2,0上有最小值3,求实数a 的值; 家庭作业: 1.函数432--=x x y 的定义域为[]m ,0,值域为?? ????--4,425,则实数m 的取值范围是__________. 2.若函数12)(2+-=x x x f 在区间[]2,+a a 上的最大值为4,则a 的值为 ; 3.已知函数32)(2+-=x x x f 在闭区间[]m ,0上的最大值为3,最小值为2,则m 的取值范围为 ; 4.若函数22422y x ax a a =-+-+在[0,2]的最小值是2,则a 的值为 ; 5.若三条抛物线,,中至少有一条与轴有交点,则的取值范围是 ; 3442+-+=a ax x y 22)1(a x a x y +-+=a ax x y 222-+=x a

绝对值函数系列习题(二次函数)

含有绝对值符号的函数的性质 1、已知不等式| |2 2x x a +≤对x 取一切负数恒成立,则a 的取值范围是_______. 2、若关于x 的不等式||22 a x x --<至少有一个负数解,则实数a 的取值范围是_______. 3、函数2 |1|y x =-和函数y x k =+的图像恰有三个交点,则k 的值是_______. 4、设常数R ∈a ,以方程20112||=?+x a x 的根的可能个数为元素的集合=A _______. 5、不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为_______. 6、对任意的120x x <<,若函数1 ()f x a x x b x =-+折线(两侧的射线均平行于x 轴), 试写出a 、b 应满足的条件 . 7、已知函数()2log f x x =,正实数,m n 满足m n <, 且()()f m f n =,若()f x 在区间2,m n ????上的最大值为则m =________,n =_________. 8、设,,a b R ∈且1b ≠.若函数1y a x b =-+的图象与直线y x =恒有公共点,则,a b 应满足的条件是_______. 9、关于x 的方程092 2=-++a x a x (R a ∈)有唯一的实数根,则=a _______. 10、若函数1log 2 )(| 3|+-=-x x f a x 无零点,则a 的取值范围为_______. 11、定义在R 上的函数()f x 的图像过点(6,2)M -和(2,6)N -,且对任意正实数k ,有 ()()f x k f x +<成立,则当不等式|()2|4f x t -+<的解集为(4,4)-时,则实数t 的值 为_______. 12、已知函数21(0)()log (0) x a x f x x x ?++≤=?>?有三个不同零点,则实数a 的取值范围为_______. 13、设关于x 的不等式4|4|2 +≤+-x m x x 的解集为A ,且A A ?∈2,0,则实数m 的取 值范围是_______.

二次函数含参问题

一般地,含参的二次函数有三种情形,其一是函数式中含参,其二是定义区间含参;这两种情形的基本做法都是将函数的对称轴与定义区间的位置关系进行讨论;其三是涉及含参的二次方程的根的分布问题,一般可结合图像研究。 一.含参二次函数最值问题。 例1. 函数2()44f x x x =--在闭区间[t ,t +1](t ∈R )上的最小值记为g (t )。 (I )试写出g (t )的函数表达式;(II )求出g (t )的最小值。 变式训练1:讨论函数2()44f x x tx =--在定义域[0,1]上的最小值。 变式训练2:20443p p x px x p x ≤≤+>+-对于满足的所有实数,是不等式都成立,求的取值范围。 二.二次函数根的区间分布归纳。 例2、已知方程()2 210x m x m -++=有两个不等正实根,求实数m 的取值范围。 变式训练1:已知二次方程()()2 21210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

变式训练2:已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,其横坐标一个大于1,一个小于1,求实数m 的取值范围。 例3. 已知函数2()(3)1f x mx m x =+-+的图像与x 轴的交点至少有一个在原点的右侧,求实数m 的取值范围。 变式训练1:已知关于x 的方程012)1(22=-+-mx x m 的根在区间[0,1]内,求实数m 的取值范围。 变式训练2 (2007年广东卷)已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[-1,1]上有零点,求a 的取值范围。

二次函数绝对值的问题练习及答案

二次函数绝对值的问题练习及答案 二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明 例1 设a 为实数,函数 2 ()||1f x x x a =+-+,x R ∈ (1)讨论()f x 的奇偶性; (2)求()f x 的最小值 解;(1)0a =时, () f x 为偶函数 0a ≠时,()f x 为非奇非偶函数 (2)2 222 2131,24()||1131,24x x a x a x a f x x x a x x a x a x a ?? ?+-+=++-≥? ??? ?=+-+=??? ?-++=-++< ????? 当()min 13 ,24a f x a ≤-=- 当()2min 11 ,1 22a f x a -<<=+ 当()min 13 ,24a f x a ≥=+ 例2 已知函数 1)(2 -=x x f ,|1|)(-=x a x g . (1)若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; (2)若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围; (3)求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤). 解:(1)方程|()|()f x g x =,即 2 |1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的

二次函数方程不等式的含参问题

二次含参模块 已知单调区间求参问题............................................................................................................. - 2 - 含参二次函数在闭区间内最值问题........................................................................................... - 3 - 解含参一元二次不等式........................................................................................................... - 12 - 一元二次不等式恒成立问题................................................................................................... - 17 - 二次方程根的分布..................................................................................................................... - 27 -

已知单调区间 求参问题 【例1】,对称轴为,判断,,的大小? 【答案】 【例2】,在上单调递增,上单调递减,则下列说法正确的是 不确定 【答案】B. 【例3】在上单调,求的范围? 【答案】∞,,.

5含绝对值的二次函数(教案及练习)

含绝对值的二次函数 含绝对值的二次函数其本质是分段函数,研究含绝对值的二次函数就是分段研究二次函数的局部性态.设定分类讨论的标准是问题解决的前提条件,数形结合则是问题能否正确解决的关键 所在. 例1.解下列各题: (1)(2010全国)直线1=y 与曲线a x x y +-=2有4个交点,则实数a 的取值范围是 . (2)(2008浙江)已知t 为常数,函数t x x y --=22在区间]3,0[上的最大值为2,则=t . (3)设集合{} {}2,,022<=∈<++-=x x B R a a a x x x A ,若Φ≠A 且B A ?,则实数a 的取值范 围是 . 例2.设函数R x a x x x f ∈+-+=,1)(2 (1)判断函数)(x f 的奇偶性; (2)求函数)(x f 的最小值.

例3.已知函数1)(,1)(2-=-=x a x g x x f . (1)若关于x 的方程)()(x g x f =只有一个实数解,求实数a 的取值范围; (2)若R x ∈时,)()(x g x f ≥恒成立,求实数a 的取值范围; (3)求函数)()()(x g x f x h +=在区间]2,2[-上的最大值. 例4.设a 为实数,函数2()2()f x x x a x a =+--. (1)若(0)1f ≥,求实数a 的取值范围; (2)求()f x 的最小值.

5.含绝对值的二次函数 班级 姓名 一、综合练习 1.设b a <<0,且x x x f ++= 11)(,则下列大小关系式成立的是( ) (A ))()2()(ab f b a f a f <+< (B ))()()2(ab f b f b a f <<+ (C ))()2()(a f b a f ab f <+< (D ))()2 ()(ab f b a f b f <+< 2.已知{}n a 为等差数列,n S 是{}n a 的前n 项和,若9843=++a a a ,则9S = . 3.直线750x y +-=截圆221x y +=所得的两段弧长之差的绝对值是 . 4.函数y k x a b =--+与y k x c d =-+的图象1(k 0k )3 >≠且交于两点)3,8(),5,2(,则c a + 的值是_______________. 5.任意满足305030x y x y x -+≤??+-≥??-≤? 的实数,x y ,若不等式222()()a x y x y +<+恒成立,则实数a 的取值 范围是 . 6.已知双曲线22 221(0,0)x y a b a b -=>>,N M ,是双曲线上关于原点对称的两点,P 是双曲线上的动点,且直线PN PM ,的斜率分别为12,k k ,021≠k k ,若21k k +的最小值为1,则双曲线的离心率为 . 二、本讲练习 1.设函数c bx x x x f ++=)(给出下列四个命题: ① 0=c 时,)(x f y =是奇函数; ② 0,0>=c b 时,方程0)(=x f 只有一个实根; ③ )(x f y =的图象关于),0(c 对称; ④ 方程0)(=x f 至多有两个实根. 其中正确的命题是 ( ) (A )①④ (B )①③ (C )①②③ (D )①②④ 2.若不等式2 1x x a <-+的解集是区间()33-,的子集,则实数a 的范围为 . 3.设a 为实数,函数a x x x f -=)(,求函数)(x f 在]2,2[-上的最大值.

二次函数与绝对值函数2

【二轮复习】 再谈含绝对值的二次函数 高考题中的函数解答题目前对同学们来说仍是个难点,尤其当出现含绝对值的“二次”函数时,很多同学感 觉无从下手,画不出图、找不出分类讨论的依据,本专题就结合大家所研究过的典型例题,进行归类、对比、体验、感悟,期望大家能总结规律,看透本质,攻克此类题。绝对值的函数的本质是分段函数,常见的是两段(或三段)均为二次函数或一次、二次组合,就从涉及到的抛物线的对称轴条数,对此类题进行归类。类型一、同轴型(单轴型) 例1、求函数2()|3|f x x ax =--( (a 为常数)在[] 0,3x ∈上的最大值 变式1、已知函数2()|2|f x x x a =-+在[]0,5上的最大值是8,求a 的值 变式2、求()||f x x x a =-在[]2,4x ∈时的最大值 类型二、异轴型(双轴型) 例2、设a R ∈,求函数2()||1f x x x a =+-+的最小值 例3、已知函数()|2|2f x x a x x =-+,a R ∈ (1) 若f (x )在R 上是增函数,求a 的范围; (2)试求函数f (x )的单调区间; (3)若存在 [] 2,2a ∈-使方程f (x )-m =0有三个不同的根, 求m 的范围 (4)若方程有三个不同的根,记为x 1,x 2,x 3,求x 1+x 2+x 3的取值范围

例4、已知函数2()|2|f x x x ax a =-++,求()f x 的最小值 类型三、异次混合型 例5、定义在R 上的函数2()||(1)f x x x a x =---,1 a >- 若f (x )在[0,1]上的最大值与最小值分别记为M(a ),N(a ),求g(a )= M(a )—N(a )

二次函数专题——含参二次函数

含参的二次函数 二次函数在初中的时候就比较重要,那么在高中阶段二次函数的考点更加重要,难度也会加大。高中阶段比较喜欢考含有参数的二次函数,参数就会让函数形成一种动态,随着参数不同,函数是不一样的,这就使得本来简单的二次函数变得复杂起来。 例1. 求2()2f x x ax =-在[2,4]上的最大值和最小值。 解析:这道题因为参数的存在使得函数的本身是动的,在动的情况下考虑这个函数最大值和最小值的问题,这就涉及到高中比较爱考的一类问题,动轴定区间问题。 这道题中对称轴正好是x a =,随着a 不同,这个对称轴在变化,但是在给定区间上问最大值和最小值,那么就会有下面几种情况,在[2,4]这个区间上,有可能(1)这个对称轴不在这个区间里面这个时候的最大值最小值;也有可能(2)这个对称轴就在区间里面,这个时候的最值,还可能(3)对称轴在区间右侧 这几个图针对这个函数并不严谨,上面的是一般函数的示意图,这道题中的函数一定是过原点的。可以感受,随着a 的不同,最大值和最小值是不一样的,所以这种含参的动态的问题往往需要我们做的一个工作就是分类讨论。 那么函数在什么时候取到最大值呢,比如说(1),就会在4的地方取得最大值,(2)在4的地方取得最大值, (3)就会在2的地方取得最大值。那么在整个函数的区间上,什么时候能取得最大值呢,我们就要看在这个区间上,哪个数离对称轴最远。那么就有两种情况了,有的时候是2离得比较远,有的时候是4离得比较远,是怎么分界的呢?这个分界线就应该在2和4中间的位置上是3,当对称轴在3x =这条线左边的时候,对称轴离2就比较近,离4就比较远,对称轴在右边的时候,离2就比较近,离4就比较远。因此这个函数的最大值,经过分类讨论之后,就会得到一个分段函数:max (4)=168(3)()(2)44(3)f a a f x f a a -≤?=?=->? 也就是如果这个对称轴在3的左侧,也就是3a ≤的时候,离4远,在4处取得最大值,如果在右侧的话,也就是3a >的时候,离2远,在2处取得最大值。3a =放在哪边都行,代入上面的16816838a -=-?=-,代入下面的444438a -=-?=-,所以3a =放在上面下面都是可以的。 接下来最小值,还是围绕对称轴的变化,我们对于这种对称轴在动,区间定,进行分类讨论,在分类讨论的时候一般会让对称轴从左到右移动,这样子讨论起来比较不容易乱。 (1) 对称轴在区间左侧,2a ≤的时候,在2取得最小值,min ()(2)44f x f a ==-。 (2) 对称轴在2到4中间的时候,开口向上的二次函数在对称轴取得最小值,当24a <≤时, 2min ()()f x f a a ==- (3) 对称轴在区间右侧,4a >的时候,在4处取得最小值,min ()(4)168f x f a ==- 所以,这道题根据对称轴,最大值分两种情况,最小值分三种情况,含参的二次函数分类讨论的问题是高中考察的重点,重点在于能否清晰的做一个分类讨论,得到一个分段函数的解析式。与之相类似的另一种题型: 例2.求2 ()2f x x x =-在[,1]t t +上的最大值和最小值 这一类问题叫做定轴动区间的问题,二次函数摆在这里了,还是求最大值最小值,但是区间在变,思路还是一样的,还是要分类讨论,只是这次我们按照区间的变化,从左到右。 首先,可以先把函数画出来,现在给了一个区间,说在这个区间[,1]t t +上,函数的最大值最小值,那么就要去思考一个问题这个区间含不含对称轴呢?(1)最大值在t 的位置取到,最小值在1t +的位置取到(2)最小值在t 的位置取到,最大值在1t +的位置取到(3)也有可能正好这个区间把对称轴包含上了,最小值在对称轴的位置取到,最大值就要看,t 和1t +,谁离对称轴远,就在谁上面取到。 那我们先看这个函数的最大值,一样的,t 和1t +谁离对称轴远,谁对应的函数值就比较大,如(3),如果把2 4 (1) 2 4 (2) 2 4 (3) t t+1 2 (1) t t+1 2 (2) t t+1 2 (3)

(最新整理)二次函数绝对值的问题练习及答案

(完整)二次函数绝对值的问题练习及答案 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)二次函数绝对值的问题练习及答案)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)二次函数绝对值的问题练习及答案的全部内容。

二次函数绝对值的问题练习及答案 二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明 例1 设a 为实数,函数 2()||1f x x x a =+-+,x R ∈ (1)讨论()f x 的奇偶性; (2)求()f x 的最小值 解;(1)0a =时, ()f x 为偶函数 0a ≠时,()f x 为非奇非偶函数 (2)22222131,24()||1131,24x x a x a x a f x x x a x x a x a x a ???+-+=++-≥? ????=+-+=????-++=-++< ????? 当()min 13,24a f x a ≤-=- 当()2min 11,122a f x a -<<=+ 当()min 13,24a f x a ≥=+ 例2 已知函数 1)(2-=x x f ,|1|)(-=x a x g 。 (1)若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; (2)若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围; (3)求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤)。 解:(1)方程|()|()f x g x =,即2|1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程

相关主题
文本预览
相关文档 最新文档