当前位置:文档之家› 三角函数经典题目(带答案)

三角函数经典题目(带答案)

三角函数经典题目(带答案)
三角函数经典题目(带答案)

三角函数经典题目练习

1.已知α123

1、已知角

2、P (x ,5则sin 1、已知2、函数(f

3、已知 象限1. 已知π2

2.设0≤α是 .

sin αtan x 若<0___.

5

3

sin +-=

m m θ,524cos +-=m m θ(πθπ<<2),则

=θ________.

1tan tan αα,是关于x 的方程2230x kx k -+-=的

个实根,且παπ2

7

3<<,则ααsin cos +的值 .

0)13(22=++-m x x 的两根为

()πθθθ2,0,cos ,sin ∈,求(1)m =_______

(2)θθθθtan 1cos cot 1sin -+-=________.

α )4

15

tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ??

?

??-θπ23= α终边上P (-4,3),

)

2

9sin()211cos()

sin()2

cos(απαπαπαπ

+---+= .

已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θ

θtan 1tan 1_________

tan 20tan 4020tan 40?+????= α∈(0,

2π),若sin α=5

3

,则2cos(α+4π)= . 3

36

cos =

??

? ??-απ,则??

? ??+απ6

5cos =______,)6

5απ

--

=_____..

【知二求多】

1、已知cos ??? ??-2βα= -54,sin ??? ?

?

-2αβ=135,且

0<β<2π<α<π,则cos 2

βα+=____.

2已知tan α=43,cos(α+β)=-14

11

, α、β为锐角,

则cos β=______.

【方法套路】

1、设2

1sin sin =+βα,31

cos cos =+βα,则

)cos(βα-=___ .

2.已知ββαcos 5)2cos(8++=0,则

αβαtan )tan(+= .

3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα

【给值求角】

1tan α=7

1

,tan β=3

1,α,β均为锐角,则

α+2β= .

2、若sinA=

55,sinB=10

10,且A,B 均为钝角, 则A+B= .

【半角公式】

1α是第三象限,2524

sin -

=α,则tan 2

α= . 2、已知01342

=+++a ax x (a >1)的两根为αtan ,

βtan ,且α,∈β ??-2

π,??

?

2π,

则2

tan βα+=______

3若

cos 22π2sin 4αα=-

?

?- ?

?

?,则cos sin αα+= . 4、若??????∈27,25ππα,则

ααsin 1sin 1-++=

5x 是第三象限角

x

x x

x x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++

++-+=______ 【公式链】

1=+++οοοοΛ89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______

六、给值求角 已知3

1

sin -

=x ,写出满足下列关系x 取值集合 ]

3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x

七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________

2、1)3

2tan(--

x y 定义域为_________

【值域】

1、函数y =2sin ????

πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________

2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________

3、函数x x

y sin 2sin 1+-=

的值域

4、函数x

x

y cos 1sin 21+-=的值域

5、函数x x y sin 2cos -=的值域

【解析式】

1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直

线x =π

3

对称,其中ω∈????-12,52.函数f (x )的解析式为________.

2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π

2

)

的图象在y 轴上的截距为1,在相邻两最值点(x 0,

2),???

?x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移

10

π

个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________

4、()()sin f x A x h ω?=++(0,0,)2A π

ω?>>< 的图象

如图所示,求函数)(x f 的解析式;

【性质】

1、已知ω>0,函数f (x )=sin ????ωx +π4在????π

2,π

递减,则ω的取值范围是( )

A.????12,54

B.????12,34

C.????0,1

2 D.(0,2] 2、若函数()sin (0)f x x ωω=>在区间π0,3

??????

递增,在区间ππ,32??

????

上单调递减,则ω=3、sin(2)3

y x π

=+

图像的对称轴方程可能是

A .6

x π=- B .12

x π=- C .6

x π= D .4、已知函数x a x x f 2cos 2sin )(+=关于x 称,则a =_______

5.()2sin()f x x ω?=++m 对任意x 有()6

f x f π+=若()6

f π

=3,则m=________

【图象】

1、为了得到函数sin(2)3

y x π

=-

sin(2)6

y x π

=+的图像向____移动____2、为了得到函数sin(2)3

y x π

=-y=cos2x 图像向____移动____个长度单位 3.将函数

sin(2)y x ?=+的图象沿x 个单位后,得到一个偶函数的图象,则?取值为 (A)34π (B) 4

π

(C)0 (D) 4π-

【综合练习】

1、已知定义在R 上的函数f (x )满足:当sin x f (x )=cos x ,当sin x >cos x 时,f (x )=sin x .下结论:①f (x )是周期函数;②f (x )③当且仅当x =2k π(k ∈Z)时,f (x )当且仅当2k π-π

2<x <(2k +1)π(k ∈Z)时,f (⑤f (x )的图象上相邻两个最低点的距离是正确的结论序号是________.

f(x)=sin(2x+x x 2cos 2)6

2sin()6

+-+π

π

)求f(x)的最小值及单调减区间; )求使f(x)=3的x 的取值集合。

)说明()f x 的图象可由sin y x =的图象经过怎样

变化得到. f (x )=a ???

?2cos 2x

2+sin x +b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函

数f (x )的值域是[5,8],求a ,b 的值. 设函数f (x )=cos(ωx +φ)???

?ω>0,-π

2<φ<0的最小正周期为π,且f ????π4=3

2(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.

高考三角函数专题(含答案)

高考三角函数专题(含 答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考专题复习 三角函数专题 模块一 ——选择题 一、选择题:(将正确答案的代号填在题后的括号.) 1.(2010·天津)下图是函数y =A sin(ωx +φ)(x ∈R)在区间??? ?-π6,5π6上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R)的图象上所有的点( ) A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的1 2,纵坐标不变 B .向左平移π 3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的1 2,纵坐标不变 D .向左平移π 6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 解析:观察图象可知,函数y =A sin(ωx +φ)中A =1,2πω=π,故ω=2,ω×????-π6+φ=0,得φ=π3, 所以函数y =sin ????2x +π3,故只要把y =sin x 的图象向左平移π3个单位,再把各点的横坐标缩短到原来的12即可. 答案:A 2.(2010·全国Ⅱ)为了得到函数y =sin ????2x -π3的图象,只需把函数y =sin ??? ?2x +π 6的图象( ) A .向左平移π4个长度单位 B .向右平移π 4个长度单位 C .向左平移π2个长度单位 D .向右平移π 2 个长度单位

解析:由y =sin ????2x +π6――→x →x +φy =sin ????2(x +φ)+π6=sin ????2x -π3,即2x +2φ+π6=2x -π 3,解得φ=- π4,即向右平移π 4 个长度单位.故选B. 答案:B 3.(2010·)已知函数y =sin(ωx +φ)??? ?ω>0,|φ|<π 2的部分图象如图所示,则( ) A .ω=1,φ=π 6 B .ω=1,φ=-π6 C .ω=2,φ=π6 D .ω=2,φ=-π 6 解析:依题意得T =2πω=4? ?? ?? 7π12-π3=π,ω=2,sin ????2×π3+φ=1.又|φ|<π2,所以2π3+φ=π2,φ=-π6,选D. 答案:D 4.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]上的图象如图所示,那么ω=( ) A .1 B .2 C.12 D.13 解析:由函数的图象可知该函数的期为π,所以2π ω=π,解得ω=2. 答案:B 5.已知函数y =sin ????x -π12cos ??? ?x -π 12,则下列判断正确的是( )

中考数学锐角三角函数-经典压轴题含答案解析

中考数学锐角三角函数-经典压轴题含答案解析 一、锐角三角函数 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中, 3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D. (1)求证:PA是☉O的切线; (2)若=,且OC=4,求PA的长和tan D的值. 【答案】(1)证明见解析;(2)PA =3,tan D=. 【解析】 试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线; (2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值. 试题解析:(1)连接OB,则OA=OB, ∵OP⊥AB,∴AC=BC, ∴OP是AB的垂直平分线,∴PA=PB, 在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS) ∴∠PBO=∠PAO,PB=PA, ∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA, ∴PA是⊙O的切线; (2)连接BE,

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

高中三角函数典型例题(教用)

【典型例题】: 1、已知2tan =x ,求x x cos ,sin 的值. 解:因为2cos sin tan == x x x ,又1cos sin 22=+a a , 联立得???=+=,1 cos sin cos 2sin 2 2x x x x 解这个方程组得.55cos 5 52sin ,55cos 552sin ??? ????-=-=???????==x x x x 2、求) 330cos()150sin()690tan() 480sin()210cos()120tan(οοοοοο----的值。 解:原式) 30360cos()150sin()30720tan() 120360sin()30180cos()180120tan(o ο οοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=ο οοοοο 3、若 ,2cos sin cos sin =+-x x x x ,求x x cos sin 的值. 解:法一:因为 ,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=- 得到x x cos 3sin -=,又1cos sin 22=+a a ,联立方程组,解得 ,,??? ??? ?=-=???????-==1010cos 10 103sin 1010cos 10103sin x x x x 所以?- =10 3 cos sin x x 法二:因为,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=-, 所以2 2)cos (sin 4)cos (sin x x x x +=-,所以x x x x cos sin 84cos sin 21+=-,

三角函数高考题及练习题(含标准答案)

三角函数高考题及练习题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

三角函数高考题及练习题(含答案) 1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质. 2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等). 3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等. 1. 函数y =2sin 2? ???x -π 4-1是最小正周期为________的________(填“奇”或“偶”) 函数. 答案:π 奇 解析:y =-cos ? ???2x -π 2=-sin2x. 2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3 解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.

3. 函数y =2sin(3x +φ),? ???|φ|<π 2的一条对称轴为x =π12,则φ=________. 答案:π4 解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π 2 ,所 以φ=π4 . 4. 若f(x)=2sin ωx (0<ω<1)在区间? ???0,π 3上的最大值是2,则ω=________. 答案:34 解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在? ???0,π 3上单调递增,且在这个区间 上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=3 4 . 题型二 三角函数定义及应用问题 例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π. (1) 若点P 的坐标是??? ?12,3 2,求f(θ)的值; (2) 若点P(x ,y)为平面区域???? ?x +y ≥1, x ≤1, y ≤1 上的一个动点,试确定角θ的取值范围,并求 函数f(θ)的最小值和最大值. 解:(1) 根据三角函数定义得sin θ= 32,cos θ=1 2 ,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π 3 ,从而求出 f(θ)=2). (2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ? ???θ+π 6, ∴ 当θ=0,f (θ)min =1;当θ=π 3 ,f (θ)max =2. (注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

高中数学基础知识典型例题4——三角函数

高中数学基础知识典型例题4——三角函数

数学基础知识与典型例题 第四章三角函数 三 角 函 数 相 关 知 识 关 系 表 角的概念1.①与α(0°≤α<360°)终边相 同的角的集合 (角α与角β的终边重 合):{}Z k k∈ + ? =, 360 |α β β ; ②终边在x轴上的角的集 合:{}Z k k∈ ? =, 180 | β β; ③终边在y轴上的角的集合: {}Z k k∈ + ? =, 90 180 | β β; ④终边在坐标轴上的角的集 合:{}Z k k∈ ? =, 90 | β β. 2. 角度与弧度的互换关系: 360°=2π180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数, 例1.已知2弧度的圆心 角所对的弦长为2,那么 这个圆心角所对的弧长 为( ) ()2 A ()sin2 B 2 () sin1 C ()2sin1 D 例 2. 已知α为第三象 限角,则 2 α 所在的象限 是( ) (A)第一或第二象限 (B)第二或第三象限 (C)第一或第三象限 (D)第二或第四象限 负角的弧度数为负数,零角的 弧度数为零,熟记特殊角的弧度制. 3.弧度制下,扇形弧长公式 1 2 r α =,扇形面积公 式2 11 || 22 S R Rα ==,其中α为弧所对圆心角的弧 度数。 三 角 函 数 的 定 义 1.三角函数定义:利用直角坐标系,可以把直角三角 形中的三角函数推广到任意角的三角数.在α终边 上任取一点(,) P x y(与原点不重合),记 22 || r OP x y ==+, 则sin y r α=,cos x r α=,tan y x α=,cot x y α=。 注: ⑴三角函数值只与角α的终边的位置有关,由 角α的大小唯一确定,∴三角函数是以角为自变量, 以比值为函数值的函数. ⑵根据三角函数定义可以推出一些三角公式: ①诱导公式:即 2 kπ αα ±→或 90 2 k αα ±→ 之间函数值关系() k Z ∈,其规律是“奇变偶不变, 符号看象限”;如sin(270) α -=cosα - ②同角三角函数关系式:平方关系,倒数关系,商 数关系. ⑶重视用定义解题. ⑷三角函数线是通过有向线段直观地表示出角的各 种三角函数值的一种图示方法.如单位圆 例 3.已知角α的终边经 过P(4,-3),求 2sinα+cosα的值. 例 4.若α是第三象限 角,且cos cos 22 θθ =-, 则 2 θ 是( ) ()A第一象限角 ()B第二象限角 () C第三象限角 () D第四象限角 例5. 若cos0, θ>sin20, θ< 且

三角函数经典题目(带答案)

三角函数经典题目练习 1.已知α123 1、已知角 2、P (x ,5则sin 1、已知2、函数(f 3、已知 象限1. 已知π2 2.设0≤α是 . sin αtan x 若<0___. 5 3 sin +-= m m θ,524cos +-=m m θ(πθπ<<2),则 =θ________. 1tan tan αα,是关于x 的方程2230x kx k -+-=的 个实根,且παπ2 7 3<<,则ααsin cos +的值 . 0)13(22=++-m x x 的两根为 ()πθθθ2,0,cos ,sin ∈,求(1)m =_______ (2)θθθθtan 1cos cot 1sin -+-=________. α )4 15 tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ?? ? ??-θπ23= α终边上P (-4,3), ) 2 9sin()211cos() sin()2 cos(απαπαπαπ +---+= . 已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θ θtan 1tan 1_________ tan 20tan 4020tan 40?+????= α∈(0, 2π),若sin α=5 3 ,则2cos(α+4π)= . 3 36 cos = ?? ? ??-απ,则?? ? ??+απ6 5cos =______,)6 5απ -- =_____..

【知二求多】 1、已知cos ??? ??-2βα= -54,sin ??? ? ? -2αβ=135,且 0<β<2π<α<π,则cos 2 βα+=____. 2已知tan α=43,cos(α+β)=-14 11 , α、β为锐角, 则cos β=______. 【方法套路】 1、设2 1sin sin =+βα,31 cos cos =+βα,则 )cos(βα-=___ . 2.已知ββαcos 5)2cos(8++=0,则 αβαtan )tan(+= . 3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα 【给值求角】 1tan α=7 1 ,tan β=3 1,α,β均为锐角,则 α+2β= . 2、若sinA= 55,sinB=10 10,且A,B 均为钝角, 则A+B= . 【半角公式】 1α是第三象限,2524 sin - =α,则tan 2 α= . 2、已知01342 =+++a ax x (a >1)的两根为αtan , βtan ,且α,∈β ??-2 π,?? ? 2π, 则2 tan βα+=______ 3若 cos 22π2sin 4αα=- ? ?- ? ? ?,则cos sin αα+= . 4、若??????∈27,25ππα,则 ααsin 1sin 1-++= 5x 是第三象限角 x x x x x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++ ++-+=______ 【公式链】 1=+++οοοοΛ89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______ 六、给值求角 已知3 1 sin - =x ,写出满足下列关系x 取值集合 ] 3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x 七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________ 2、1)3 2tan(-- =π x y 定义域为_________ 【值域】 1、函数y =2sin ???? πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________ 2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________ 3、函数x x y sin 2sin 1+-= 的值域 4、函数x x y cos 1sin 21+-=的值域 5、函数x x y sin 2cos -=的值域 【解析式】 1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直 线x =π 3 对称,其中ω∈????-12,52.函数f (x )的解析式为________. 2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π 2 ) 的图象在y 轴上的截距为1,在相邻两最值点(x 0, 2),??? ?x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移 10 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________ 4、()()sin f x A x h ω?=++(0,0,)2A π ω?>>< 的图象 如图所示,求函数)(x f 的解析式;

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

三角函数典型例题剖析与规律总结00

学科: 数学任课教师:黄老师授课时间:2013年3月日(星期) 1 :00-1 :00 姓名年级:教学课题三角函数典型例题剖析与规律总结 阶段 基础(√)提高()强化()课时计划共次课第次课 课前 检查作业完成情况:__________________ 建议_________________________________________________________ 教学过程一:函数的定义域问题 1.求函数1 sin 2+ =x y的定义域。 分析:要求1 sin 2+ = y的定义域,只需求满足0 1 sin 2≥ + x的x集合,即只需求出满足 2 1 sin- ≥ x的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk2()Z k∈即可。 解:由题意知需0 1 sin 2≥ + x,也即需 2 1 sin- ≥ x①在一周期? ? ? ?? ? - 2 3 , 2 π π 上符合①的角为? ? ? ?? ? - 6 7 , 6 π π ,由此 可得到函数的定义域为? ? ? ?? ? + - 6 7 2, 6 2 π π π πk k()Z k∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1 ,0 log≠ > =a a x f y a 的函数,则其定义域由()x f确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y2 sin 2 3- =(2)2 sin 2 cos2- + =x y x 分析:利用1 cos≤ x与1 sin≤ x进行求解。 解:(1) 1 2 sin 1≤ ≤ -x∴[]5,1 5 1∈ ∴ ≤ ≤y y (2) ()[].0,4 ,1 sin 1 1 sin 1 sin 2 sin 2 sin 22 2 2 cos- ∈ ∴ ≤ ≤ - - - = - + - = - + =y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

《三角函数》高考真题理科大题总结及答案

《三角函数》大题总结 1.【2015高考新课标2,理17】ABC ?中,D 是BC 上的点,AD 平分BAC ∠, ABD ?面积是ADC ?面积的 2倍. (Ⅰ) 求 sin sin B C ∠∠; (Ⅱ)若1AD =,DC = BD 和AC 的长. 2.【2015江苏高考,15】在ABC ?中,已知 60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值. 3.【2015高考福建,理19】已知函数f()x 的图像是由函数()cos g x x =的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2 p 个单位长度. (Ⅰ)求函数f()x 的解析式,并求其图像的对称轴方程; (Ⅱ)已知关于x 的方程f()g()x x m +=在[0,2)p 内有两个不同的解,a b . (1)求实数m 的取值范围; (2)证明:2 2cos ) 1.5 m a b -=-( 4.【2015高考浙江,理16】在ABC ?中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4 A π =,22b a -=12 2c .

(1)求tan C 的值; (2)若ABC ?的面积为7,求b 的值. 5.【2015高考山东,理16】设()2sin cos cos 4f x x x x π??=-+ ?? ? . (Ⅰ)求()f x 的单调区间; (Ⅱ)在锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若0,12 A f a ?? == ??? ,求ABC ?面积的最大值. 6.【2015高考天津,理15】已知函数()22sin sin 6f x x x π??=-- ?? ? ,R x ∈ (I)求()f x 最小正周期; (II)求()f x 在区间[,]34 p p -上的最大值和最小值. 7.【2015高考安徽,理16】在ABC ?中,3,6,4 A A B A C π ===点D 在BC 边上,AD BD =,求AD 的长.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

【高中数学经典】三角函数的诱导公式重难点题型(举一反三)

【高中数学】三角函数的诱导公式重难点题型【举一反三系列】 三角函数的诱导公式 【知识点1诱导公式】 【知识点2诱导公式的记忆】 诱导公式一: sin(α+2kπ) = Sin a , cos(α + 2kπ) = COSα, taιι(α + 2kπ) = xana ,其中 k ∈Z 诱导公式二: sin(∕r + G) = -Sin a, cos(∕r+α) =—COSα, tan(∕r+α) = tana,其中keZ 诱导公式三: sin(-a) =-Sina, cos(-a) = COSa , tan(-a) = -taιιa ,其中k ∈Z 诱导公式四: cos(∕F -a) = -cosa, taιι(^?-a) = -tana,其中k ∈Z 诱导公式五: Sin π ——a 2 COS π ——a 2 = Sina ,其中R ∈Z 诱导公式六: Sin π —+a 2 COS —+a =-sinα ,其中k ∈Z U 丿

记忆11诀“奇变偶不变,符号看象限”,意思是说角k-90 ±a(k 为常整数)的三角函数值:当k 为奇数 时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视Q 为锐角 时原函数值的符号. 【考点1利用诱导公式求值】 【方法点拨】对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化 过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完 成求值. 【例1】(2018秋?道里区校级期末)已知点P(l,l)在角Q 的终边上,求下列各式的值. T 、 COS (Λ^ + α)sin(^? - a) (I )------------------------------------- ; tan(∕r + α) + sin 2 (彳-a) sin(- + α)cos(- 一 a) (II) 、 2 、——召—— cos^ a - sm^ a + tan(;T - a) 【分析】由条件利用任意角的三角函数的定义求得smα, cosα, Sna 的值,再利用诱导公式即可求得要 求式子的值. 【答案】解:?.?角α终边上有一点P(l,l), .x = l , y = l , r =|OP I= √7, Sill CL = — = _ , COS Ct = — = — , tan Ct — -- = It r 2 r 2 X ([) cos(∕r + α)sin(%-α) 、 -、,兀 、 tan(^? + α) + sιn^ (― 一 a) ./3∕r 3π ([[)SInq-+Q )COS (T _Q ) _ (γosα)(-smα) cos 2 a - sin 2 a + tan(∕r - a) cos 2a - sin 2a 一 tan a 【点睛】本题主要考查任意角的三角函数的定义,诱导公式在三角函数化简求值中的应用,考查了转化思 想,属于基础题. 【变式1-1】 (2019春?龙潭区校级月考)己知tan(^+ ?) = -!,求下列各式的值: -COSa ?smα ton a + cos 2(x

三角函数部分高考题(带答案)

3 22.设/XABC的内角A B, C所对的边长分别为q, b, c , ^acosB-bcosA =-c . 5 (I )求tan A cot B 的值; (U)求tan(A-B)的最大值. 3解析:(1)在左ABC中,由正弦定理及acosB-bcosA = -c 5 3 3 3 3 可得sin 人cos B-sinB cos A = -siiiC = - sin(A + B) = $ sin 人cos B + - cos A sin B 即siii A cos B = 4 cos A siii B ,则tail A cot 8 = 4: (II)由taiiAcotB = 4得tanA = 4tanB>0 一_ x tan A - tan B 3 tan B 3 “ 3 tan( A 一B) = -------------- = ---------- -- = ----------------- W - 1+tail A tail B l + 4taii_B cot B + 4 tan B 4 当且仅当4tanB = cotB,tmiB = i,taiiA = 2时,等号成立, 2 1 3 故当tail A = 2, tan ^ =—时,tan( A - B)的最大值为—. 5 4 23. ----------------------------------在△ABC 中,cosB = , cos C =—. 13 5 (I )求sin A的值; 33 (U)设ZVIBC的面积S AABC = —,求BC的长. 解: 512 (I )由cosB = 一一,得sinB = —, 13 13 4 3 由cos C =-,得sin C =-. 55 一33 所以sin A = sin(B + C) = sin B cos C + cos B sill C = —. (5) ................................................................................................................................... 分 33 1 33 (U)由S.ARC = 一得一xABxACxsinA = —, 2 2 2 33 由(I)知sinA =—, 65 故ABxAC = 65, (8) ................................................................................................................................... 分 又AC =竺主=史仙, sinC 13 20 13 故—AB2 =65, AB = — . 13 2 所以此=性叫11 siiiC (I)求刃的值;10分 24.己知函数/(x) = sin2a)x+j3 sin cox sin 尔+习2)(刃>0)的最小正周期为兀.

相关主题
文本预览
相关文档 最新文档