当前位置:文档之家› 二次函数方程不等式的含参问题

二次函数方程不等式的含参问题

二次函数方程不等式的含参问题
二次函数方程不等式的含参问题

二次含参模块

已知单调区间求参问题............................................................................................................. - 2 - 含参二次函数在闭区间内最值问题........................................................................................... - 3 - 解含参一元二次不等式........................................................................................................... - 12 - 一元二次不等式恒成立问题................................................................................................... - 17 - 二次方程根的分布..................................................................................................................... - 27 -

已知单调区间

求参问题

【例1】,对称轴为,判断,,的大小?

【答案】

【例2】,在上单调递增,上单调递减,则下列说法正确的是

不确定

【答案】B.

【例3】在上单调,求的范围?

【答案】∞,,.

含参二次函数在闭区间内最值问题

一、含参求最值........................................................................................................................... - 4 -

(一)轴定区间定............................................................................................................... - 4 - (二)轴动区间定............................................................................................................... - 5 - (三)轴定区间动............................................................................................................... - 6 - (四)相关练习................................................................................................................... - 6 - 二、已知最值求参....................................................................................................................... - 8 -

(一)已知最值求参——先斩后奏................................................................................... - 8 - (二)已知值域求参......................................................................................................... - 10 -

一、含参求最值

设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:

??????

?+>-+≤-

=22)(22)()(max

n m a b m f n m a b n f x f

()????

?

?

???

>-≤-≤-<-

=n a b n f n a b m a b f m a

b

m f x f 2)(2)

2(2)(min

(一)轴定区间定

【例1】函数()()2220f x ax ax b a =-++≠在[]2,3上有最大值5和最小值2,求,a b 的值。

【答案】

对称轴[]012,3x =?,故函数()f x 在区间[]2,3上单调。

(1)当0a >时,函数()f x 在区间[]2,3上是增函数,故()()()()

m a x m i n 32f x f f x f ?=??

=?? ?

32522a b b ++=??+=? ? 1

a b =??

=?; (2)当0a <时,函数()f x 在区间[]2,3上是减函数,故()()()()

max min 23f x f f x f ?=??

=?? ?

25322b a b +=??++=?? 1

3a b =-??

=?

(二)轴动区间定

【例1】求函数()[]221,1,3f x x ax x =-+∈的最小值。

【答案】

(1)当1a <时,()()max 3106f x f a ==-,()()min 122f x f a ==-; (2)当12a ≤<时, ()()max 3106f x f a ==-,()()2

min 1f x f a a ==-;

(3)当23a ≤<时,()()max 122f x f a ==-,()()2min 1f x f a a ==-; (4)当3a ≥时, ()()max 122f x f a ==-,()()min 3106f x f a ==-

(三)轴定区间动

【例1】求函数243y x x =-+在区间[],1t t +上的最小值. 【答案】 对称轴02x =

(1)当2t <即2t >时,()2

min 43y f t t t ==-+;

(2)当21t t ≤≤+即12t ≤≤时,()min 21y f ==-; (3)当21t >+即1t <时,()2

min 12y f t t t =+=-

(四)相关练习

1.函数y 12

++=x x 在]1,1[-上的最小值和最大值分别是 ( )

)(A 1 ,3 )

(B 43 ,3 (C )21- ,3 (D )4

1

-, 3

2.函数242-+-=x x y 在区间]4,1[ 上的最小值是 ( )

)(A 7- )(B 4- )(C 2- )(D 2

3.已知函数322+-=x x y 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是 ( )

(A) ),1[+∞ (B) ]2,0[ (C) ]2,1[ (D) ]2,(-∞

4.设),](1,[,44)(2R t t t x x x x f ∈+∈--=求函数)(x f 的最小值)(t g 的解析式。

5.已知)(x f 2

2

a

ax x +-=,在区间]1,0[上的最大值为)(a g ,求)(a g 的最小值.

6. 求12)(2++=ax x x f 在区间]2,1[-的上最大值.

二、已知最值求参

(一)已知最值求参——先斩后奏

【例1】1)12()(2+-+=x a ax x f ,

【练习1】?,则实数上最大值为在区间上=--=a a ax x x f 1]2,0[)(2

二次函数与方程、不等式综合问题

二次函数与方程、不等式综合问题 1、在平面直角坐标系xOy 中,直线m x y +- =65经过点()n A ,2-,??? ??21,1B ,抛物线1222-+-=t tx x y 与x 轴相交于点C 、D . (1)求点A 的坐标。 (2)设点E 的坐标为??? ??0,25,若点C 、D 都在线段OE 上,求t 的取值范围。 (3)若该抛物线与线段AB 有公共点,求t 的取值范围。 2、在平面直角坐标系xOy 中,抛物线c bx ax y ++=2的开口向上,且经过点?? ? ?? 23,0A 。 (1)若此抛物线经过点?? ? ?? -21,2B ,且与x 轴相交于点E 、F 。 ①填空:b = (用含a 的代数式表示)。 ②当2 EF 的值最小时,求抛物线的解析式。 (2)若2 1= a ,当10≤≤x ,抛物线上的点到x 轴的距离的最大值为3时,求 b 的值。 3、已知二次函数23)2(2)1(2++++=x t x t y ,当0=x 和2=x 时的函数值相等。 (1)求二次函数的解析式。 (2)若一次函数6+=kx y 的图像与二次函数的图像都经过点),3(m A -,求m 和k 的值。 (3)设二次函数的图像与x 轴交于点B 、C (点B 在点C 的左侧),将二次函数的图像在B 、C 点间的部分(含点B 和点C )向左平移n (0>n )个单位后得到的图像记为G ,同时将(2)中得到的直线6+=kx y 向上平移n 个单位,当平移后的直线与图像G 有公共点时,求n 的取值范围。 4、已知二次函数)12(221-+-=t tx x y (1>t )的图像为抛物线1C 。 (1)求证:无论t 取何值,抛物线1C 与x 轴总有两个交点。 (2)已知抛物线1C 与x 轴交点A 、B 两点(点A 在点B 的左侧),将抛物线1C 作适当的平移,得抛物线222)(:t x y C -=,平移后A 、B 的对应点分别为点),(n m D ,),2(n m E +,求n 的值。 (3)在(2)的条件下,将抛物线2C 位于直线DE 下方的部分沿直线DE 向上翻折后,连同2C 在DE 上方的部分组成一个新图形,记为图形G 。若直线b x y +- =2 1(3

(完整word版)重庆中考专题训练二含参的方程和不等式的计算-

中考专题训练二 一、含参数方程组和不等式的结合 1.若整式a 使得关于x 的不等式组20113 x a x ì->?í-???至少有一个整数解,且使得关于x 的方程415ax x =-有整数解,那么所有满足条件的整数a 的值之和是( ) A. 12 B.1 C.52 D.3 2.从22,1,,0,13---这五个数字中,随机抽取一个记为a ,则使得关于x 的方程213ax x +=-的解为非负数,且满足关于y 的不等式组0321 x a x ì->?í-+???恰有三个整数解,那么这5个数中所有满足条件的a 的值有( ) A.0个 B.1个 C.2个 D.3个 二、含参数的函数和方程、不等式的结合 3. 一直一个口袋中装有5个完全相同的小球,小球上分别标有2,6,9,12,15五个数字,搅匀后从中摸出一个小球,将小球上的数字记为a ,若使得一次函数6y ax a =+-不经过第四象限且关于x 的分式方程 6466 ax x x x =+--的解为整数,则这5个数中所有满足条件的a 的值之和是( ) A.21 B.27 C.29 D.44 4. 从2,1,0,1,2,4--这六个数中,任取一个数作为a 的值,恰好使得关于x,y 的二元一次方程组2x y a x y ì-=?í+=?? 有整数解,且函数242y ax x =++的图象与x 轴有公共点,那么这6个数所有满足条件的a 的值之积是( ) A. 16- B.4- C.0 D.8 练习: 1. 有五张正面分别标有数组12,0,,1,32-的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为a ,若使得关于x 的分式方程 11222ax x x -+=--有整数解,则这5个数中满足条件的a 的值之和是( ) B. 0 B.3 C.4 D. 32 2. 使关于x 的分式方程122k x -=-的解为非负数,且使反比例函数3k y x -=的图象过第一、三象限时满足条件的所有整数k 的和为( ) C. 1 B.2 C.3 D.5 3. 在平面直角坐标系中,抛物线2 23y x x =--与x 轴交于B,C 两点,(点B 在点的左侧),点A 在抛物线上,且横坐标为-2,连接AB ,AC ,现将背面完全相同,正面分别标有2,1,0,1,2--的五张卡片洗均匀后,背面朝上,从中任取一张,将该卡片上的数作为P 的横坐标,将该数加1作为点P 的纵坐标,点P 落在△ABC 内(不含边界),则满足条件的点P 的个数为( ) D. 1 B.2 C.3 D.4

最新中考专题复习-二次函数与方程(组)或不等式

中考专题复习 二次函数与方程(组)或不等式 ◆知识讲解 (1)最大值或最小值的求法 第一步确定a 的符号:a>0有最小值,a<0有最大值;第二步求顶点,?顶点的纵坐标即为对应的最大值或最小值. (2)y 轴与抛物线y=ax 2+bx+c 的交点为(0,c ). (3)与y 轴平行的直线x=h 与抛物线y=ax 2+bx+c 有且只有一个交点(h ,ah 2+bh+c ). (4)抛物线与x 轴的交点. 二次函数y=ax 2+bx+c 的图像与x 轴的两个交点的横坐标x 1,x 2是对应的一元二次方程ax 2+bx+c=0的两个实数根.抛物线与x ?轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点?△>0?抛物线与x 轴相交. ②有一个交点(顶点在x 轴上)?△=0?抛物线与x 轴相切; ③没有交点?△<0?抛物线与x 轴相离. (5)平行于x 轴的直线与抛物线的交点. 同(4)一样可能有0个交点,1个交点,2个交点.当有2个交点时,?两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2+bx+c=k 的两个实数根. (6)一次函数y=kx+n (k≠0)的图像L 与二次函数y=ax 2+bx+c (a≠0)的图像G 的交点,由方程组2y kx n y ax bx c =+??=++?的解的数目确定:①当方程组有两组不同的解时?L 与G 有两个交点;②方程组只有一组解时?L 与G 只有一个交点;③方程组无解时?L 与G 没有交点. (7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x 轴的交点,?再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分.

【讲义】二次函数与一次函数、一元二次方程、不等式(组)

【讲义】二次函数与一 次函数、一元二次方程、不等式(组) -CAL-FENGHAI.-(YICAI)-Company One1

二次函数与一次函数、反比例函数、 一元二次方程、不等式组 课程目标: 灵活运用二次函数的性质解一元二次方程; 熟练解决二次函数与与其它函数结合的有关问题。 课程要求: 完成讲义中的练习; 完成课后配套练习。 一、二次函数与一元二次方程、不等式(组) 例1.函数(是常数)的图像与轴的交点个 数为() A.0个B.1个C.2个 D.1个或2个 例2.已知实数x,y满足x2+3x+y-3=0,则x+y的最大值 为 . 例3.设函数y=x2﹣(k+1)x﹣4(k+5)的图象如图所示,它与x 轴交于A、B两点,且线段OA与OB的长的比为1:4,则k= _________ . 例4. 如图10-2,是二次函数y=ax2+bx+c图 象的一部分,其对称轴为直线x=1,若其与 x轴一交点为A(3,0),则由图象可知,不 等式ax2+bx+c<0的解集 是 . 例5. 已知P(3,m -)和Q(1,m)是抛物线2 21 y x bx =++上的两点. (1)求b的值; 22 y mx x m =+-m x

(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由; (3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值. 【当堂练】 1.已知二次函数c bx ax y ++=2的图象如图 10-1所示,则下列结论正确的是( ) A .a >0 B .c <0 C .b 2-4ac <0 D .a +b +c >0 2.如图所示,函数的图像与轴只有 一个交点,则交点的横坐标 . 3.二次函数的图像与轴的交点坐标为 . =ax2+bx+c 中,a<0,抛物线与x 轴有两个交点A (2,0)B (-1,0),则ax2+bx+c>0的解是____________; ax2+bx+c<0的解是____________ 5. 抛物线与轴有 个交点,因为其判别式 0,相应二次方程的根的情况为 . 2(2)7(5)y k x x k =--+-x 0x =269y x x =-+-x 2283y x x =--x 24b ac -=23280x x -+=O

高中数学《一元二次函数方程和不等式》公开课优秀教学设计

课题:一元二次函数、方程和不等式(衔接课) 一、教学设计 1.教学内容解析 在现行人民教育出版社A版高中数学教材中,“一元二次不等式的解法”这一部分内容安排在《必修5》的第三章第二节,学生高二时才学习,导致高一学生在学习《必修1》的“集合”、“函数”等内容时,有一定的障碍,达不到一定的深度,初高中数学内容衔接不连贯,对于这一部分内容,老师普遍认为应调整到《必修1》之前,或是安排在《必修1》的“集合”之后,“函数”之前比较好. 本节课的产生正是基于以上原因,但它并不是一节“一元二次不等式的解法”的新知课,也不是一节复习课,而是一节衔接课,以一元二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡. 三个“二次”是初中三个“一次”(一元一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.如,解析几何中解决直线与二次曲线位置关系问题,导数中导函数为二次函数时的许多问题等,同时,此部分内容又是培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想的极好素材,本节课的地位和作用主要体现在它的基础性和工具性方面. 根据以上分析,本节课的教学重点确定为 教学重点:一元二次函数、一元二次方程与一元二次不等式三者之间的关系及应用. 2.学生学情诊断 本节课的授课对象为华中师大一附中高一平行班学生,华中师大一附中是湖北省示范高中,学生基础很好,一般而言,学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题. 但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律. 教学难点:含参数的二次方程、不等式,如何利用三个“二次”之间的关系进行等价转化处理,为今后处理其它类型的函数、方程、不等式问题提供范式. 3.教学目标设置 (1)理解一元二次函数、一元二次方程及一元二次不等式三者之间的关系; (2)能够用二次函数的观点处理二次方程和二次不等式问题,感悟函数的重要性以及数学知识之间的关联性; (3)引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,能够在本主题的学习中,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养. 4.教学策略分析 本课作为初高中内容和方法上的“衔接课”,有其重要特点:一不能靠单纯的复习;二不宜上成新课;三,必须展示基本的套路,而又不可能一次到位;四,需要立足于函数、圆

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

二次函数与方程、不等式综合.讲义

板块 考试要求 A 级要求 B 级要求 C 级要求 二次函数 1.能根据实际情境了解二次函数的意义; 2.会利用描点法画出二次函数的图像; 1.能通过对实际问题中的情境分析确定二次函数的表达式; 2.能从函数图像上认识函数的性质; 3.会确定图像的顶点、对称轴和开口方向; 4.会利用二次函数的图像求出二次方程的近似解; 1.能用二次函数解决简单的实际问题; 2.能解决二次函数与其他知识结合的有关问题; 一、二次函数与一元二次方程的联系 1. 直线与抛物线的交点 (1) y 轴与抛物线2y ax bx c =++得交点为()0c , . (2) 与y 轴平行的直线x h =与抛物线2y ax bx c =++有且只有一个交点() 2h ah bh c ++,. (3) 抛物线与x 轴的交点:二次函数2y ax bx c =++的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程20ax bx c ++=的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程 的根的判别式判定: ①有两个交点?0?>?抛物线与x 轴相交; ②有一个交点(顶点在x 轴上)?0?=?抛物线与x 轴相切; ③没有交点?0?时为例,二次函数、二次三项式和一元二次方程之间的内在联系如下: 知识点睛 二次函数与方程、不等式综合

重庆市2018年中考数学12题含参方程和不等式专训(含解答)

重庆市2018年中考数学12题专训 1.(2018?宜宾模拟)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是() A.﹣1 B.2 C.﹣7 D.0 2.(2017?重庆)若数a使关于x的不等式组有且仅有四个整数解,且使关于y 的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是() A.3 B.1 C.0 D.﹣3 3.(2017?重庆)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组 的解集为y<﹣2,则符合条件的所有整数a的和为() A.10 B.12 C.14 D.16 4.(2017?渝中区校级二模)若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为() A.28 B.﹣4 C.4 D.﹣2 5.(2017?江北区校级模拟)若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+6 成立,且使关于x的分式方程=3+有整数解,那么符合条件的所有整数a值之和是() A.19 B.20 C.12 D.24 6.(2017?高密市三模)关于x的方程的解为正数,且关于y的不等式组 有解,则符合题意的整数m有()个. A.4 B.5 C.6 D.7 7.(2017?南岸区一模)若关于x的不等式组有且只有三个整数解,且关于x的分式方程﹣=﹣1有整数解,则满足条件的整数a的值为()

A.15 B.3 C.﹣1 D.﹣15 8.(2017?渝中区校级一模)如果关于x的分式方程﹣=2有正数解,关于x的不等式组有整数解,则符合条件的整数a的值是() A.0 B.1 C.2 D.3 9.(2017?沙坪坝区一模)若关于x的不等式组,有且仅有五个整数解,且关 于x的分式方程=3有整数解,则所有满足条件的整数a的值之和是() A.﹣4 B.﹣3 C.﹣1 D.0 10.(2017?南岸区校级二模)若关于x的不等式组有三个整数解,且关于x 的分式方程有正数解,则所有满足条件的整数a的值之和是() A.﹣3 B.﹣1 C.0 D.2 11.(2017?九龙坡区校级模拟)如果关于x的不等式组的解集为x>1,且关于x的分式方程+=3有非负整数解,则符合条件的m的所有值的和是() A.﹣2 B.﹣4 C.﹣7 D.﹣8 12.(2017?重庆模拟)如果关于x的分式方程有整数解,且关于x的不等式组 有且只有四个整数解,那么符合条件的所有整数a的个数为() A.0 B.1 C.2 D.3 13.(2017?沙坪坝区校级一模)从﹣3,﹣1,,2,3,5这六个数中,随机抽取一个数,记 为a,若数a使关于x的不等式组至少有三个整数解,且关于x的分式方程 +=2有正整数解,那么这6个数中所有满足条件的a的值之积是() A.7 B.6 C.10 D.﹣10

【讲义】二次函数与一次函数、一元二次方程、不等式(组)

二次函数与一次函数、反比例函数、 一元二次方程、不等式组 课程目标: 灵活运用二次函数的性质解一元二次方程; 熟练解决二次函数与与其它函数结合的有关问题。 课程要求: 完成讲义中的练习; 完成课后配套练习。 一、二次函数与一元二次方程、不等式(组) 例1.函数(是常数)的图像与轴的交点个数为( ) A.0个 B.1个 C.2个 D.1个或2个 例2.已知实数x ,y 满足x 2 +3x +y -3=0,则x +y 的最大值为 . 例3.设函数y=x 2 ﹣(k+1)x ﹣4(k+5)的图象如图所示,它与x 轴交于A 、B 两点,且线段OA 与OB 的长的比为1:4,则k= _________ . 例4. 如图10-2,是二次函数y =ax 2 +bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx +c <0的解集是 . 例5. 已知P (3,m -)和Q (1,m )是抛物线2 21y x bx =++上的两点. (1)求b 的值; (2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有, 2 2y mx x m =+-m x

求出它的实数根;若没有,请说明理由; (3)将抛物线2 21y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值. 【当堂练】 1.已知二次函数c bx ax y ++=2 的图象如图10-1所示,则下列结论正确的是( ) A .a >0 B .c <0 C .b 2 -4ac <0 D .a +b +c >0 2.如图所示,函数的图像与轴只有一个交 点,则交点的横坐标 . 3.二次函数的图像与轴的交点坐标为 . =ax2+bx+c 中,a<0,抛物线与x 轴有两个交点A (2,0)B (-1,0),则ax2+bx+c>0的解是____________; ax2+bx+c<0的解是____________ 5. 抛物线与轴有 个交点,因为其判别式 0,相应二次方程的根的情况为 . 6.关于的方程有两个相等的实数根,则相应二次函数 与轴必然相交于 点,此时 . 2 (2)7(5)y k x x k =--+-x 0x =2 69y x x =-+-x 2 283y x x =--x 2 4b ac -= 2 3280x x -+=x 2 5mx mx m ++=25y mx mx m =++-x m =O

一元二次函数、方程与不等式

一元二次函数、方程与不等式 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知a ,b ,c ,d 为实数,a b >且c d >,则下列不等式一定成立的是( ). A .ac bd > B .a c b d ->- C .a d b c ->- D .1 1 a b < 2.若x ≠-2且y ≠1,则M =x 2+y 2+4x -2y 的值与-5的大小关系是( ) A .M >-5 B .M <-5 C .M ≥-5 D .M ≤-5 3.不等式13 ()()022≥x x +-的解集是( ) A .1{|2x x <-或3 }2x > B .1 {|2x x ≤-或3 }2x ≥ C .13{|}22x x -≤≤ D .1 3 {|}22x x -<< 4.设11b a -<<<,则下列不等式恒成立的是( ) A .11 b a > B .11 b a < C .22b a < D .2b a < 5.若()0,2x ∈,则()2x x -的最大值是( ) A .2 B .3 2 C .1 D .1 2 6.若21y x ax =-+有负值,则a 的取值范围是( ) A .2a >或2a <- B .22a -<< C .2a ≠± D .13a << 7、已知不等式20ax bx c ++>的解集为1 |23x x ??-<?? C .1|23x x ?? -<?? 8.已知关于x 的不等式24x x m -≥,对任意(0,1]x ∈恒成立,则有( ) A .3m ≤- B .3m ≥- C .30m -≤< D .4m ≥- 9.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )

含参不等式解法举例

含参不等式专题(淮阳中学) 编写:孙宜俊 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。 解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况: (1) 二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。 一、含参数的一元二次不等式的解法: 1.二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥?) 例1、解关于x 的不等式0)1(2>++-a x a x 。 解:0)1)((2>--x a x 1,0)1)((==?=--x a x x a x 令 为方程的两个根 (因为a 与1的大小关系不知,所以要分类讨论) (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 综上所述: (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 变题1、解不等式0)1(2>++-a x a x ; 2、解不等式0)(322>++-a x a a x 。

二次函数与方程和不等式练习题

练习九 二次函数与方程和不等式 1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 . 2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限; 3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对 4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>?>a B 、0,0a C 、0,0>?

:含参方程和不等式(一)

For personal use only in study and research; not for commercial use 同学你好,网校试题均为高清大图,如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。第1题 第2题 第3题 第4题 第5题 第6题 第7题 第8题 第9题 第10题 试题答案 第1题: 正确答案:A 答案解析 第2题: 正确答案:C 答案解析 第3题: 正确答案:A 答案解析 第4题: 正确答案:B 答案解析 第5题: 正确答案:C 答案解析

第6题: 正确答案:C 答案解析 第7题: 正确答案:C 答案解析 第8题: 正确答案:B 答案解析 第9题: 正确答案:D 答案解析 第10题:正确答案:B 答案解析

仅供个人参考 仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文 不得用于商业用途

二次函数二次不等式练习题

二次函数、二次不等式练习题 姓名:___________ 班级:___________成绩:___________ 一、单选题 1.已知R 为实数集,集合}02|{2≥-=x x x A ,}1|{B >=x x ,则 ( ) A.)1,0( B. ]1,0( C. )2,1( D. ]2,1( 2.不等式()12303x x ? ?+-≤ ??? 的解集为( ) A. 2{ 3 x x ≥或13x ?≤-?? B. 1233x x ??-≤≤???? C. 2{ 3 x x >或13x ?<-?? D. 1233x x ??-<的解集是11,23??- ??? ,则a b +的值是( ) A. 14- B. 10- C. 14 D. 10 5.已知关于x 的不等式01442 >++ax ax 的解集为R ,则实数a 的取值范围是( ) A. ]1,0[ B. )1,0[ C. )(1,0 D. f ]1,0( 6.已知关于x 的不等式2320ax x -+≤的解集为{|1}x x b ≤≤.则实数a b +的值为 ( ) A. 2 B. 3 C. 4 D. 5 7.已知关于x 的不等式24410ax ax ++>的解集为R ,则实数a 的取值范围是( )

A. []0,1 B. [)0,1 C. ()0,1 D. (]0,1 8.若函数762--=x x y ,则它在]4,2[-上的最大值、最小值分别是( ) A. 9,-15 B. 12,-15 C. 9,-16 D. 9,-12 9.函数142+--=x x y ,]2,3[-∈x 的值域( ) A. (-∞,5) B. [5,+∞) C. [-11,5] D. [4,5] 10.函数()21122 y x =-++的顶点坐标是 ( ) A. (1,2) B. (1,-2) C. (-1,2) D. (-1,-2) 11.已知函数]5,[,4)(2m x x x x f ∈+-=的值域是]4,5[-,则实数m 的取值范围是 A. B. C. D. 12.若函数()225f x x ax =-+在区间[)1,+∞上单调递增,则a 的取值范围是( ) A. (],2-∞ B. [)2,+∞ C. [)4,+∞ D. (],4-∞ 13.3)(2++-=a x y 的最大值为( ) A. 2 B. 3 C. 4 D. 5 14.若方程()2 250x m x m ++++=只有负根,则m 的取值范围是( ) A. 4m ≥ B. 54m -<≤- C. 54m -≤≤- D. 52m -<<- 15.若()()2212f x x a x =--+在(] ,5-∞上是减函数,则a 的取值范围是( ) A. 6a > B. 6a ≥ C. 6a < D. 6a ≤ 16.函数)0(4)(2 >+-=m mx x x f 在]0,(-∞上的最小值是( ) A. 4 B. -4 C. 与m 的取值有关 D. 不存在 二、填空题

二次函数与方程和不等式的综合题

二次函数与不等式和方程的综合题 一、填空题 1、如图,二次函数y 1=ax 2 +bx+c 与一次函数y 2=kx+n 的图象相交于A (0,4),B (4,1)两点,下列三个结论: ①不等式y 1>y 2的解集是0<x <4 ②不等式y 1<y 2的解集是x <0或 x >4 ③方程ax 2 +bx+c=kx+n 的解是x 1=0,x 2=4 其中正确的个数是( ) A .0个 B .1个 C .2个 D .3个 2、如图,已知反比例函数 x y 3 - =与二次函数 y=ax 2 +bx (a >0,b >0)的图象交于点P ,点P 的纵坐标为1,则关于x 的不等式ax 2 +bx >x 3 - 的解集为( ) A .x <1 B .x <-3 C .x <-3或x >0 D .-3<x <0

3.已经函数y=(x-a)(x-b)-2(a<b),m、n是方程(x-a)(x-b)-2=0的两个根(m <n),则a,b,m,n的大小关系是() A.m<a<b<n B.a<m<b<n C.a<m<n<b D.m<a<n<b 3、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则以下关于m 的结论正确的是() A.m的最大值为2 B.m的最小值为-2 C.m是负数 D.m是非负数 5、已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c-8=0的根的情况是() A.有两个不相等的正实数根 B.有两个异号实数根 C.有两个相等的实数根 D.没有实数根 6、二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是() A.k<-3 B.k>-3 C.k<3 D.k>3

必修一第二章-一元二次函数、方程和不等式全章讲解训练-(含答案)

~ 第二章 一元二次函数、方程和不等式全章复习讲解 (含答案) 【要点梳理】(不等式性质、解一元二次不等式、基本不等式) 一、不等式 1.定义 不等式:用不等号(>,<,≥,≤,≠)表示不等关系的式子. 2..不等式的性质 不等式的性质可分为基本性质和运算性质两部分 基本性质有: 性质1 对称性:a b b a >?<; 】 性质2 传递性:,a b b c a c >>?>; 性质3 加法法则(同向不等式可加性):()a b a c b c c R >?+>+∈; 性质4 乘法法则:若a b >,则000c ac bc c ac bc c ac bc , ,.>?>?? =?=??且0c =,则00a b c c c a b c c c ? >?>?? ? ?>?+>+; 性质6 可乘法则:0,00a b c d a c b d >>>>??>?>; 性质7 可乘方性:()*00n n a b n a b N >>∈?>>; 可开方性:( )01a b n n N 且+>>∈>? ! 要点诠释:不等式的性质是不等式同解变形的依据. 二、比较两代数式大小的方法 作差法: 1. 任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小. ①0a b a b ->?>; ②0a b a b -?>; ②1a a b b

二次函数与方程及不等式的关系(供参考)

二次函数与方程及不等式的关系 6、如图,将二次函数y=x 2 -m(其中m >0)图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,形成新的图象记为y 1,另有一次函数y=x+b 的图象记为y 2,则以下说法:(1)当m=1,且y 1与y 2恰好有三个交点时,b 有唯一值为1; (2)当b=2,且y 1与y 2恰有两个交点时,m>4或<0m<7 4 ; (3)当m=b 时,y 1与y 2至少有2个交点,且其中一个(0,m); (4)当m=-b 时,y 1与y 2一定有交点. 其中正确说法的序号为 9. (2014·浙江杭州江干一模,16,4分)如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B (4,2),一次函数y =kx -1的图象平分它的面积.若关于x 的函数y =mx 2-(3m +k )x +2m +k 的图象与坐标轴只有两个交点,则m 的值为________. 解析 过B 作BE ⊥AD 于E ,连结OB ,CE 交于点P ,∵P 为矩形OCBE 的对称中心,则过点P 的直线平分矩形OCBE 的面积.∵P 为OB 的中点,而B (4,2),∴P 点坐标为(2,1),∵P 点坐标为(2,1),点P 在直线y =kx -1上,∴2k -1=1,k =1.∵关于x 的函数y =mx 2-(3m +1)x +2m +1的图象与坐标轴只有两个交点,∴①当m =0时,y =-x +1,其图象与坐标轴有两个交点(0,1),(1,0);②当m ≠0时,函数y =mx 2-(3m +1)x +2m +1的图象为抛物线,且与y 轴总有一个交点(0,2m +1),若抛物线过原点时,2m +1=0,即m =-12,此时,Δ=(3m +1)2-4m (2m +1)=(m +1)2>0,故抛物线与x 轴有两个交点且过原点,符合题意.若抛物线不过原点,且与x 轴只有一个交点,也符合题意,此时Δ=(m +1)2=0,m =-1.综上所述,m 的值为:m =0或-1或-12. 答案 m =0或-1或-1 2 1.(原创题)函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( ) A .k <3 B .k <3且k ≠0 C .k ≤3且k ≠0 D .k ≤3 18.已知二次函数2y x bx =+的对称轴为直线1x =,若关于x 的一元二次方程

一元二次函数方程和不等式教学设计

一元二次函数、方程和不等式(衔接课) 一、教学设计 1.教学内容解析 在现行人民教育出版社A版高中数学教材中,“一元二次不等式的解法”这一部分内容安排在《必修5》的第三章第二节,学生高二时才学习,导致高一学生在学习《必修1》的“集合”、“函数”等内容时,有一定的障碍,达不到一定的深度,初高中数学内容衔接不连贯,对于这一部分内容,老师普遍认为应调整到《必修1》之前,或是安排在《必修1》的“集合”之后,“函数”之前比较好. 本节课的产生正是基于以上原因,但它并不是一节“一元二次不等式的解法”的新知课,也不是一节复习课,而是一节衔接课,以一元二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡. 三个“二次”是初中三个“一次”(一元一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.如,解析几何中解决直线与二次曲线位置关系问题,导数中导函数为二次函数时的许多问题等,同时,此部分内容又是培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想的极好素材,本节课的地位和作用主要体现在它的基础性和工具性方面. 根据以上分析,本节课的教学重点确定为 教学重点:一元二次函数、一元二次方程与一元二次不等式三者之间的关系及应用. 2.学生学情诊断 本节课的授课对象为华中师大一附中高一平行班学生,华中师大一附中是湖北省示范高中,学生基础很好,一般而言,学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题. 但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律. 教学难点:含参数的二次方程、不等式,如何利用三个“二次”之间的关系进行等价转化处理,为今后处理其它类型的函数、方程、不等式问题提供范式. 3.教学目标设置 (1)理解一元二次函数、一元二次方程及一元二次不等式三者之间的关系; (2)能够用二次函数的观点处理二次方程和二次不等式问题,感悟函数的重要性以及数学知识之间的关联性; (3)引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,能够在本主题的学习中,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养. 4.教学策略分析 本课作为初高中内容和方法上的“衔接课”,有其重要特点:一不能靠单纯的复习;二不宜上成新课;三,必须展示基本的套路,而又不可能一次到位;四,需要立足于函数、圆

相关主题
文本预览
相关文档 最新文档