当前位置:文档之家› 数据驱动——从方法到实践

数据驱动——从方法到实践

数据驱动——从方法到实践
数据驱动——从方法到实践

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析上机作业

数值分析上机实验报告 选题:曲线拟合的最小二乘法 指导老师: 专业: 学号: 姓名:

课题八曲线拟合的最小二乘法 一、问题提出 从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。 在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y 与时间t 的拟合曲线。 二、要求 1、用最小二乘法进行曲线拟合; 2、近似解析表达式为()33221t a t a t a t ++=?; 3、打印出拟合函数()t ?,并打印出()j t ?与()j t y 的误差,12,,2,1 =j ; 4、另外选取一个近似表达式,尝试拟合效果的比较; 5、*绘制出曲线拟合图*。 三、目的和意义 1、掌握曲线拟合的最小二乘法; 2、最小二乘法亦可用于解超定线代数方程组; 3、探索拟合函数的选择与拟合精度间的关系。 四、计算公式 对于给定的测量数据(x i ,f i )(i=1,2,…,n ),设函数分布为 ∑==m j j j x a x y 0)()(? 特别的,取)(x j ?为多项式 j j x x =)(? (j=0, 1,…,m )

则根据最小二乘法原理,可以构造泛函 ∑∑==-=n i m j i j j i m x a f a a a H 1 10))((),,,(? 令 0=??k a H (k=0, 1,…,m ) 则可以得到法方程 ???? ??????? ?=????????????????????????),(),(),(),(),(),(),(),(),(),(),(),(1010101111000100m m m m m m m m f f f a a a ????????????????????? 求该解方程组,则可以得到解m a a a ,,,10 ,因此可得到数据的最小二乘解 ∑=≈m j j j x a x f 0)()(? 曲线拟合:实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。 五、结构程序设计 在程序结构方面主要是按照顺序结构进行设计,在进行曲线的拟合时,为了进行比较,在程序设计中,直接调用了最小二乘法的拟合函数polyfit ,并且依次调用了plot 、figure 、hold on 函数进行图象的绘制,最后调用了一个绝对值函数abs 用于计算拟合函数与原有数据的误差,进行拟合效果的比较。

顶板动态监测系统

顶板动态监测系统 KJ616 "煤矿顶板动态监测系统"的主要特点是采用环行总线结构,可涵盖全矿井多类型矿压参数监测。顶板动态监测系统以计算机网络为主体,兼容井下通讯电缆、光缆专线、以太网络多种数据传输模式。监测参数包括:回采工作面支架作阻力检测、巷道顶板下沉量监测、锚杆载荷应力检测、岩层(煤层)内部应力(钻孔应力)检测四个方面。深度剖析顶板动态监测系统的科学原理为何? 具有可靠性和安全性高,免维护特性的智能化数字模型显示的传感器是新一代机械分离传感器更新,其具有光控制的数字显示,报警,体积小,操作方便等特点,成为目前矿山压力检测系统方面的一大技术指标与加工方案,在保持原有技术的基础上添加新元素,增加新感觉,为铸就最适合行业发展的技术设备奠定坚实空间。这不仅是追求的技术巅峰,更是为满足消费者与科技发展需要所必须深究的课题,相信经过我们的深度剖析,您会对该技术发展领域有更深层次的了解。 其监测方法为:顶板离层仪的深、浅刻度读数等于移动量减初始值;当锚杆支护范围内顶板下沉时,顶板离层仪的深、浅两个基点的刻度都有变化,锚索支护范围内顶板下沉而锚杆支护范围内顶板不动时,顶板离层仪只有深基点刻度变化,若锚杆、锚索支护范围内的

顶板同时下沉时,顶板离层仪深、浅基点上的刻度都有变化,而深基点刻度的变化量即是顶板下沉量的总和。 以上就是为大家带来的关于顶板动态监测系统的科学原理技术分析,前卫的技术思路,专注的行业发展,最严谨的技术方案,最有效的产品策略,质量坚实保障。 无线数据收发机让矿山压力监测神采飞扬 无线数据收发机是矿山压力监测系统中常见的也是十分重要的数据解析技术,不仅承接来数据交换中转站的作用,而且在保障整体技术前进的同时也起着不可估量的作用,该设备装在井下工作面与巷道交叉口,可随时根据采动需要调整安装位置与基站进行双向通讯,它既可接收井上下达的命令数据,也可主动向地面中心站发送采集数据信号。 今天,我们就带大家了解一下该技术的各种详情,为大家带来满意技术咨询。 1、低功耗设计,具备报警和通讯状态指示功能。 2、抗干扰能力强,可靠性高,体积小、重量轻; 3、收发频率:433MHz;防护等级:IP54; 4、防爆形式:矿用本质安全型,防爆标志为150℃。 系统结构与组成 "煤矿顶板动态监测系统"的主要特点是采用环行总线结构,可涵盖全

数值分析大作业-三、四、五、六、七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用 程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0; end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +??=-= ?-???解:Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while nerrorlim n=n+1; else break ; end x0=x; end disp(['迭代次数: n=',num2str(n)]) disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x) y=log((513+0.6651*x)/(513-0.6651*x))-x/(1400*0.0918); end

数值分析上机作业

昆明理工大学工科研究生《数值分析》上机实验 学院:材料科学与工程学院 专业:材料物理与化学 学号:2011230024 姓名: 郑录 任课教师:胡杰

P277-E1 1.已知矩阵A= 10787 7565 86109 75910 ?? ?? ?? ?? ?? ??,B= 23456 44567 03678 00289 00010 ?? ?? ?? ?? ?? ?? ?? ?? ,错误!未找到引用源。 = 11/21/31/41/51/6 1/21/31/41/51/61/7 1/31/41/51/61/71/8 1/41/51/61/71/81/9 1/51/61/71/81/91/10 1/61/71/81/91/101/11?????????????????? (1)用MA TLAB函数“eig”求矩阵全部特征值。 (2)用基本QR算法求全部特征值(可用MA TLAB函数“qr”实现矩阵的QR分解)。解:MA TLAB程序如下: 求矩阵A的特征值: clear; A=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10]; E=eig(A) 输出结果: 求矩阵B的特征值: clear; B=[2 3 4 5 6;4 4 5 6 7;0 3 6 7 8;0 0 2 8 9;0 0 0 1 0]; E=eig(B) 输出结果:

求矩阵错误!未找到引用源。的特征值: clear; 错误!未找到引用源。=[1 1/2 1/3 1/4 1/5 1/6; 1/2 1/3 1/4 1/5 1/6 1/7; 1/3 1/4 1/5 1/6 1/7 1/8; 1/4 1/5 1/6 1/7 1/8 1/9;1/5 1/6 1/7 1/8 1/9 1/10; 1/6 1/7 1/8 1/9 1/10 1/11]; E=eig(错误!未找到引用源。) 输出结果: (2)A= 10 7877565861097 5 9 10 第一步:A0=hess(A);[Q0,R0]=qr(A0);A1=R0*Q0 返回得到: 第二部:[Q1,R1]=qr(A1);A2=R1*Q1

数值分析大作业三 四 五 六 七

大作业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用程序. 解:Matlab 程序如下: 函数m 文件:fu.m function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件:dfu.m function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序Newton.m clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:');

flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1; while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)=ep flag=0;

end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =-= ?-???解: Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1;

数值计算方法作业

数值计算方法作业 姓名:李琦 学号:062410124 求 013=--x x 在x=1.5附近的一个根。 一.牛顿下山法: #include #include float f(float x) /* 定义函数f(x) */ { return x*x*x-x-1; } void main() { float x0,x1=1.5; x0=1; for(;;) { printf (" x0=%f",x0); printf (" x1=%f\n",x1); x0=x1; x1=x0-((x0*x0*x0-x0-1)/(3*x0*x0-1)); if(x0==x1) break; } printf(" x=%f\n",x1); }

二.加权法 #include #include float f(float x) /* 定义函数f(x) */ { return x*x*x-1; } float f1(float x) /* 定义函数f(x)的导数*/ { return 3*x*x; } void main() { float x0,x1=1.5,c; c=f1(x1);x0=1; printf("c=%f\n",c); for(;;) { printf (" x0=%f",x0); printf (" x1=%f\n",x1); x0=x1; x1=(f(x0)-c*x0)/(1-c); if(x0==x1) break; } printf("x=%f\n",x1); }

三.单点弦法: #include #include float f(float x) /* 定义函数f(x) */ { return x*x*x-x-1; } void main() { float x1,x0=1.5,a; a=f(x0); x1=1; for(;;) { printf (" x0=%f",x0); printf (" x1=%f\n",x1); x0=x1; x1=x0-(f(x0)*(x0-1.5)/(f(x0)-a)); if(x0==x1) break; } printf(" x=%f\n",x1); }

矿井水文动态监测系统技术规格书.doc

技术规格书 编制: 地测科: 地测副总: 总工程师: XX 矿 二零一零年七月十二日 一、总则 1、本规格书适用于矿综合水文动态监测系统。它提出了该系统及

其附属设备的功能设计、结构、性能、安装和实验等方面的技术参数。 2、本规格书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应保证提供符合国家标准、规范和本规格书的优质产品及其相应的优质服务。对国家有关安全、环境保护等强制性标准,必须满足其要求。 3、如果供方对本规格书的条文没有书面提出异议,那么需方可以认为供方提出的产品完全符合本规格书的要求。如有异议,不管是多么微小都应在投标书中以“对规格书中的意见和同规格书的偏差”为标题的专门章节中加以详细描述。 4、在签订合同之后,甲方有权提出因规范标准和规程发生变化而产生的一些补充要求,具体项目由甲方、供应方共同商定。 5、本规格书所使用的标准如遇与供方所执行的标准发生矛盾时,按较高标准执行。 6、设备采用的专利涉及到的全部费用均认为包含在设备报价中,供方应保证甲方不承担有关设备专利的一切费用。 7、本规格书未尽事宜,由供需双方在合同技术谈判时协商确定。 二、项目概况 矿井水害一直是制约我国煤炭生产的因素之一,严重威胁着煤矿的安全生产。在煤矿生产过程中,对采掘工作面的涌水量、水沟流量、含水层水位动态情况等进行监测,了解水文动态情况,及时发现危险征兆并采取预防措施,是一项非常重要的防治水工作。

目前,煤矿众多观测点的水文动态情况一般由人工定期逐点观测,一是需要观测人员多,且工作量大;二是观测密度满足不了水害预测预报对观测的实时性要求,特别是水害事故发生前,不能及时发现异常情况;三是难以同步获得各观测点数据;四是人工观测经常出现人为的观测误差。矿井综合水文动态监测系统可彻底解决上述问题。 三、系统总体要求 本次系统集成投标厂家需要建立矿井的综合水文动动态监测网络系统,包括地面水文遥测和井下水文监测2个子系统及其集成。 根据煤矿建设和生产的特点,此系统应满足: 1)硬件设备选型必须符合有关国家标准和行业标准,并通过国家技术监督局认定的型式检验。用于防爆环境的设备,还必须通过国家技术监督局认定的检测机构的防爆检验,并取得“防爆合格证”。下井设备还应取得国家煤矿安全局的“煤矿安全标志”,要充分考虑满足防爆、防尘、抗高温潮湿和电磁干扰的要求。地面系统充分考虑防雷和抗电磁干扰的设置。 2)在物理上和逻辑上都有考虑到网络通信的冗余,确保网络通路的安全。 3)系统应可靠、稳定性强、人机界面友好、操作简单、维护方便。 4)方案厂家对整个系统元器件的选型和配置,要求质量可靠,设备一流。并对整个系统的性能及所需软硬件作介绍。

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

地质灾害防治动态监测预警系统及其应用

二者互相协调发展的重要措施。应用 Technology Application D I G I T C W 技术 200DIGITCW 2019.07 参考文献 [1] 王冰.关于电子信息工程中的计算机网络技术[J].信息与电脑(理论版), 2019(06):170-171. [2] 薛董敏.分析计算机网络技术在电子信息工程领域中的应用研究[J].电脑编程技巧与维护,2017(23):73-74+79. [3] 孙涛,许凯.计算机网络技术在电子信息工程中的应用[J].当代教育实践与教学研究,2018(04):192. 随着社会经济的发展,人类活动空间日渐复杂,地质灾害事件逐年增加,每年因地质灾害死亡的人数众多,加强对地质灾害的防治尤为关键。针对地质灾害防治的监测预警系统具有动态性,可以根据灾害的不确定性进行预警分析,系统实时接收灾害现场最新数据,并对数据实时分析,再将数据上传到系统内,利用数据驱动技术实现数据的处理分析。 1 地质灾害防治动态监测预警系统的设计 1.1 监测预警系统设计 地质灾害防治监测预警系统的建立需要利用数据驱动技术。以数据库中的数据作为重要有,结合数据小波分析算法,从大量原始数据中获得有效信息,从而实现数据的预报、监控与诊断功能。人们利用监测预警系统可以对地质灾害数据加以研究,并将数据综合处理,建立地质灾害专家知识库,根据系统监测到的实时数据,实现对地质灾害的预警功能。地质灾害的发生具有极强的不确定性,无论是地质灾害发生的位置、灾害发生时间,还是灾害形式,都无法确定,导致人们无法预测灾害带来的后果。因此,本文通过对地质灾害防治动态监测预警系统的设计,结合地质灾害机理、监测方案与相关技术,将监测预警系统应用于地质灾害的防治中。 监测预警系统的用户控制端,一共包含三种功能。第一种功能为数据库,监测预警系统的数据库内有历史基础数据与监测到的地质数据,还有系统对地质情况实时监测到的数据。第二种功能是重大地质灾害隐患点监测预警功能。该部分内容包含预警模型库、初始预警分析以及校正结果,在动态数据驱动技术的应用下,模型驱动了系统进行初始预警分析,并对校正结果加以检验,检验数据的真实性。第三种功能是可视化显示与表达,其中包含对地质灾害的危险分析,系统支持动态展示功能;针对地质灾害 事件的决策会商,为综合判断提供有效依据[1] 。1.2 监测预警系统的实现 动态地质灾害监测预警系统以数据处理分析为主,通过地质灾害预警模型的建立,为监测预警系统的实现提供基础支持。监测预警系统中,信息管理平台是应用服务流引擎与动态数据驱动等技术研发而成的,并在物联网技术指导下完成对监测地质灾害数据的实时传输,利用预警数据库完成了监测预警系统的整体架构。系统共包含实时数据传输、动态数据展示以及系统管理等三 方面。 监测预警系统中实时监测数据集成模块是将各个地质灾害监测仪器上的数据,从数据库同步到监测预警系统监测中心,监测预警系统使用客户端程序完成数据的采集与处理。根据用户配置的时间间隔,监视到不同地质灾害监测仪器的数据变化情况,新增加的数据会通过WebService 传输到服务端,并添加到系统数据库内,将地质灾害监测预警系统当前运行状态记录到系统日之内[2]。 2 地质灾害防治动态监测预警系统的应用 地质灾害监测预警系统内一共包含5个模块,分别为数据配置、实时数据传输、监测数据处理、动态数据展示以及系统管理。系统的总体架构一共包含了基础数据库层、数据中间处理层、通用模块层、专业功能业务层和用户端表现层,某地针对滑坡地质灾害进行监测时,就用到了该系统。该地区西高东低,海报高度超过1600米,地质岩性从上到下依次为:26-40米厚的黄土,结构比较松散,有垂直裂隙现象,部分地段黄土厚度超过40米;粉质黏土,厚度超过3米,低于19米,透水性较弱;砂卵石层六米,透水性较强,该地区每年都会发生滑坡灾害。因此,人们使用监测预警系统进行监测,对滑坡后缘裂缝处设置自动位移计,针对地表变形速率、速度增量情况加以预测,最终得出四个预警等级。其中最高等级的滑坡状态有着高危险性,需要监测预警系统保持密切监测状态,并对可能影响范围内的所有人员进行疏散。 3 结束语 总而言之,随着我国社会经济的快速发展,各类资源不断开发,使我国地势条件变得日渐复杂,地质灾害发生频率日趋频繁。对此,建立地质灾害实时监测预警系统,实时监测地理信息情况,利用通讯系统将监测到的数据传输到监测预警系统数据服务中心,通过系统对数据的估算与分析,实现系统的地质灾害预警功能,从而降低地质灾害发生的频率。参考文献 [1] .地质灾害监测预警系统[J].中国地质灾害与防治学报,2016,27(02):2.[2] 谭明,丁华祥,李成钢.地质灾害GPS 实时监测预警系统关键技术探讨[J].地理信息世界,2014,21(02):103-107. 地质灾害防治动态监测预警系统及其应用 罗晴明 (广州中海达卫星导航技术股份有限公司,广州 511400) 摘要:根据地质灾害的形成原因,针对传统数据管理与实时监测数据处理分析问题,建立基于动态数据驱动技术的地质灾害防治动态监测预警系统。以网络环境为载体的动态监测系统,可以实现地质灾害信息的实时查询与处理,系统可以绘制监测曲线,对地质灾害进行自动预警功能,从而提高地质灾害的有效防治。 关键词:地质灾害;防治动态监测;预警系统doi :10.3969/J.ISSN.1672-7274.2019.07.162中图分类号:TP274;TN967.1 文献标示码:A 文章编码:1672-7274(2019)07-0200-01作者简介: 罗晴明,男,汉族,1988年生,江西省抚州市人,大专,研发方向为室内外定位系统。(接上页)

东南大学数值分析上机作业汇总

东南大学数值分析上机作业 汇总 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

数值分析上机报告 院系: 学号: 姓名:

目录 作业1、舍入误差与有效数 (1) 1、函数文件cxdd.m (1) 2、函数文件cddx.m (1) 3、两种方法有效位数对比 (1) 4、心得 (2) 作业2、Newton迭代法 (2) 1、通用程序函数文件 (3) 2、局部收敛性 (4) (1)最大δ值文件 (4) (2)验证局部收敛性 (4) 3、心得 (6) 作业3、列主元素Gauss消去法 (7) 1、列主元Gauss消去法的通用程序 (7) 2、解题中线性方程组 (7) 3、心得 (9) 作业4、三次样条插值函数 (10) 1、第一型三次样条插值函数通用程序: (10) 2、数据输入及计算结果 (12)

作业1、舍入误差与有效数 设∑ =-=N j N j S 2 2 11 ,其精确值为?? ? ??---1112321N N . (1)编制按从小到大的顺序1 1 131121222-? ??+-+-=N S N ,计算N S 的通用程序; (2)编制按从大到小的顺序()1 21 11111222-???+--+-=N N S N ,计算N S 的通用程序; (3)按两种顺序分别计算642101010,,S S S ,并指出有效位数; (4)通过本上机你明白了什么? 程序: 1、函数文件cxdd.m function S=cxdd(N) S=0; i=2.0; while (i<=N) S=S+1.0/(i*i-1); i=i+1; end script 运行结果(省略>>): S=cxdd(80) S= 0.737577 2、函数文件cddx.m function S=cddx (N) S=0; for i=N:-1:2 S=S+1/(i*i-1); end script 运行结果(省略>>): S=cddx(80) S= 0.737577 3、两种方法有效位数对比

项目预算执行动态监控平台

技术部分 一、信息集成方案及详细描述 1.项目概述 1.1.项目背景 根据《国家中医药管理局办公室关于印发2012年中医药部门公共卫生专项资金项目工作任务方案的通知》(国中医药办规财发(2012)27号)文件精神,为动态、准确、高效收集、分析和监控xxx基层单位中医药项目预算执行情况,基于国家中医药管理局中医药项目预算执行动态监控平台(以下简称“国家级平台”),建立xxx中医药项目预算执行动态监控平台(以下简称“省级平台”),直接监控xxx中医药项目执行单位的预算执行情况,满足国家和xxx对中医药项目管理工作的要求。省级平台是国家级平台二期工程的组成部分,为形成中医药项目国家级-省级-基层单位统一预算执行信息监控机制发挥重要作用。 1.2.建设目标 基于国家级平台,建设省级平台,监控中医药项目承担单位的项目预算执行动态过程,实现省级平台与国家级平台的有效衔接,规中医药项目预算执行,提升中医药项目经费合理使用水平,满足国家中医药管理局和xxx中医药管理局对中医药项目管理工作的要求。 1.3.建设思路 在国家级平台的基础上,以提升xxx中医药项目经费合理使用水平为根本,以xxx中医药项目经费预算执行动态监控为导向,坚持“统一规划、分布实施,统一目标、地方建设,统一标准、信息共享,统一机制、安全可靠”的原则,采用JAVA开发语言、SQL serve 数据库、B/S结构模式,构建省级平台,实现xxx 中医药项目预算执行情况的动态监控、汇总分析和数据交换。 2.需求分析 2.1.用户类型 根据不同的用户类型,省级平台分配的操作权限是不同的,主要从总体结构和权限管理角度进行分类说明。

数值分析作业

第二章 1. 题目:运用MATLAB编程实现牛顿迭代 2. 实验操作 1、打开MATLAB程序软件。 2、在MATLAB中编辑如下的M程序。 function [p1,err,k,y]=newton(f,df,p0,delta,max) %f 是要求根的方程(f(x)=0); %df 是f(x)的导数; %p0是所给初值,位于x*附近; %delta是给定允许误差; %max是迭代的最大次数; %p1是newton法求得的方程的近似解; %err是p0的误差估计; %k是迭代次数; p0 for k=1:max p1=p0-feval('f',p0)/feval('df',p0); err=abs(p1-p0); p0=p1; k p1 err y=feval('f',p1) if (err> newton('f','df',1.2,10^(-6),20) 3.实验结果

p0 = 1.2000 k =1 p1=1.1030 err=0.0970 y=0.0329 k= 2 p1=1.0524 err=0.0507 y=0.0084 k =3 p1=1.0264 err=0.0260 y=0.0021 k =4 p1=1.0133 err=0.0131 y=5.2963e-004 k =5 p1=1.0066 err=0.0066 y=1.3270e-004 k =6 p1=1.0033 err=0.0033 y=3.3211e-005 k =7 p1=1.0017 err=0.0017 y=8.3074e-006 k =8 p1=1.0008 err=8.3157e-004 y = 2.0774e-006 k =9 p1=1.0004 err=4.1596e-004 y =5.1943e-007 k=10 p1=1.0002 err=2.0802e-004 y= 1.2987e-007 k=11 p1=1.0001 err=1.0402e-004 y =3.2468e-008 k=12 p1=1.0001 err=5.2014e-005 y=8.1170e-009 k=13 p1=1.0000 err=2.6008e-005 y= 2.0293e-009 k=14 p1=1.0000 err=1.3004e-005 y=5.0732e-010 k=15 p1 =1.0000 err=6.5020e-006 y=1.2683e-010 k=16 p1 =1.0000 err=3.2510e-006 y=3.1708e-011 k=17 p1 =1.0000 err=1.6255e-006 y =7.9272e-012 k=18 p1 =1.0000 err =8.1279e-007 y= 1.9820e-012 ans = 1.0000 结果说明:经过18次迭代得到精确解为1,误差为8.1279e-007。

数值分析大作业

数值分析报大作业 班级:铁道2班 专业:道路与铁道工程 姓名:蔡敦锦 学号:13011260

一、序言 该数值分析大作业是通过C语言程序编程在Microsoft Visual C++ 6.0编程软件上运行实现的。本来是打算用Matlab软间来计算非线性方程的根的。学习Matlab也差不多有一个多月了,感觉自己编程做题应该没什么问题了;但是当自己真心的去编程、运行时才发现有很多错误,花了一天时间修改、调试程序都没能得到自己满意的结果。所以,我选择了自己比较熟悉的C程序语言来编程解决非线性的求值问题,由于本作业是为了比较几种方法求值问题的收敛速度和精度的差异,选择了一个相对常见的非线性函数来反映其差异,程序运行所得结果我个人比较满意。编写C语言,感觉比较上手,程序出现问题也能比较熟练的解决。最终就决定上交一份C程序语言编程的求值程序了!

二、选题 本作业的目的是为了加深对非线性方程求根方法的二分法、简单迭代法、、牛顿迭代法弦截法等的构造过程的理解;能将各种方法的算法描述正确并且能够改编为程序并在计算机上实现程序的正确合理的运行,能得到自己满意的结果,并且能调试修改程序中可能出现的问题和程序功能的增减修改。本次程序是为了比较各种方法在求解同一非线性方程根时,在收敛情况上的差异。 为了达到上面的条件我选择自己比较熟悉的语言—C语言来编程,所选题目为计算方程f(x)=x3-2x-5=0在区间[2,3]内其最后两近似值的差的绝对值小于等于5 ?的根的几种方法的比较。 110- 本文将二分法、牛顿法、简单迭代法、弦截法及加速收敛法这五种方法在同一个程序中以函数调用的方式来实现,比较简洁明了,所得结果能很好的比较,便于分析;发现问题和得出结论。

数值计算方法第4次作业

第四章 问题一 一、问题综述 在离地球表面高度为y处的重力加速度如下: 计算高度y=55000m处的重力加速度值。 二、问题分析 以高度y作为自变量,重力加速度的值为因变量。得到以下信息: f(0)=9.8100; f(30000)=9.7487; f(60000)=9.6879; f(90000)=9.6278; f(120000)=9.5682; 本题要求的就是f(55000)的值。 以下将采用课堂中学到的Lagrange插值多项式法、Newton插值多项式法、分段低次插值法和样条插值法求解该问题。 三、问题解决 1. lagrange插值多项式法 对某个多项式函数,已知有给定的k+ 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:

其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: 拉格朗日基本多项式的特点是在上取值为1,在其它的点上取值为0。 源程序lagrange.m function [c,f]=lagrange(x,y,a) % 输入:x是自变量的矩阵;y是因变量的矩阵;a是要计算的值的自变量; % 输出:c是插值多项式系数矩阵;f是所求自变量对应的因变量; m=length(x); l=zeros(m,m); % l是权矩阵 f=0; for i=1:m v=1; for j=1:m if i~=j v=conv(v,poly(x(j)))/(x(i)-x(j)); % v是l_i(x)的系数矩阵 end end l(i,:)=v; % l矩阵的每一行都是x从高次到低次的系数矩阵 end c=vpa(y*l,10); % 对应阶次的系数相加,乘以y,显示10位有效数字 for k=1:m f=f+c(k)*a^(m-k); end 输入矩阵 x=[0 30000 60000 90000 120000] y=[9.81 9.7487 9.6879 9.6278 9.5682] a=55000 再运行源函数,可得: c = [ -2.057613169e-23, 4.938271605e-18, -3.703703702e-14, -0.000002046111111, 9.81] f = 9.6979851723251649906109417384537

数据驱动建模和控制系统设计案例研究

数据驱动建模和控制系统设计案例研究 Motor Control Case Study in Data-Driven Modeling and Control Design 迈斯沃克软件公司 作者:PravallikaVinnakota 摘要:本文以简单的直流电机控制系统为例,介绍如何从输入输出数据辨识对象模型,使用辨识的模型来设计控制器并予以实 施。工作流程包括以下步骤:采集数据,辨识线性和非线性对象模型,设计和仿真反馈控制器以及在嵌入式微处理器上实施这些控制器以便实时测试。在物理原型或对象硬件上调节控制器可能造成不安全运行状态甚至损坏硬件。一种更可靠的方法是构建一个对象模型并进行仿真,在不同的运行条件下验证控制器,以便无风险地运行假设情景。当机理建模不可行时,备选方法是通过对象的输入输出数据来开发模型。一个低阶的线性模型可能足以用来设计基本控制器。但较高性能的控制器的详细分析和设计需要一个具有较高精度的模型,且可能是非线性模型。 直流电机:控制设计目标 物理系统是通过电机驱动连接到Arduino Uno 板卡上的一台直流电机(图 1)。我们想为这台电机设计一个用于跟踪参考位置的反馈控制器。该控制器将基于电机位置参考数据生成合适的电压命令。此电压作用于电机时,会促使电机产生扭转电机轴的扭矩。我们将使用电位计测量电机轴旋转的角度,然后将此角度反馈给控制器。 电机驱动集成电路 (IC) 增加了驱动电流并能够双向驱动电机。我们通过Arduino 板卡上的“模拟输入”引脚接收电机位置数据,然后计算参考位置与实际位置(控制器输入)之间的误差。我们将一个电压命令(控制器输出)发送到板卡上的两个“模拟输出”引脚,为 PWM 信号。这些信号连接到驱动电路,为电机提供适当的驱动电流。 控制器必须保持系统稳定,并以最小的稳态误差和超调量提供快速参考跟踪。 图 1. 连接直流电机的Arduino 板卡

东南大学-数值分析上机题作业-MATLAB版

2015.1.9 上机作业题报告 JONMMX 2000

1.Chapter 1 1.1题目 设S N =∑1j 2?1 N j=2 ,其精确值为 )1 1 123(21+--N N 。 (1)编制按从大到小的顺序1 1 131121222-+ ??+-+-=N S N ,计算S N 的通用程序。 (2)编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 (3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么? 1.2程序 1.3运行结果

1.4结果分析 按从大到小的顺序,有效位数分别为:6,4,3。 按从小到大的顺序,有效位数分别为:5,6,6。 可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。因此,采取从小到大的顺序累加得到的结果更加精确。 2.Chapter 2 2.1题目 (1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。 (2)给定方程03 )(3 =-=x x x f ,易知其有三个根3,0,3321= *=*-=*x x x ○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。试确定尽可能大的δ。 ○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。 (3)通过本上机题,你明白了什么? 2.2程序

数值计算大作业

数值计算大作业 题目一、非线性方程求根 1.题目 假设人口随时间和当时人口数目成比例连续增长,在此假设下人口在短期内的增长建立数学模型。 (1)如果令()N t 表示在t 时刻的人口数目,β 表示固定的人口出生率,则人口数目满足微分方程() ()dN t N t dt β=,此方程的解为0()=t N t N e β; (2)如果允许移民移入且速率为恒定的v ,则微分方程变成() ()dN t N t v dt β=+, 此方程的解为 0()=+ (1) t t v N t N e e βββ -; 假设某地区初始有1000000人,在第一年有435000人移入,又假设在第一年年底该地区人口数量1564000人,试通过下面的方程确定人口出生率β,精确到 410-;且通过这个数值来预测第二年年末的人口数,假设移民速度v 保持不变。 435000 1564000=1000000(1) e e βββ + - 2.数学原理 采用牛顿迭代法,牛顿迭代法的数学原理是,对于方程0)(=x f ,如果) (x f 是线性函数,则它的求根是很容易的,牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程0)(=x f 逐步归结为某种线性方程来求解。 设已知方程0)(=x f 有近似根k x (假定0)(≠'x f ),将函数)(x f 在点k x 进行泰勒展开,有 . ))(()()(???+-'+≈k k k x x x f x f x f 于是方程0)(=x f 可近似地表示为 ))(()(=-'+k k x x x f x f 这是个线性方程,记其根为1k x +,则1k x +的计算公式为

相关主题
文本预览
相关文档 最新文档