当前位置:文档之家› 雨水流量计算公式

雨水流量计算公式

雨水流量计算公式

Qy=Ψ·q·F计算

式中:

Qy—设计雨水流量(L/s); Ψ—径流系数;取0.9

q—暴雨强度(L/s·ha);

F—汇水面积(ha)

其中

式中:

P—设计重现期,取2年

t—降雨历时(min);取5min

则q5=414L/(s·ha)(p=2、t=5min)

汽车空气流量、喷油脉宽、燃油修正量数学计算方法

发动机实际工作数据计算方法 在发动机的故障诊断中,由于数据流能够动态反映发动机的实际工作状态,所以对判断故障的成因可起到一定的辅助作用。在数据流中有些参数与其他参数关联较小,可以直接判断其数值是否正常,如蓄电池电压,冷却温度和发动机标准怠速等。而有些参数与其他参数有关,则不能简单地判断其数值是否正常,如发动机转速、空气流量、喷油脉宽等。对与后者,需要将相关参数共同加以考虑,通过数值分析来判断发动机的故障。 发动机的常见故障可分为2类,一类是充气不足,另一类是失火,失火是指输出扭矩与充气量不符,故障现象表现为发动机输出扭矩达不到驾驶员的期望值。通过分析空气流量、喷油脉宽和燃油修正量等参数,可以准确地找到以上述故障原因。 1.空气流量 正常状态下,发动机的输出扭矩取决于空气流量。空气流量与其他参数 关系如下: F=0.029NVP/T 其中F为实际空气流量(g/s),N为发动机转速(r/min),V为发动机排量(L),P为节气门后的空气绝对压力(KPA),T为进气的绝对温 度(K),其数值为摄氏温度值加上273.15,如进气温度为30度时, T=273.15+30 2.喷油脉宽 喷油脉宽是根据已经确定的空气流量,基于理想空燃比来确定的,对于 非气缸内喷射发动机,他与空气流量在怠速状态时关系如下: W=(1+ 入)CF/NM 其中W为期望喷油脉宽(ms),入为燃油修正量,C为常数,根据大量的实车测量,其值约为2500,F为空气流量(g/s),N为发动机转 速(r/min),M为发动机气缸数。 3.燃油修正量 燃油修正量是从氧传感器信号中提取的系统误差值,他可以反映混合气的浓度变化趋势。 入=入stft+入ltft 其中入为燃油修正量(%),入stft为短期燃油修正量,入ltfr为长期燃油修正量(%)

生活给水设计秒流量的概率计算方法

生活给水设计秒流量的概率计算方法 摘要:本文分别介绍了国内外在计算生活给水设计秒流量时采用的常用概率理论方法,即亨特概率法和俄罗斯概率法。并对其理论原理,计算方法及特点进行了阐述。最后对两种方法进行比较。 关键词:给水设计秒流量概率法卫生器具 1 前 生活用水设计秒流量反映了给水排水系统瞬时高峰用水规律的设计流量。以L/s计。用于确定给水管管径和排水管管径,计算给水管系的水头损失和排水管道的坡度、充满度,以及选用水泵等 世界各国进行了不少水量方面的研究,并制定出各自室内给水管道流量的计算方法。室内给水管道流量的计算方法有平方根法、概率理论法 目前,国外应用的方法皆以概率为理论基础,概率计算是所有新的设计方法的基础。国外不仅早已建立了以概率理论为基础的秒流量计算式,而且在近几十年来,对用水工况进行了长期的大量的研究,至今己获得足够的可以更完善地加工整理设计秒流量计算方法的资料,这对我国设计秒流量计算方法的改进具有重要的参考价值。虽然许多国家均采用概率方法为基础,但由于对数据的选取以及处理方式不同,所产生的方法不同,以美国的亨特概率方法和俄罗斯的概率方法为代表 2 概率计算方 2.1 亨特概率方 2.1.1 亨特概率法的建立 [1 亨特概率法由美国的亨特(Roy B.Hunter)于1924年提出,并在1940年以后发展成熟,得到承认。其基本原理是将系统中卫生器具的使用看作一个随机变量,各种卫生器具的使用是独立的,使用中不存在相互联系,可用二项分布的数学模型来描述秒流量这一随机变量

假定某给水管段上连接有n个卫生器具,各个器具的开启和关闭相互独立,每个器具的额定流量为q0,则通过该计算管段的最大给水设计秒流量为q0n,最小给水流量为0,任意时刻通过该管段的给水秒流量q(0≤q≤q0)。设计系统应降低管材耗量,并保证不间断供水,以满足用水高峰时的用水量。假设用水高峰时每个卫生器具的使用概率为p,则不被使用的概率为(1-p),那么在用水高峰时,n个卫生器具中有i个同时使用的概率为 (2-1 亨特的定义,对根据于只有一种卫生器具构成单一系统,表示如下 (2-2 其中:Pm—至多有m个器具同时的概率值 m— 卫生器具同时使用个数设计值 p—用水高峰期单个卫生器具的使用概率 n—管段连接的卫生器具数 Pr—供水保证值,在亨特概率方法中采用0.99 由上式可以得知,在供水保证值Pr给出的情况下,可得在总卫生器具n个中,同时起作用的卫生器具数目r的值 由上式(2-2)知,n个卫生器具中有r个作用,r是0到n的任意数,把r从0到n的概率全部想加起来可得 (2-3 其中:式中符号同前 利用(式2.2)在已知N,P的条件下,可求出满足Pm≥0.99的m值。卫生器具同时使用个数设计值的概念与设计秒流量的概念想对应的计算管段的设计秒流量为 qg=q0 式中 qg——计算管段的设计秒流量,L/S

建筑电气设计相关计算公式大全

一、常用的需要系数负荷计算方法 1、用电设备组的计算负荷(三相): 有功计算负荷 Pjs=Kx·Pe(Kw); 无功计算负荷 Qjs=Pjs·tgψ(Kvar); 视在功率计算负荷Sjs=√ ̄Pjs2+ Qjs2(KVA); 计算电流 Ijs=Sjs/√ ̄3·Ux·Cosψ(A)。 式中:Pe---用电设备组额定容量(Kw); Cosψ---电网或供电的功率因数余弦值(见下表); tgψ ---功率因数的正切值(见下表); Ux---标称线电压(Kv)。 Kx---需要系数(见下表) 提示:有感抗负荷(电机动力)时的计算电流,即: Ijs=Sjs/√ ̄3·Ux·Cosψ·η(A) η---感抗负荷效率系数,一般取值0.65~0.85。 民用建筑(酒店)主要用电设备需要系数Kx及Cosψ、tgψ的取值表: 注:照明负荷中有感抗负荷时,参见照明设计。

2、配电干线或变电所的计算负荷: ⑴、根据设备组的负荷计算确定后,来计算配电干线的负荷,方法如下:总有功计算负荷∑Pjs=K∑·∑(Kx·Pe); 总无功计算负荷∑Qjs= K∑·∑(Pjs·tg); 总视在功率计算负荷∑Sjs=√ ̄(∑Pjs)2+(∑Qjs)2。 配电干线计算电流∑Ijs=∑Sjs/√ ̄3·Ux·Cosψ(A)。 式中:∑---总矢量之和代号; K∑---同期系数(取值见下表1)。 ⑵、变电所变压器容量的计算,根据低压配电干线计算负荷汇总后进行计算,参照上述方法进行。即: ∑Sjs变= K∑·∑Sjs干线(K∑取值范围见下表2)。 变压器容量确定:S变=Sjs×1.26= (KVA)。 (载容率为80﹪计算,百分比系数取1.26,消防负荷可以不计在内)。变压器容量估算S变= Pjs×K×1.26= Pjs×1.063×1.26= (Kva)。 同期系数K∑值表: 计算负荷表(参考格式):

额定空气流量的计算

摩托车空气滤清器性能检测方法探讨 -------------------------------------------------------------------------------- 新闻来源:摩托车行情发布时间:2005-8-20 15:11:18 浏览次数:1727次 空气滤清器(下简称空滤器)是摩托车发动机进气系统的重要部件,主要是滤去空气中的灰尘、杂物和水份,以减少发动机气缸、活塞、曲轴等运动部件的磨损及防止化油器孔道堵塞,部分空滤器还兼有进气消声作用。空滤器既是性能部件又是功能部件,尤其是滤清效率、通气阻力等性能参数直接影响发动机的动力性、燃油经济性、使用可靠性和耐久性等。很多整车厂和专业厂对空滤器各项检测试验数据不够重视,没有认识到空滤器性能检测不准确会直接影响与化油器的精确匹配。 目前,摩托车空滤器现有技术标准和检测方法执行的是QC/T 230-1997《摩托车和轻便摩托车空气滤清器技术条件》和QC/T 29117.21-93《摩托车和轻便摩托车产品质量检验发动机空气滤清器质量评定方法》。随着摩托车检测技术的发展,这2个标准中的部分技术要求也应进行相应的修改。 1、额定空气流量 1.1 额定空气流量的计算 额定空气流量的计算公式为: Q=0.06nVnεη/C (1) 式中:Q——额定空气流量,m3/h n——发动机额定转速,r/min Vn——发动机排量,L ε——发动机充气系数 η——脉冲系数,取值参照标准 C——发动机冲程系数 求单缸二冲程和四冲程发动机额定空气流量时,(1)式可简化为: 二冲程发动机额定空气流量:Q=0.054nVn(2) 四冲程发动机额定空气流量:Q=0.0639nVn(3)

雨水管径计算软件

雨水管径计算软件 【篇一:雨水流量计算公式】 雨水流量计算公式: 式中:q——雨水设计流量(l/s); 根据不同地貌选择径流系数 f——汇水面积(ha); 式中:p——设计重现期(a); t——降雨历时(min)。 【篇二:雨水管道挖土方的计算规则】 雨水管道挖土方的计算规则 径变0.7 米,怎么就不计算了。因为在挖井室圆形土方时你一定要放点坡的。我在上面的例式中没有增加放坡量也没有扣减收口处的土方,我折算过增加的土方和扣除的土方大体差不多,所以相互抵消了。 【篇三:雨水管渠的设计计算】 第九章雨水管渠的设计计算 (一)教学要求: 1、熟练掌握雨水设计流量的确定方法; 2、了解截流制合流式排水管渠的设计; 3、掌握管道平面图和纵剖面图的绘制。 (二)教学内容: 1、雨量分析及暴雨强度公式; 2、雨水管网设计流量计算; 3、雨水管网设计与计算; 4、雨水径流调节; 5、排洪沟设计与计算; 6、合流制管网设计与计算。 (三)重点: 雨水管网设计计算、合流制管网设计计算。 第一节雨量分析及暴雨强度公式 一、雨量分析 1. 降雨量

降雨量指单位地面面积上在一定时间内降雨的雨水体积,其计量单 位为(体积/时间)/面积。由于体积除以面积等于长度,所以降雨量 的单位又可以采用长度/时间。这时降雨量又称为单位时间内的降雨 深度。常用的降雨量统计数据计量单位有: 年平均降雨量:指多年观测的各年降雨量的平均值,计量单位用 mm/a; 月平均降雨量:指多年观测的各月降雨量的平均值,计量单位用 mm/月; 最大日降雨量:指多年观测的各年中降雨量最大的一日的降雨量, 计量单位用mm/d。 2. 雨量的数据整理 自记雨量计所记录的数据一般是每场雨的累积降雨量(mm)和降 雨时间(min)之间的对应关系,以降雨时间为横坐标和以累计降雨 量为纵坐标绘制的曲线称为降雨量累积曲线。降雨量累积曲线上某 一点的斜率即为该时间的降雨瞬时强度。将降雨量在该时间段内的 增量除以该时间段长度,可以得到描述单位时间内的累积降雨量, 即该段降雨历时的平均降雨强度。 3.降雨历时和暴雨强度 在降雨量累积曲线上取某一时间段t,称为降雨历时。如果该降雨历时覆盖了降雨的雨峰时间,则上面计算的数值即为对应于该降雨历 时的暴 雨强度,降雨历时区间取得越宽,计算得出的暴雨强度就越小。 暴雨强度用符号i表示,常用单位为mm/min,也可为mm/h。设 单位时间t内的平均降雨深度为h,则其关系为: i?h (9-1) t 在工程上,暴雨强度亦常用单位时间内单位面积上的降雨量q表示,单位用(l/s)/hm2。采用以上计量单位时,由于1mm/min=l (l/m2)/min=10000(l/min)/hm2,可得i和q之间的换算关系为: q?10000i?167i (9-2) 60 式中 q—降雨强度,(l/s)/hm2; i —降雨强度,mm/min。 就雨水管渠设计而言,有意义的是找出降雨量最大的那个时段内的 降雨量。因此,暴雨强度的数值与所取的连续时间段t的跨度和位置 有关。在城市暴雨强度公式推求中,经常采用的降雨历时为5min、

设计用计算公式

计算公式 一、矿山服务年限计算 N=Q A(1 e) (a) 式中:N—矿山服务年限(a); Q—设计利用储量 η—矿石回采率 A—矿山年产量 e—废石混入率二、矿山生产能力计算 万t; %;(地下开采80%-90%,露天开采85%-95%) 万t/a; %;(地下开采10%,露天开采5%) 1、按采矿工程延深速度验证确定矿山生产能力(露天)A=P V H (1e) (a) 式中:A—矿山生产能力P—水平分层平均矿量V—采 矿工程年延深速度η—矿 石回收率H—阶段高度 e—废石混入率万t/a;万t;m/a;%;m;%; 2、根据矿山开采年下降速度计算和验证矿山生产能力(地下开采)A=V S 1 K1·K2·E(万t)

式中:A—矿山年生产能力万t/a;

V —回采工作面下降速度 S —矿体开采面积 —矿石体重 α—矿石回收率 β—废石混入率 m/a ;(浅孔留矿为 10-25 m/a) m ; t/m ; %;(80%-90%) %;(10%-20%) E —地质影响系数 (0.7-0.9); K 1—矿体倾角修正系数 K 2 —矿体厚度修正系数 (0.8-1.2) 3、矿山生产能力计算(地下开采) A= N Q K E 1 Z (万 t/a ) 式中:A —矿山生产能力 Q —矿块生产能力 N —分布矿块数 万 t/a ; 万 t/a ; 个; K —矿块利用系数 (0.1-0.4); E —地质影响系数 (0.7-0.9); Z —废石混入率 (10%-20%); 4、露天矿总生产能力计算 A α=A(1+n s ) (万 t/a ) 式中:A α—年矿岩总生产能力 t/a ; A —年矿石生产能力 t/a ; n s —生产剥采比 t/t ; 5、露天矿可能达到的生产能力 A=N·n·Q (t/a ) 2 3

雨水调蓄池计算

方案一:(压力流外排) 设计参数: 用于削减排水管道洪峰流量时,雨水调蓄有效容积按《室外排水设计规范》(GB50014—2006)中的4.15.5条公式计算: 式中:—脱过系数,取值为调蓄池下游设计流量和上游设计流量之比,取0.3; Q—调蓄池上游设计流量,参考方案二计算结果,为55m3/min; b、n—暴雨强度公式参数,分别为0.75和11.259; t—降雨历时(min),按2小时计。 雨水池容积和外排流量计算: 1) =4356m3 2)外排雨水流量为0.3Q=0.3X908=272L/s 水泵参数选取: 设2台潜水泵,单台流量490m3/h。2台水泵合用一根出水管,出水管管径采用DN400钢管,流速为2.1m/s,满足要求。 方案二:(重力流外排) 设计参数: 1)采用广州市暴雨强度公式:q=3618.427(1+0.438lgP)/(t+11.259)0.750; 式中:q--暴雨强度 t--降雨历时 (min) 按2小时计算; P—设计重现期,取5年。 2)雨水量采用计算公式:Q=ψ·q·F 式中:ψ--径流系数,综合径流系数采用0.50 F--汇水面积(公顷);汇水范围为万达广场以西暹岗村地势较高的区域,约15公顷。 3)雨水管的流速应大于V=0.75m/s,小于V=5m/s,雨水管按满流计算。

雨水量计算: Q=ψ·q·F =0.5X[3618.427(1+0.438lg5)/(120+11.259)0.750]X15=908L/s,外排雨水管设计管径采用d800,设计坡度0.006,流速2m/s。 方案三:(重力流外排) 计算过程同方案二,排水路径和管道敷设方式不同而已,设计管径采用d800,设计坡度0.01,流速2.6m/s。 (资料素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

设计秒流量的计算

附 1、5设计秒流量的计算 1、5、1设计流量计算 (1)最高日用水量Qd 最高日用水量按式(1-1)计算: 3(/)1000 d d mq Q m d = (1-1) 式中m —设计单位数(如人数、床位数等) q d 一用水定额,见表1-9、10 采用公式(1-1)应注意以下几点: 1)该公式适用于各类建筑物用水、汽车库汽车冲洗用水、绿化用水、道路浇洒用水。 2)对于多功能的建筑物,如商住楼、宾馆、大会堂、影剧院等,应分别按不同建筑物的用水量定额,计算各自的最高日用水量,然后将同时用水者叠加,取最大一组用水量作为整幢建筑物的最高日用水量。 3)对一幢建筑可用于几种功能时,应按耗水量最大的功能计算。 4)一幢建筑物的服务人数超过范围时,设计单位数应按实际单位数计算,如集体宿舍内附设公共浴室,该浴室还为其它人员服务时,其浴室用水量应按全部服务对象计算。 5)建筑物实际用水项目超出或少于范围时,其用水量应作相应增减。如医院、旅馆增设洗衣房时应增加洗衣房的用水量。 6)设计单位数应由建设单位或建筑专业提供。当无法取得数据时,在征得建设单位同 意下,可按卫生器具一小时用水量与每日工作时数来确定最高日用水量。 (2)工业企业生产用水量:应根据工业生产工艺、设备、工作制度、供水水质与水温等因 素并结合供水系统状况来选择与确定生产用水量。 (3)消防用水量:见第2章。 (4)最大小时生活用水量:最大小时用水量按式(1-2)计算: 3(/)d h Q Q K m h T = (1-2) 式中Qh —最大小时用水量3(/)m h Qd 最高日用水量3(/)m d 或最大班用水量3 (/)m 班; T —每日或最大班用水时间(h) K —小时变化系数,见表1-9,10 (5)生活给水设计秒流量: 1)住宅、集体宿舍、旅馆、宾馆、医院、幼儿园、办公楼、学校等建筑物生活给水设计秒流量,应按式(1-3)计算: 0.2(/)g g q KN L s = (1-3) 式中g q —设计秒流量(L/s) a,K —根据建筑物用途而定的系数,见表1-20; g N —计算管段的卫生器具给水当量总数,见表1-16

(完整版)雨水部分的设计说明及设计计算

一、雨水部分的设计说明及设计计算 城市雨水管渠系统的布置与污水管道的布置相近,但也有自己的特点。雨水管渠规划布置的主要内容有:确定排水流域与排水方式,进行雨水的管渠的定线;确定雨水泵房、雨水调节池、于是排放口的位置。 3.1 雨水布管原则: 1.充分利用地形,就近排入水体。 规划雨水管线时,首先按照地形划分排水区域,进行管线布置。根据分散和直接的原则,尽量利用自然地形坡度,多采用正交式布置,以最短的距离重力流排入附近的河流、湖泊等会汇水区域。一般不设泵站。 2.根据街区及道路规划布置雨水管道。 通常应根据建筑物的分布、道路的布置以及街坊或小区内部的地形、出水口的位置等布置雨水管道,是街坊和小区内大部分雨水以最短的距离排入雨水管道。所以就需要对某一排水区域进行划分,使其汇水更加的方便和直接。 3.合理布置雨水口,保证路面雨水舒畅排除。 雨水口的布置应根据地形和汇水面积确定,以使雨水不至漫过路口。一般在道路交叉口的汇水点、低洼地段均应设置雨水口。 4.采用明渠与暗管相结合的方式。 在城市市区,建筑密度较大、交通频繁地区。应采用暗管排除雨水,尽管造价高,但是卫生情况好,养护方便,不影响交通;在城市郊区或建筑密度低、交通量小的地方可采用明渠,以节省工程费用。 5.出水口的位置。 当汇水水体离流域很近,水体的水位变化不大,洪水位低于流域地面标高,出水口的建筑费用不大时,宜采用分散出口,使雨水尽快排放,反之,则应该采用集中出口排放方式,本设计中采用分散出口排放。 6.调蓄水体的布置。 充分利用地形,选择适当的河湖水面作为调蓄池,以调节洪峰流量,减低沟道设计流量减少泵站的设计数量。 7.排洪沟的设置。 \

流量计算公式

摘要:本文概述了目前用于管道直饮水系统管网设计秒流量的三种算法:传统公式算法、改造传统公式算法和概率公式算法,并比较了这三种算法的计算结果,分析了其中原因。指出传统公式算法和改造传统公式算法都不适用于管道直饮水系统管网的计算,而概率公式算法是一种较为合适的方法。 关键词:管道直饮水设计秒流量算法 0 前言 设计秒流量的计算是管网水力计算的基础,设计秒流量计算正确才能保证整个系统的正常运行。设计秒流量计算偏大,就会导致管径偏大、水泵流量偏大,造成经济上的浪费;同时,管网中的流速偏小,容易导致细菌繁殖,微粒沉积。而如果设计秒流量过小,则会使所选管径过小,造成水头损失过高,浪费能量,严重时出现断流,不能保证用水可靠性。所以,选择一个正确的设计秒流量计算方法至关重要。 1.设计秒流量计算方法概述 目前,用于管道直饮水系统设计秒流量的计算方法大致有三种: (1)算法一(传统公式算法) 即采用建筑生活给水管道设计秒流量计算公式 (1) 取=1.02,=0.0045,公式(1)成为: (2) 其中为设计秒流量(l/s),为当量总数,此公式为水工业工程设计手册《建筑和小区给水排水》[1]所采用。 (2)算法二(改造传统公式算法) 根据1981年出版的《室内给排水工程》[2],住宅生活用水秒不均匀系数与平均日用水量的关系为:

(3) 则 (4) 其中,为秒不均匀系数,为平均日用水量(m3/d)。 (3)算法三(概率公式算法) 关于概率公式算法,首先要引入一个重要概念——龙头使用概率。根据有关资料[3],龙头使用概率可表示为: (5) ——最高峰用水时龙头连续两次用水时间间隔(s); ——期间龙头放水时间(s)。 有了龙头的使用概率之后,可以用概率统计的方法计算出同时用水龙头数量,个龙头额定流量之和便是管道设计秒流量。 、和可用以下方法计算得到。设用水高峰期为下班后的某个半小时内,且此时段内的放水时间均匀分布,则此时龙头的使用概率为: (6) ——高峰期用水定额,l/s; ——管段负荷龙头总数;

发动机进气流量计算-山东同创-中冷器组

a)自然吸气式,四冲程发动机进气量: CFM= CID ×RPM ÷1728 ÷2 ×0.85 其中: CFM=发动机进气量(英制单位:立方英寸每分钟) CID=发动机排气量(英制单位:立方英寸) RPM=发动机每分钟最大转速 1728=立方英寸至立方英尺的换算因素 2=四冲程发动机每两转吸气一次。二冲程则不必乘以2 0.85=发动机的容积效率 举例:5.73公升排气量,四冲程,化油器式发动机,最大转速2000RPM. 首先将公升换算成CID=5.73×61.02=350 CFM=350 ×2000÷1728 ÷2 ×0.85=172.2CFM, b)电喷式发动机进气量:由于进气歧管设计的改变进,电喷式发动机的容积效率可增加至100%。故CFM= CID ×RPM ÷1728 ÷2 ×100% C)涡轮增压式发动机进气量CFM= CID ×RPM ÷1728 ÷2 ×(1+增压比)说明:一般自然吸干式的空气压力接近大气压力。配置涡轮增压器后,此进气压力增加至某一数值,进而增加发动机的进气量。 增压比=(增压值,表压)÷大气压力【注意:此处压力值必须为同一单位,不论为Bar,kpa或英制的psi】。 首先换算成CID=13.4L ×61.02=817 增压比=0.4Bar/1.0Bar=0.4 CFM= 817 ×2000 ÷1728 ÷2 ×0.85×(1+0.4)=567 CFM

CFM是一种流量单位 cubic feet per min ute 立方英尺每分钟 1CFM=28.316846592 L/MIN=0.028CMM CMM是常用中制流量单位,立方米每分钟 1cfm≈1.7m3/h 地面上标准大气压约等于760毫米高水银柱产生的压强。标准大气压为:1.013×10^5Pa(帕斯卡)101kPa 压缩空气密度=1.293*(实际压力/标准物理大气压)*(273.15/实际绝对温度)

生活给水设计秒流量的概率计算方法

生活给水设计秒流量的概率计算方法 生活用水设计秒流量反映了给水排水系统瞬时高峰用水规律的设计流量。以L/s计。用于确定给水管管径和排水管管径,计算给水管系的水头损失和排水管道的坡度、充满度,以及选用水泵等。 世界各国进行了不少水量方面的研究,并制定出各自室内给水管道流量的计算方法。室内给水管道流量的计算方法有平方根法、概率理论法。 目前,国外应用的方法皆以概率为理论基础,概率计算是所有新的设计方法的基础。国外不仅早已建立了以概率理论为基础的秒流量计算式,而且在近几十年来,对用水工况进行了长期的大量的研究,至今己获得足够的可以更完善地加工整理设计秒流量计算方法的资料,这对我国设计秒流量计算方法的改进具有重要的参考价值。虽然许多国家均采用概率方法为基础,但由于对数据的选取以及处理方式不同,所产生的方法不同,以美国的亨特概率方法和俄罗斯的概率方法为代表。 2 概率计算方法 2.1 亨特概率方法 2.1.1 亨特概率法的建立[1]

亨特概率法由美国的亨特(Roy B.Hunter)于1924年提出,并在1940年以后发展成熟,得到承认。其基本原理是将系统中卫生器具的使用看作一个随机变量,各种卫生器具的使用是独立的,使用中不存在相互联系,可用二项分布的数学模型来描述秒流量这一随机变量。 假定某给水管段上连接有n个卫生器具,各个器具的开启和关闭相互独立,每个器具的额定流量为q0,则通过该计算管段的最大给水设计秒流量为q0n,最小给水流量为0,任意时刻通过该管段的给水秒流量q(0≤q≤q0)。设计系统应降低管材耗量,并保证不间断供水,以满足用水高峰时的用水量。假设用水高峰时每个卫生器具的使用概率为p,则不被使用的概率为(1-p),那么在用水高峰时,n个卫生器具中有i个同时使用的概率为: (2-1) 亨特的定义,对根据于只有一种卫生器具构成单一系统,表示如下: (2-2) 其中:Pm—至多有m个器具同时的概率值; m—卫生器具同时使用个数设计值;

线材成本计算公式

線材成本計算公式 一、人工成本(C1):人工成本(元/Km)=(D×K÷V÷T÷60÷F÷S)×(1+A)×1000 D:操作員的日薪(元/人日)K:成品中該製程的條數,以LAN Cable為例,芯線製程為 8,對絞為4,集合與外被為1; V:製程中機器的線速(M/min);T:一天的工時,以12 小時計(hr/日);F:製程中機器的操作率(%)S:每人操作台數(台/人)A:間接人工 成本(%) 二、原料成本(C2):原料成本(元/Km)=U×B×(1+E) U:原料單價(元/Kg)B:原料用量(Kg/ Km)E:製程中原料消耗量(%) 三、水電成本(C3):水電成本(元/Km)=P×T×R×G÷V÷T÷60÷F P:製程中機器的用電量(Kw);T:一天的工時,以12小時計(hr/日);R:用電匯率(元 /Kw hr)G:用電比率(%);V:製程中機器的線速(M/min)F:製程中機器的操作率(%)四、設備儀器折舊成本(C4):設備儀器折舊成本(元/Km)=H÷(Y×12×25)÷(V×24×60×F) H:設備儀器取得金額(元)Y:設備儀器折舊年數(年);V:製程中機器的線速(M/min)F:製程中機器的操作率(%);備註:檢驗儀器之V與F參照外被押出機 五、包裝成本(C5):包裝成本(元/Km)=K÷L×1000 K:包裝材料單價(元/個)L:每個包裝之線材單長(M/個) 六﹐線材成本:線材成本(元/Km)=C1+C2+C3+C4+C5

工程一般報償 C=直接材料成本C1+加工成本C2 C1=原材料用量M×原材料單价P1; C2=机時H1×加工單价P2+人時H2×加工單价P3 H1(h/km)=(1/r/60)×1000×N H1=h10+h11+……+h18+h19 (r為線速m/min ; N為電線次數) H2(h/km)=机時H/單個人所開机台數量N H2=h21+h22+…..+h29+h20 則依工序不同而有所不同: 束絞人時h21=束絞机時h11/ 7; 絕緣人時h22=絕緣机時h12/ 1; 對絞人時h23=對絞机時h13/ 7; 繚繞人時h24=繚繞机時h14/ 10; 中被人時h25=中被机時h15/ 1; 返撚人時h26=返撚机時h16/ 6; 立式包帶人時h27=立式包帶机時h17/ 5; 集合人時h28=集合机時h18/ 2; 編織人時h29=編織机時h19/ 6; 外被人時h20=外被机時h10/ 1.

雨水流量公式详解

雨水设计流量公式 b = 式中 q屮F Qs— - ――雨水设计流量(L⑸ q -―设计暴雨强度,(L /s ? ha) w—――径流系数 F——-—汇水面积(ha公顷) 其中 暴雨强度公式为: 3245*12(1 + 6 25EllgP) (…17.172)°^54 式中 t ---- 降雨历时(min) P ---- 设计重现期(年) (一)设计降雨历时 t = ti 阿 式中 t ---- 设计降雨历时(min) 「 --- 地面集水时间(min) 応一一雨水在管渠内流行的时间(mi n) m ---- 折减系数 S的确定: 地面集水时间受水区面积大小、地形陡缓、屋顶及地面的排水方式、土壤的干湿程度及地表覆盖情况等因素的影响。在实际应用中,要准确地计算S值是比较 困难的,所以通常取经验数值,日=5?15mi n。在设计工作中,按经验在地形较陡、建筑密度较大或铺装场地较多及雨水口分布较密的地区,=5?8mi n;而在地势平坦、建筑稀疏、汇水区面积较大,雨水口分布较疏的地区,囘值可取10?15mi n。 m的确定:

暗管m=2明渠m=在陡坡地区,暗管折减系数m=-2,经济条件较好、安全性要求较高地区的排水管渠m可取1。 卜的确定: 式中 ――雨水在管渠内流行时间(min) L――各管段的长度(m v --- 各管段满流时的水流强度(m/s) v的确定: 式中 v --- 流速(m/s) R――水力半径(m) I――水利坡度 n --- 粗糙系数 R确定: A――输水断面的过流面积(m2) X――接触的输水管道边长(即湿周)(m n的确定: (二)设计重现期(P) P的确定: 《室外排水设计规范》(GB50014-2006第条原规定:雨水管渠设计重现期,应根据汇水地区性质、地形特点和气候特征等因素确定。同一排水系统可采用同一重现期或不同重现期。重现期一般采用?3年,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般采用3?5年,并应与道路设计协调。特别重 要地区和次要地区可酌情增减。

进气系统设计计算报告

密级: 编号: 进气系统设计计算报告 项目名称:力帆新型三厢轿车设计开发 项目编号: ETF_TJKJ090_LFCAR 编制:日期: 校对:日期: 审核:日期: 批准:日期: 上海同济同捷科技股份有限公司 目录 1 进气系统概述 (2) 系统总体设计原则 (2) 系统的工作原理及组成 (2) 2 进气系统结构的确定及设计计算 (2) 进气系统设计流程 (2) 进气系统流量的确定 (3) 拟选定空气滤清器的允许阻力计算及设计原则 (4) 滤清效率要求 (7) 空滤器滤芯面积确定及滤纸选用 (8) 进气系统结构的确定 (9) 进气系统管路阻力估算 (10)

3 结论 (12) 4 参考资料及文献 (12) 1进气系统概述 1.1 系统总体设计原则 在国内外同挡次同类型轿车的进气系统结构深入比较分析的基础上进行设计和选型,系统设计满足发动机获得高的充量系数,尽可能低地降低发动机的功率损失.此外为了适当降低发动机的进气噪声,在管路中布置谐振腔. 1.2 系统的基本组成 进气系统一般由空气滤清器入口管,空气滤清器,空气滤清器出口连接管,节气门体,怠速控制阀阀体等组成. 2系统结构的确定及设计计算 2.1 进气系统流量的确定 LF7160选用的发动机为宝马型电喷发动机,发动机对进气系统流量的要求取决于发动机本身的因素,即发动机的排量和发动机的工况要求,不同的工况有不同的流量要求.在进气系统流量满足的情况下,发动机实际充入的空气取决于自身的因素,首先,初步确定发动机最大功率工况点进气流量。 式中: V——发动机排量3m; n——最大功率点转速min /r; η——充量系数; 1 η——汽缸数效率; 2 τ——冲程数,四冲程取2,二冲程取1 上式中发动机参数

用水量计算方法

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算;

2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。

3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算:

进气系统设计计算

进气口位置: 进气系统的设计须满足以下条件: ●避免机舱内热空气吸入 ●避免雨滴和雾气直接吸入 ●避免排气灰尘吸入 ●从空滤器至涡轮增压器入口之间的进气管必须由耐蚀材料制成 ●进气系统使用的分离式接头(如罩与空滤器外壳的接头)必须位于空滤器上部 ●进气系统必须能够进行定期维护,且进行维护时不需要打开空滤器和涡轮增压器之间进气系统的任何部件 ●尽可能低的系统阻力,以保证最大限度的利用柴油机功率 ●进气系统部件之间的接头和其它接合处,比如与空压机的接头,必须保持有效密封,避免灰尘或其它污染物进入过滤空气中。 进气口尺寸应设计得足够大,且没有锐弯和面积改变,为减小阻力,还应有平滑的转换导管来与进气管相连。发动机舱应充分通风,来发散出这些热量。为保护热敏元件,发动机连续运转时机舱内的最高温度不允许超过(推荐) 空滤器的选择及布置: 一、根据发动机厂家推荐在2200rpm是所需空气流量为1500m3/h,结合以下计算: 1发动机性能参数: 发动机型号:L340 额定功率Ne(kW):2505 额定转速n(r/min):2200: 排量Vh(L):8.9(C系统8.3) 空滤器流量VG(m3/h)的确定 ⑴增压后发动机所需的空气流量V(m3/h)的确定 V=Vh×n/2×60/1000=8.9×2200/2×60/1000=587.4(m3/h) ⑵发动机所需理想状态空气量Vo(m3/h)的确定(汽车设计理论) V o=ε×(ToT)0.75×V×ηvo×ψs 式中:V o-发动机所需理想状态空气量(m3/h) 大气环境温度(k)取313(273+40);T-增压中冷后气体温度(k)取333(273+60)(要求不高于环境温度的20);ηvo-充气效率取0.87(推荐);ψs-扫气效率取1.05 ε-增压比2.18 V o=2.18×(313333)0.75×587.4×0.87×1.05=1116.67(m3/h) ⑶空压机流量Vk(m3/h)的确定(推荐为320L/min) bVk=Vkh×nk×601000 式中:Vkh-空压机公称排量(L);nk-空压机的转速(r/min); Vk=0.229×1400×601000=19.2(m3/h) ⑷空滤器流量VG的确定(空滤器流量上述设计的储备流量) VG=1.066×(V o+Vk)=1.066×(1116.67+19.2)=1212(m3/h) L考虑到以后布置功率加大380马力发动机 结合两者得出按照发动机厂家的推荐空滤器流量≥1500 m3/h5 二、流通面积的确定 在确定了空滤器容积大小的同时,还应校核一下系统中所允许的气流流速。进气系统内的气流流速不宜超过30m/s,因为过高的气流流速会产生很大的流阻和进气噪声,对发动机会造成过大的功率损失。依据这一原则,在结构设计前先要确定空滤器进口、出口及连接管等部位允许的最小流通面积。 最小流通面积Smin=V o/(3.6×Vmax)×10-3(m2)

雨水量计算

3.2 雨水量 3.2.1雨水设计流量,应按下列公式计算: Q s=qΨF(3.2.1) 式中:Q s-雨水设计流量(L/s); q-设计暴雨强度[L/(s·hm2)]; Ψ-径流系数; F-汇水面积(hm2)。 注:当有允许排入雨水管道的生产废水排入雨水管道时,应将其水量计算在内。 3.2.2径流系数,可按本规范表3.2.2-1的规定取值,汇水面积的平均径流系数按地面种类加权平均计算;综合径流系数,可按本规范表3.2.2-2的规定取值。 表3.2.2-1 径流系数 地面种类Ψ 各种屋面、混凝土或沥青路面0.85~0.95 大块石铺砌路面或沥青表面处理的碎石路面0.55~0.65 级配碎石路面0.40~0.50 干砌砖石或碎石路面0.35~0.40 非铺砌土路面0.25~0.35 公园或绿地0.10~0.20 表3.2.2-2 综合径流系数 区域情况Ψ 城市建筑密集区0.60~0.85 城市建筑较密集区0.45~0.6 城市建筑稀疏区0.20~0.45 3.2.3设计暴雨强度,应按下列公式计算: n b t P C A q ) + ( ) lg + 1( 167 =1(3.2.3) 式中:q-设计暴雨强度[L/(s·hm2)]; t-降雨历时(min);

P-设计重现期(a); A1、C、n、b-参数,根据统计方法进行计算确定。 在具有十年以上自动雨量记录的地区,设计暴雨强度公式,可按本规范附录A的有关规定编制。 3.2.4雨水管渠设计重现期,应根据汇水地区性质、地形特点和气候特征等因素确定。同一排水系统可采用同一重现期或不同重现期。重现期一般采用0.5~3a,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般采用3~5a,并应与道路设计协调。特别重要地区和次要地区可酌情增减。 3.2.5雨水管渠的降雨历时,应按下列公式计算: t =t1 + mt2 (3.2.5) 式中:t-降雨历时(min); t1-地面集水时间(min),视距离长短、地形坡度和地面铺盖情况而定,一般采用5~15 min; m-折减系数,暗管折减系数m=2,明渠折减系数m=1.2,在陡坡地区,暗管折减系数m=1.2~2; t2-管渠内雨水流行时间(min)。 3.2.6 当雨水径流量增大,排水管渠的输送能力不能满足要求时,可设雨水调蓄池。

市政雨水设计流量计算书_secret

1167(1lg ) ()n A C P q t b += +设计流量计算 一、雨水设计流量计算 1. 雨水设计流量流量Q 雨水设计流量流量Q 的计算公式为 Q qF ψ= 式中:Q —雨水设计流量(l/s); ψ—径流系数,绿地径流系数0.15-0.25.; F —汇水面积(ha); q —设计暴雨强度(l/s 〃ha),1ha=10000m 2。 2. 设计暴雨强度q 设计暴雨强度q 应按下列公式计算: 式中,t ——降雨历时 (min); P ——设计重现期(a) ,排水沟渠的设计重现期,应根据汇水地区性质 (广场、干道、厂区、居住区)、地形特点和气象特点等因素确定,重要干道、 重要地区或短期积水即能引起较严重后果的地区,重现期一般选用2~5a 。; 1A 、C 、n 、b ——参数,在具有十年以上自动雨量记录的地区,根 据统计方法进行计算确定,在自动雨量记录不足十年的地区,参照地方实测暴雨气象资料确定参数。 3. 降雨历时t 排水沟渠的设计降雨历时t ,应按下列公式计算: 12t t mt =? 式中t —— 降雨历时(min ); t 1 —— 地面集水时间(min ),视距离长短、地形坡度和地面铺盖情况 而定,室外地面一般采用5~10min ; m —— 折减系数,见下表取值: t 2—— 管渠内雨水流行时间(min)。 折减系数m

4. 排水沟内雨水流行速度 排水管渠的流速,应按下列公式计算: 2 1321V R I n = 式中,V ——流速(m/s);R ——水力半径(m);I —水力坡降;n ——粗糙系数。排水沟粗糙系数为浆砌毛石时取0.017,混凝土排水沟为0.014。 对于矩形排水沟,水力半径 2bh R b h =+ b 为排水沟底宽(m ),h 为排水沟内设计过水高度(m )。 对于梯形断面排水沟,水力半径为 b 为排水沟底宽(m ),h 为排水沟内设计过水高度(m ),m 为排水沟坡率的倒数。 二、排水沟设计 t =t1+ m t2=10+1.2×10=22(min) 设计降雨重现期P 为5年,根据深圳市中部地区暴雨强度公式推算 2 R =

雨水灌渠设计和优化计算

长沙学院教案 编号:第15~17讲 课时安排: 6 学时实验课□习题课□实践课□其它□ 题目(教学章、节或主题): 第十章雨水管渠设计和优化计算 教学目的要求(包括知识与能力两个方面): 了解雨量分析与雨量公式、雨水径流调节、截流式合流制排水管网设计与计算、排洪沟设计与计算;掌握雨水管渠设计流量计算、雨水管渠设计与计算、排水管网优化设计。 教学重点、难点: 雨水管渠设计流量计算、雨水管渠设计与计算、排水管网优化设计。 教学方式、手段、媒介: 课堂讲授、多媒体教学。 教学过程:(含引入新课、中间组织教学以及如何启发思维等) 第一节雨量分析及雨量公式 一、雨量分析 1.降雨量 降雨量指单位地面面积上在一定时间内降雨的雨水体积,其计量单位为(体积/时间)/面积。由于体积除以面积等于长度,所以降雨量的单位又可以采用长度/时间。这时降雨量又称为单位时间内的降雨深度。常用的降雨量统计数据计量单位有: 年平均降雨量:指多年观测的各年降雨量的平均值,计量单位用mm/a; 月平均降雨量:指多年观测的各月降雨量的平均值,计量单位用mm/月; 最大日降雨量:指多年观测的各年中降雨量最大的一日的降雨量,计量单位用mm/d。 2.雨量的数据整理 自记雨量计所记录的数据一般是每场雨的累积降雨量(mm)和降雨时间(min)之间的对应关系,以降雨时间为横坐标和以累计降雨量为纵坐标绘制的曲线称为降雨量累积曲线。降雨量累积曲线上某一点的斜率即为该时间的降雨瞬时强度。将降雨量在该时间段内的增量除以该时间段长度,可以得到描述单位时间内的累积降雨量,即该段降雨历时的平均降雨强度。 3.降雨历时和暴雨强度 在降雨量累积曲线上取某一时间段t,称为降雨历时。如果该降雨历时覆盖了降雨的雨峰时间,则上面计算的数值即为对应于该降雨历时的暴雨强度,降雨历时区间取得越宽,计算得出的暴雨强度就越小。 暴雨强度用符号i表示,常用单位为mm/min,也可为mm/h。设单位时间t内的平均降雨深度为H,则其关系为: 在工程上,暴雨强度亦常用单位时间内单位面积上的降雨量q表示,单位用(L/s)/hm2。 采用以上计量单位时,由于1mm/min=l (L/m2)/min=10000 (L/min)/hm2,可得i和q 之间的换算关系为: 式中:q—降雨强度,(L/s)/hm2;i—降雨强度,mm/min。 就雨水管渠设计而言,有意义的是找出降雨量最大的那个时段内的降雨量。因此,暴雨强度的数值与所取的连续时间段t的跨度和位置有关。在城市暴雨强度公式推求中,经常采用的降雨历时为5 min、10 min、15 min、20 min、30 min、45 min、60 min、90 min、120 min等9个历时数值,特大城市可以用到180min。 4.暴雨强度频率

相关主题
文本预览
相关文档 最新文档