当前位置:文档之家› 高等数学上册第一章教案

高等数学上册第一章教案

高等数学上册第一章教案
高等数学上册第一章教案

第一章:函数、极限与连续

教学目的与要求

1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。

2.解函数的奇偶性、单调性、周期性和有界性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形。

5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

所需学时:18学时(包括:6学时讲授与2学时习题)

第一节:集合与函数

一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N

⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。

⑶、全体整数组成的集合叫做整数集。记作Z。

⑷、全体有理数组成的集合叫做有理数集。记作Q。

⑸、全体实数组成的集合叫做实数集。记作R。

集合的表示方法

⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合

⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系

⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:

①、任何一个集合是它本身的子集。即A?A

②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算

⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。)

即A∪B={x|x∈A,或x∈B}。

⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。

即A∩B={x|x∈A,且x∈B}。

⑶、补集:

①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作C U A。

即C U A={x|x∈U,且x A}。

集合中元素的个数

⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。

⑶、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)

我的问题:

1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C={x|x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。

2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。

3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。试判断B是不是A的子集?是否存在实数a使A=B成立?

4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?

5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?

2、区间

⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。

⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。

区间的名称区间的满足的不等式区间的记号区间在数轴上的表示

闭区间a≤x≤b[a,b]

开区间a<x<b (a,b)

半开区间a<x≤b或a≤x<b (a,b]或[a,b)

以上我们所述的都是有限区间,除此之外,还有无限区间:

[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;

(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;

(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞

注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

3、复合函数

复合函数的定义:若y是u的函数y=f(u),而u又是x的函数:u=φ(x),且u=φ(x)的函数值的全部或部分在f(u)的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数y=f(u)及u=φ(x)复合而成的函数,简称复合函数,记作y=f(φ(x)),其中u叫做中间变量。

注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。

例题:函数y=arcsinx与函数u=2+x2是不能复合成一个函数的。

因为对于u=2+x2的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使y=arcsinu都没有定义。

4、初等函数

⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下:

函数

名称

函数的记号函数的图形函数的性质

指数函数

a):不论x为何值,y总为正数;

b):当x=0时,y=1.

对数函数

a):其图形总位于y轴右侧,并过(1,0)点

b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.

a为任意实数

这里只画出部分函数图形的一部分。

令a=m/n

a):当m为偶数n为奇数时,y是偶函数;

b):当m,n都是奇数时,y是奇函数;

c):当m奇n偶时,y在(-∞,0)无意义.

三角函数

(正弦函数)

这里只写出了正弦函数

a):正弦函数是以2π为周期的周期函

b):正弦函数是奇函数且

反三角函数

(反正弦函数)

这里只写出了反正弦函数

a):由于此函数为多值函数,因此我们此

函数值限制在[-π/2,π/2]上,并称其为反

正弦函数的主值.

⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.

5、双曲函数及反双曲函数(补充)

⑴、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)

函数的

名称

函数的表达式函数的图形函数的性质

双曲正弦

a):其定义域为:(-∞,+∞);

b):是奇函数;

c):在定义域内是单调增

双曲余弦

a):其定义域为:(-∞,+∞);

b):是偶函数;

c):其图像过点(0,1);

双曲正切

a):其定义域为:(-∞,+∞);

b):是奇函数;

c):其图形夹在水平直线y=1及y=-1之间;在定域内单调增;

课后作业及小结:

1、学习了集合概念与函数概念

2、掌握复合函数与反函数计算方法。

作业:P9.1,7,8

第二节:数列的极限

1、引入

⑴、数列:若按照一定的法则,有第一个数a1,第二个数a2,…,依次排列下去,使得任何一个正整数n对应着一个确

定的数a n,那末,我们称这列有次序的数a1

,a2,…,a n,…为数列.数列中的每一个数叫做数列的项。第n项a n叫做数列的

一般项或通项.

注:我们也可以把数列a n看作自变量为正整数n的函数,即:a n=,它的定义域是全体正整数

⑵、极限:极限的概念是求实际问题的精确解答而产生的。

例:我们可通过作圆的内接正多边形,近似求出圆的面积。

设有一圆,首先作圆内接正六边形,把它的面积记为A1;再作圆的内接正十二边形,其面积记为A2;再作圆的内接正二十四边形,其面积记为A3;依次循下去(一般把内接正6×2n-1边形的面积记为A n)可得一系列内接正多边形的面积:A1,A2,A3,…,An,…,它们就构成一列有序数列。我们可以发现,当内接正多边形的边数无限增加时,An也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数列A1,A2,A3,…,An,… 当n→∞(读作n趋近于无穷大)的极限。

注:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。

2、数列极限的概念

(1)、数列的极限:一般地,对于数列x1,x2,x3,…,x n,来说,若存在任意给定的正数ε(不论其多么小),总存在正整数N,使得对于n>N时的一切x n不等式都成立,那末就称常数a是数列x n的极限,或者称数x n收敛于a .

记作:或

注:此定义中的正数ε只有任意给定,不等式才能表达出x n与a无限接近的意思。且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。

(2)、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列x n极限为a的一个几何解释:将常数a及数列x1,x2,x3,…,x n在数轴上用它们的对应点表示出来,再在数轴上作点a 的ε邻域即开区间(a-ε,a+ε),如下图所示:

因不等式与不等式等价,故当n>N时,所有的点x n都落在开区间(a-ε,a+ε)内,而只有有限个(至多只有N个)在此区间以外。

注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,…,(-1)n+1,…是有界的,但它是发散的。

3、数列极限的计算(课本例子)

课后作业及小结:

1、学习了数列极限概念

2、掌握数列极限运算方法。

作业:P15.2

第三节:函数极限的定义域计算

前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取1→∞内的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.

函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。我们已知道函数的极值的情况,那么函数的极限如何呢 ?

下面我们结合着数列的极限来学习一下函数极限的概念!

1、函数的极限(分两种情况)

a):自变量趋向无穷大时函数的极限

定义:设函数y=f(x),若对于任意给定的正数ε(不论其多么小),总存在着正数X,使得对于适合不等式的一切x,所对应的函数值y=f(x)都满足不等式

那末常数A就叫做函数y=f(x)当x→∞时的极限,记作:

下面我们用表格把函数的极限与数列的极限对比一下:

数列的极限的定义函数的极限的定义

存在数列a n=f(x)与常数A,任给一正数ε>0,总可找到一正

整数N,对于n>N的所有a n都满足<ε则称数列a n,当

x→∞时收敛于A记:。

存在函数y=f(x)与常数A,任给一正数ε>0,总可

找到一正数X,对于适合的一切x,都满足

,函数y=f(x)当x→∞时的极限为A,记:

从上表我们发现了什么??试思考之

b):自变量趋向有限值时函数的极限。我们先来看一个例子.

例:函数,当x→1时函数值的变化趋势如何?函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把x→1时函数值的变化趋势用表列出,如下图:

注:在定义中为什么是在去心邻域内呢?这是因为我们只讨论x→x0的过程,与x=x0出的情况无关。此定义的核心问题是:对给出的ε,是否存在正数δ,使其在去心邻域内的x均满足不等式。

有些时候,我们要用此极限的定义来证明函数的极限为 A,其证明方法是怎样的呢?

a):先任取ε>0;

b):写出不等式<ε;

c):解不等式能否得出去心邻域0<<δ,若能;

d):则对于任给的ε>0,总能找出δ,当0<<δ时,<ε成立,因此

2、函数极限的运算规则

前面已经学习了数列极限的运算规则,我们知道数列可作为一类特殊的函数,故函数极限的运算规则与数列极限的运算规则相似。

⑴、函数极限的运算规则

若已知x→x0(或x→∞)时,.

则:

推论:

在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。

例题:求

解答:

例题:求

此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。

解答:

注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。

3、左右极限定义

定义:如果x仅从左侧(x<x0)趋近x0时,函数f(x)与常量A无限接近,则称A为函数f(x)当时的左极限.记:

如果x 仅从右侧(x >x 0)趋近x 0时,函数f(x)与常量A 无限接近,则称A 为函数f(x)当时的右极限.记:

注:只有当x→x 0时,函数f(x)的左、右极限存在且相等,方称f(x)在x→x 0时有极限 课后作业及小结:

1、学习了函数数列极限概念

2、掌握函数数列极限运算方法。 作业:P23.1,2

第四节:极限性质

1、数列极限的性质

定理1(极限的唯一性) 数列{x n }不能收敛于两个不同的极限. 证明: 假设同时有a x n n =∞

→lim 及b x n n =∞

→lim , 且a

按极限的定义, 对于2a b -=ε>0, 存在充分大的正整数N , 使当n >N 时, 同时有|x n -a |<2a b -=ε 及|x n

-b |<2

a b -=ε,

因此同时有 2a b x n +<

及2

a b x n

+>, 这是不可能的. 所以只能有a =b . 数列的有界性: 对于数列{x n },如果存在着正数M ,使得对一切x n 都满足 不等式 |x n |≤M ,则称数列{x n }是有界的; 如果这样的正数M 不存在,就说数列{x n }是无界的

定理2(收敛数列的有界性) 如果数列{x n }收敛, 那么数列{x n }一定有界.

证明: 设数列{x n }收敛, 且收敛于a , 根据数列极限的定义, 对于ε =1, 存在正整数N , 使对于n >N 时的一切x n , 不等式 |x n -a |<ε =1都成立. 于是当n >N 时,

|x n |=|(x n -a )+a | ≤| x n -a |+|a |<1+|a |.

取M =max{|x 1|, |x 2|, ? ? ?, |x N |, 1+| a |}, 那么数列{x n }中的一切x n 都满足不等式|x n |≤ M . 这就证明了数列{x n }是有界的.

定理3(收敛数列的保号性) 如果数列{x n }收敛于a , 且a >0(或a <0), 那么存在正整数N , 当n >N 时, 有x n >0(或x n <0). 证 就a >0的情形证明. 由数列极限的定义, 对02>=a ε, ?N ∈N +, 当n >N 时, 有2

||a

a x n <-, 从而02

2>=-

>a

a a x n . 推论 如果数列{x n }从某项起有x n ≥0(或x n ≤0), 且数列{x n }收敛于a , 那么a ≥0(或a ≤0).

证明 就x n ≥0情形证明. 设数列{x n }从N 1项起, 即当n >N 1时有x n ≥0. 现在用反证法证明, 或a <0, 则由定理3知, ?N 2∈N +, 当n > N 2时, 有x n <0. 取N =max{ N 1, N 2 }, 当n >N 时, 按假定有x n ≥0, 按定理3有x n <0, 这引起矛盾. 所以必有a ≥0. 子数列: 在数列{x n }中任意抽取无限多项并保持这些项在原数列中的先后次序, 这样得到的一个数列称为原数列{x n }的子数列. 例如, 数列{x n }: 1, -1, 1, -1, ? ? ?, (-1)n +1? ? ?的一子数列为{x 2n }: -1, -1, -1, ? ? ?, (-1)2n +1? ? ? 定理3(收敛数列与其子数列间的关系) 如果数列{x n }收敛于a , 那么它的任一子数列也收敛, 且极限也是a . 证明: 设数列}{k n x 是数列{x n }的任一子数列.

因为数列{x n }收敛于a , 所以ε >0, ?N ∈N +, 当n >N 时, 有|x n -a |<ε .取K =N , 则当k >K 时, n k ≥k >K =N . 于是|k n x -a |<ε . 这就证明了a x k n k =∞

→lim .

2、函数极限的性质

定理1(函数极限的唯一性)如果极限)(lim 0

x f x x →存在, 那么这极限唯一.

定理2(函数极限的局部有界性) 如果f (x )→A (x →x 0), 那么存在常数M >0和δ, 使得当0<|x -x 0|<δ时, 有|f (x )|≤M . 证明 因为f (x )→A (x →x 0), 所以对于

=1

>0

当0<|x -x 0|<δ时, 有|f (x )-A |< =1

于是 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |这就证明了在x 0的去心邻域{x | 0<|x -x 0|<δ }内 f (x )是有界的

定理3(函数极限的局部保号性) 如果f (x )→A (x →x 0), 而且A >0(或A <0), 那么存在常数δ>0, 使当0<|x -x 0|<δ时, 有f (x )>0(或

f (x )<0).

定理3' 如果f (x )→A (x →x 0)(A ≠0), 那么存在点x 0的某一去心邻域, 在该邻域内, 有||2

1|)(|A x f >. 推论 如果在x 0的某一去心邻域内f (x )≥0(或f (x )≤0), 而且f (x )→A (x →x 0), 那么A ≥0(或A ≤0).

证明: 设f (x )≥0. 假设上述论断不成立, 即设A <0, 那么由定理1就有x 0的某一去心邻域, 在该邻域内 f (x )<0, 这与f (x )≥0的假定矛盾. 所以A ≥0.

定理4(函数极限与数列极限的关系)

如果当x →x 0时f (x )的极限存在, {x n }为f (x )的定义域内任一收敛于x 0的数列, 且满足x n ≠x 0(n ∈N +), 那么相应的函数值数列{f (x n )}必收敛, 且)

(lim )(lim 0

x f x f x x n n →∞

→=

证明 设f (x )→A (x →x 0) 则 >0

? >0

当0<|x -x 0|<δ 时, 有|f (x )-A |< 又因为x n →x 0(n →∞) 故对

>0

N

N + 当n >N 时 有|x n -x 0|<

由假设 x n ≠x 0(n ∈N +)

故当n >N 时

0<|x n -x 0|<

从而|f (x n )-A |<

)(lim )(lim 0

x f x f x x n n →∞

→=

课后作业及小结:

1、学习了极限的相关定理与函数列相关定理 作业:P30.8

第五节:两个重要的极限

1、准则I

如果数列{x n }、{y n }及{z n }满足下列条件: (1)y n

x n z n (n =1, 2, 3, ? ? ?),

(2)a y n n =∞

→lim , a z n n =∞

→lim , 那么数列{x n }的极限存在, 且a x n n =∞

→lim .

证明: 因为a y n n =∞

→lim , a z n n =∞

→lim , 以根据数列极限的定义,

ε >0, N 1>0, 当n >N 1时, 有

|y n -a |<ε ; 又N 2>0, 当n >N 2时, 有|z n -a |<ε . 现取N =max{N 1, N 2}, 则当 n >N 时, 有

|y n -a |<ε , |z n -a |<ε 同时成立, 即

a -ε

z n , 所以当 n >N 时, 有

a -ε

x n

z n

即 |x n -a |<ε . 这就证明了a x n n =∞

→lim .

简要证明: 由条件(2), ε >0, N >0, 当n >N 时, 有

|y n -a |<ε 及|z n -a |<ε , 即有 a -ε

a -ε

即 |x n -a |<ε . 这就证明了a x n n =∞

→lim .

注意: 准则I '

如果函数f (x )、g (x )及h (x )满足下列条件: (1) g (x )

f (x )

h (x );

(2) lim g (x )=A , lim h (x )=A ; 那么lim f (x )存在, 且lim f (x )=A . 注 如果上述极限过程是x →x 0 要求函数在x 0的某一去心邻域内有定义

上述极限过程是x →∞ 要求函数当|x |>M

时有定义

准则I 及准则I ' 称为夹逼准则. 2、第一重要极限

下面根据准则I '证明第一个重要极限: 1

sin lim 0=→x

x x .

证明 首先注意到, 函数

x

x sin 对于一切x 0都有定义. 参看附图: 图中的圆为单位圆, BC

OA , DA

OA . 圆心角

AOB =x (0

π). 显然 sin x =CB , x =?

AB , tan x =AD . 因为 S AOB

扇形AOB

所以

21sin x <21x <2

1

tan x , 即 sin x

x

x x cos 1sin 1<<, 或 1

sin cos <

x x . 注意此不等式当-2 π

1cos lim 0

=→x x , 根据准则I ', 1sin lim 0=→x x x .

简要证明: 参看附图, 设圆心角

AOB =x (2

0π<

显然 BC < AB

sin cos <

x x (此不等式当x <0时也成立). 因为1cos lim 0

=→x x , 根据准则I ', 1

sin lim

0=→x

x x .

应注意的问题: 在极限)

()

(sin lim

x x αα中, 只要α(x )是无穷小, 就有1)()(sin lim =x x αα.

这是因为, 令u =α(x ), 则u

0, 于是)

()

(sin lim

x x αα1sin lim 0==→u u u . 1sin lim 0=→x x x , 1)

()

(sin lim =x x αα(α(x )0).

O

C

A

D

B 1 x

例1. 求x

x x tan lim 0→. 解: x x x tan lim

0→x x x x cos 1sin lim 0?=→1cos 1lim sin lim 00=?=→→x

x x x x . 例2. 求2

0cos 1lim

x x x -→.

解: 20cos 1lim

x x x -→=

2

2022

)2

(2sin

lim 212sin 2lim

x x x x x x →→= 2112

122sin lim 2122

0=?=????

?

??=→x x x . 211212

2sin lim 2122

0=?=???

? ??=→x

x

x . 3、准则II 单调有界数列必有极限. 如果数列{x n }满足条件x 1

x 2x 3 ? ? ? x n x n +1 ? ? ?,就称数列{x n }是单调增加的; 如果数列{x n }满足条件x

1

x 2x 3 ? ? ? x n x n +1 ? ? ?,就称数列{x n }是单调减少的. 单调增加和单调减少数列统称为单调数列.

在第三节中曾证明: 收敛的数列一定有界. 但那时也曾指出: 有界的数列不一定收敛. 现在准则II 表明: 如果数列不仅有界, 并且是单调的, 那么这数列的极限必定存在, 也就是这数列一定收敛. 准则II 的几何解释:

单调增加数列的点只可能向右一个方向移动 或者无限向右移动 或者无限趋近于某一定点A 而对有界数列只

可能后者情况发生 4、第二重要极限

根据准则II , 可以证明极限n n n

)11(lim +∞

→存在.

设n n n

x )11(+=, 现证明数列{x n }是单调有界的. 按牛顿二项公式 有 n n n n

n n n n n n n n n n n n n n n x 1

!)1( )1( 1!3)2)(1(1!2)1(1!11)11(32?+-???-+???+?--+?-+?+=+=

)11( )21)(11(!1 )21)(11(!31)11(!2111n

n n n n n n n --???--+???+--+-+

+=

)1

1

1( )121)(111(!1 )121)(111(!31)111(!21111+--???+-+-+???++-+-++-++=+n n n n n n n n x n )1

1( )121)(111()!1(1+-???+-+-++n n n n n

比较x n x n +1的展开式 可以看出除前两项外 x n 的每一项都小于x n +1的对应项

并且x n +1还多了最后一项 其

值大于0

因此 x n < x n +1

这就是说数列{x n }是单调有界的.这个数列同时还是有界的 因为x n 的展开式中各项括号内的数用较大的数1代替 得

32132

1121

1121 212111!1 !31!2111112<-=--

+=+???++++

n n n x

根据准则II , 数列{x n }必有极限. 这个极限我们用e 来表示. 即

【免费下载】高等数学课程教案

授课题目§9.1二重积分的概念与性质 课时安排2教学目的、要求:1.熟悉二重积分的概念,了解二重积分的性质;2.了解二重积分的几何意义。教学重点、难点:二重积分的几何意义教学内容 一、二重积分的概念1.引例与二重积分定义引例:(1).曲顶柱体的体积。(2)已知平面薄板质量(或电荷)面密度的分布时。求总质量(或电荷)。2.二重积分的几何意义 二、二重积分的性质性质1、 ,为非零常数;(,)(,)D D kf x y d k f x y d σσ=????k 性质2、;{(,)(,)}D f x y g x y d σ±??(,)(,)D D f x y d g x y d σσ=±????性质3、若,且(除边沿部分外),则12D D D =+12D D φ= 12(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+?? ????性质4、若,,则:;(,)(,)f x y g x y ≥(,)x y D ∈(,)(,)D D f x y d g x y d σσ≥????性质5、估值定理性质6、(中值定理)设在上连续,则在上至少存在一点,使),(y x f D D ),(ηξA f d y x f D ?ηξ=σ??),(),(三、例题 例1 设是由与所围的区域,则D 24x y -=0=y =σ??D d π2例2 求在区域:上的平均值222),(y x R y x f --=D 222R y x ≤+讨论、思考题、作业:思考题:1.将二重积分定义与定积分定义进行比较,找出它们的相同之处与不同之处.2.估计积分的值,其中是圆形区域: .??++=D d y x I σ)94(22D 422≤+y x 习题9-1 P79 4(1),(3),5(1)(3)授课类型: 理论课教学方式:讲授教学资源:多媒体 填表说明:每项页面大小可自行调整。、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

高职高专高等数学第一章教案

第一章 函数、极限、连续 教学要求 1.了解分段函数、复合函数、初等函数等概念。 2.理解数列极限、函数极限的定义。 3.掌握极限的四则运算法则。 4.了解无穷大、无穷小及其比较的概念,了解函数及其极限与无穷小的关系。理解无穷小的性质。 5.了解夹逼准则和单调有界数列极限存在准则。熟练掌握两个重要极限求极限。 6.理解函数连续与间断概念,会判断间断点类型,了解初等函数连续性及闭区间上连续函数性质。 教学重点 函数的概念、复合函数的概念,基本初等函数的图形和性质;极限概念,极限四则运算法则;函数的连续性。 教学难点 函数与复合函数的概念;极限定义,两个重要极限;连续与间断的判断。 教学内容 第一节 函数 一、函数的定义与性质 1.集合; 2.邻域; 3.常量与变量; 4.函数的定义; 5.函数的特性。 二、初等函数 1.反函数; 2.复合函数; 3.初等函数。 三、分段函数 一、 函数的定义与性质 1集合定义 具有某种特定性质的事物的总体;组成这个集合的事物称为该集合的元素,元素a 属于集 合A ,记作a A ∈, 元素a 不属于集合A, ,a A ? 2集合的表示法: 列举法 12{,, ,}n A a a a = 描述法 {}M x x =所具有的特征 3集合间的关系: 若,x A ∈则必,x B ∈就说A 是B 的子集,记做A B ?;若A B ?且A B,≠ A B 则称是的真子集;若A B ?且B A ?,则A B =。

4常见的数集 N----自然数集;Z----整数集;Q----有理数集;R----实数集 它们间关系: ,,.N Z Z Q Q R ??? 5例 {1,2}A =,2{320}C x x x =-+=,则A C = 不含任何元素的集合称为空集, 记作? 例如, 2 {,10}x x R x ∈+==? 规定 空集为任何集合的子集. 6运算 设A 、B 是两集合, 则 1) 并 A ?B ? {x ∣x ∈A 或x ∈B}; 2) 交 A ?B ?{x ∣x ∈A 且x ∈B} 3) 差“A \B” ?{x ∣x ∈A 且x ?B} 4) 补(余)?S/A ,其中S 为全集 5) 其运算律 (1) A ?B= B ?A , A ?B =B ?A (2)(A ?B )?C =A ?(B ?C) , (A ?B)= A ?(B ?C) (3)(A ?B ) ? C =(A ? C )?(B ? C) (A ? B ) ? C =(A ? C ) ? (B ? C) (4) (),()c C C c c c A B A B A B A B ?=??=? 注意A 与B 的直积A ?B ?{(x,y)∣x ∈A 且y ∈B} 例如:R ?R={(x,y)∣x ∈R 且y ∈R} 表示xoy 面上全体点的集合, R R ?常记为2 R 7邻域: 设a 与δ是两个实数且0δ>,称集合{}x a x a δδ-<<+为点a 的δ邻域。点a 叫做这邻域的中心,δ叫做这邻域的半径。记作(){}U a x a x a δδδ=-<<+ 点a 的去心δ邻域记做0 ()U a δ ,0(){0}U a x x a δδ=<-<。 注意:邻域总是开集。 8常量与变量: 在某个过程中变化着的量称为变量,保持不变状态的量称为常量, 注意:常量与变量是相对于“自变量变化过程”而言的. x δ δ

高等数学上册教案

高等数学教案 一、课程的性质与任务 高等数学是计算机科学与技术;信息管理与信息系统两个专业的一门重要的基础理论课,通过本课程的学习,也是该专业的核心课程。要使学生获得“向量代数”与“空间解析几何”,“微积分”,“常微分方程与无穷级数”等方面的基本概论、基本理论与基本运算;同时要通过各个教学环节逐步培训学生的抽象概括能力、逻辑推理能力、空间想象能力和自学能力。在传授知识的同时,要着眼于提高学生的数学素质,培养学生用数学的方法去解决实际问题的意识、兴趣和能力。 第一章:函数与极限 教学目的与要求18学时 1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2.解函数的奇偶性、单调性、周期性和有界性。 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4.掌握基本初等函数的性质及其图形。 5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。 6.掌握极限的性质及四则运算法则。 7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 第一节:映射与函数 一、集合 1、集合概念 word

word 具有某种特定性质的事物的总体叫做集合。组成这个集合的事物称为该集合的元素 表示方法:用A ,B ,C ,D 表示集合;用a ,b ,c ,d 表示集合中的元素 1)},,,{321 a a a A = 2)}{P x x A 的性质= 元素与集合的关系:A a ? A a ∈ 一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。 常见的数集:N ,Z ,Q ,R ,N + 元素与集合的关系: A 、B 是两个集合,如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作B A ?。 如果集合A 与集合B 互为子集,则称A 与B 相等,记作B A = 若作B A ?且B A ≠则称A 是B 的真子集。 空集φ: A ?φ 2、 集合的运算 并集B A ? :}A x |{x B A B x ∈∈=?或 交集B A ? :}A x |{x B A B x ∈∈=?且 差集 B A \:}|{\B x A x x B A ?∈=且 全集I 、E 补集C A : 集合的并、交、余运算满足下列法则:

高等数学上册第一章教案

第一章:函数、极限与连续 教学目的与要求 1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2.解函数的奇偶性、单调性、周期性和有界性。 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4.掌握基本初等函数的性质及其图形。 5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。 6.掌握极限的性质及四则运算法则。 7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 所需学时:18学时(包括:6学时讲授与2学时习题) 第一节:集合与函数 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集:

高等数学(上册)教案20-分部积分法

第4章不定积分 分部积分法 【教学目的】: 1. 理解分部积分法; 2. 能熟练地运用分部积分法求解不定积分。 【教学重点】: 1.分部积分法。 【教学难点】: 1.分部积分法应用中u和v的选择。 【教学时数】:2学时 【教学过程】: 我们在求积分时,经常会遇到被积函数是两类不同函数乘积的不定积分,这类积分用我们上一节学习的换元积分法很难求出来,这一节我们就学习解决这类积分的积分方法:分部积分法. 设u u(x),v v(x)有连续的导数,由(uv)' u'v uv',得uv' (uv)' u'v两边 积分,有uv'dx (uv)' dx u'vdx 即udv uv vdu ①式①称为分部积分公式,使用分部积分公式求不定积分的方法称为分部积分法. 利用分部积分公式解题的关键是如何恰当的选取u和dv,选取原则是: (1)v要容易求出. (2)vdu要比原积分udv易求得. 下面通过例子说明分部积分公式适用的题型及如何选择u和dv : 例 1 求xcosxdx . 解令u x,dv cosxdx,贝U v sin x,于是 xcosxdx xd(sinx) xsinx sin xdx xsinx ( cosx) C xsinx cosx C . 1

此题若令u cosx,dv xdx,则v x2,于是 2

xcosxdx cosxd - x cosx —X — x 2d(cosx) 2 2 2 1 2 1 2 x cosx x sin xdx . 2 2 1 这样新得到的积分 x 2 sin xdx 反而比原积分 xcosxdx 更难求了.所以在 2 分部积分法中,u u(x)和dv dv(x)的选择不是任意的,如果选取不当,就得不 出结果. 例 2 求 xe x dx . 解设u x,dv e x dx ,则v e x ,于是 x x x x x x xe dx xde xe e dx xe e C . 注:在分部积分法中,u 及dv 的选择有一定规律的.当被积函数为幕函数与 正(余)弦或指数函数的乘积时,往往选取幕函数为 u . 例 3 求 x 2 In xdx . 例 4 求 arctanxdx . 解 设 u arctan x, dv dx ,贝U v x ,于是 注1如果被积函数含有对数函数或反三角函数, 可以用考虑用分部积分法, 并设对数函数或反三角函数为u . 注2在分部积分法应用熟练后,可把认定的u , dv 记在心里在而不写出来, 直接在分部积分公式中应用. 2 1 3 1 3, 1 3 x In xdx In xdx x In x — x d(l n x) 3 3 3 1 3, 1 2」 1 3 , 1 3 x In x — x dx - x I n x x 3 3 3 9 C . 解为使v 容易求得,选取u 2 In x, dv x dx 1 3 1 3 d 2x ,则v 3x ,于是 arcta nxdx x arcta nx xd (arctanx) xarctanx 1 1 x 2 dx xarcta nx Jd(1 x 2) 2 1 x 2 xarcta nx 1ln(1 x 2)

高等数学教案

普洱市职业教育中心 教师备课本 科目:《高等数学》班级:_________________任课教师:周文德 日期:_________________

《高等数学》(上册第一分册) 一元函数微积分 柳重堪主编 1.函数 2.极限与连续 3.导数与微分 4.导数的应用 5.不定积分 6.定积分及其应用 ?初等数学与高等数学的根本区别 用初等数学解决实际问题常常只能在有限的范围内孤立的静止的观念来研究,有很多问题不能得到最终答案,甚至无法解决。高等数学用运动的辨正观点研究变量及其依赖关系,极限的方法是研究变量的一种基本方法,贯穿高等数学的始终。用高等数学解决实际问题,计算往往比较简单,且能获得最终的结果。 ?关于数学应用的评价 “宇宙之大,粒子之微,火箭之速,化工之巧,地球之

变,生物之迷,日用之繁,无处不用数学”。 ——华罗庚“数学处于人类智能的中心领域” ——冯.诺依曼“数学是调节理论和实践、思想和经验之间的差异的工具。它建起了一座连通双方的桥梁,并在不断地加固它。事实上,全部现代文明中有关理性认识和征服自然的部分都有赖于数学”。 ——希尔伯特

第1章函数本章教学内容: 1.1 实数 1.2 函数 1.3 初等函数 1.4 建立函数关系举例

【课题】1.1 实数 1.2 函数 【教学目标】 (1)理解区间的概念,学会用区间表示不等式的解集; (2)理解函数的概念,学会求函数值和定义域; (3)了解函数的主要性质(单调性、奇偶性、周期性和有界性). 【教学重点】 函数的概念及其性质 【教学难点】 函数的概念及其性质 【教学设计】 (1)本次课内容旨在复习中专数学内容,温故知新,以自主学习为主; (2)引导学生通过练习,巩固知识,完成知识的升华; (3)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学. 【教学备品】 教学课件. 【课时安排】 2课时(90分钟) 【教学过程】 1.1实数 一、实数 ?创设情景兴趣导入 人们在幼童时期就学会了数东西,那就是自然数的一种应用,此后,在记账时为了表示收入和支出,需要用到正数和负数;在标明商品价格、测量物体长度和重量时要用到小数或分数;边长为1米的正方形,由勾股定理知其对角线的长为2米,这就导致无理数。 数的概念的逐步拓展,一方面是出于实践的需要,另一方面也完善了关于数的理论。 ?实数包括有理数和无理数两大类。 1)有理数是能表示为两个整数相除的形式的数,或者等价地,有理数就是有限小 数或无限循环小数。

高等数学电子教案

第四章不定积分 教学目的: 1、理解原函数概念、不定积分的概念。 2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二) 与分部积分法。 3、会求有理函数、三角函数有理式和简单无理函数的积分。 教学重点: 1、不定积分的概念; 2、不定积分的性质及基本公式; 3、换元积分法与分部积分法。 教学难点: 1、换元积分法; 2、分部积分法; 3、三角函数有理式的积分。

§4 1 不定积分的概念与性质 一、教学目的与要求: 1.理解原函数与不定积分的概念及性质。 2.掌握不定积分的基本公式。 二、重点、难点:原函数与不定积分的概念 三、主要外语词汇:At first function ,Be accumulate function , Indefinite integral ,Formulas integrals elementary forms. 四、辅助教学情况:多媒体课件第四版和第五版(修改) 五、参考教材(资料):同济大学《高等数学》第五版

一、原函数与不定积分的概念 定义1 如果在区间I 上, 可导函数F (x )的导函数为f (x ), 即对任一x ∈I , 都有 F '(x )=f (x )或dF (x )=f (x )dx , 那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数. 例如 因为(sin x )'=cos x , 所以sin x 是cos x 的原函数. 又如当x ∈(1, +∞)时, 因为x x 21)(=', 所以x 是x 21的原函数. 提问: cos x 和x 21还有其它原函数吗? 原函数存在定理 如果函数f (x )在区间I 上连续, 那么在区间I 上存在可导函数F (x ), 使对任一x ∈I 都有 F '(x )=f (x ). 简单地说就是: 连续函数一定有原函数. 两点说明: 第一, 如果函数f (x )在区间I 上有原函数F (x ), 那么f (x )就有无限多个原函数, F (x )+C 都是f (x )的原函数, 其中C 是任意常数. 第二, f (x )的任意两个原函数之间只差一个常数, 即如果Φ(x )和F (x )都是f (x )的原函数, 则 Φ(x )-F (x )=C (C 为某个常数). 定义2 在区间I 上, 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分, 记作 ?dx x f )(. 其中记号?称为积分号, f (x )称为被积函数, f (x )dx 称为被积表达式, x 称为积分变量. 根据定义, 如果F (x )是f (x )在区间I 上的一个原函数, 那么F (x )+C 就是f (x )的不定积分, 即 ?+=C x F dx x f )()(. 因而不定积分dx x f )(?可以表示f (x )的任意一个原函数. 例1. 因为sin x 是cos x 的原函数, 所以 C x xdx +=?sin cos . 因为x 是x 21的原函数, 所以 C x dx x +=?21.

《高等数学》教案 第一章 函数

第一章函数 函数是积分的主要研究对象,后边关于微积分性质的研究都是对函数性质的研究。本章首先引入集合,然后研究两个实数集合之间的一种对应关系——函数关系,并介绍函数的基本性质和常见的初等函数。 §1.1 集合 一、概念 集合是具有某种属性的事物的全体,或者说是一些确定对象的汇总。构成集合的事物或对象,称为集合的元素。 举例: 有限集合:由有限个元素构成的集合。 无限集合:由无限个元素构成的集合。 集合通常用大写字母A、B、C、X、Y等表示。元素由小写字母a、b、c、x、y等表示。如果a是集合A的元素,记作a∈A;否则记作a?A。 二、表示方法 1、列举法:按任意顺序列出集合的所有元素,并用花括号“{ }”括起来。如:A ={a,b,c,d} 即列出集合中所有元素,不计较顺序,但不能遗漏和重复。 2、描述法:设P(a)为某个与a有关的条件或法则,A为满足P(a)的一切a 构成的集合,记为A ={a∣P(a)}。如:A ={x∣x2-5x+6=0} 即把集合中元素所具有的某个共同属性描述出来,用{a∣a具有的共同属性}。 3、文氏图:可以表示集合以及集合间的关系。 三、全集与空集 由所研究的所有事物构成的集合称为全集,记为U。全集是相对的。 不包含任何元素的集合称为空集,记为Φ。 四、子集 1、定义:如果集合A的每一个元素都是集合B的元素,即“如果a∈A,则

a∈B”,则称A为B的子集。记为A?B或B?A。 如果A?B成立,且B中确有元素不属于A,则称A为B的真子集。记作A?B或B?A。 2、定义:设有集合A和B,如果A?B且B?A,则称A与B相等。 结论:(1)A?A,即“集合A是其自己的子集”; (2)Φ?A,即“空集是任意集合的子集”; (3)若A?B,B?C,则A?C,即“集合的包含关系具有传递性”。 五、集合的运算 1、定义:设有集合A和B,由A和B的所有元素构成的集合,称为A和B 的并,记为A∪B。即A∪B ={x∣x∈A或x∈B}。 性质:(1)A?A∪B,B?A∪B; (2)A∪Φ = A,A∪U = U,A∪A = A。 2、定义:设有集合A和B,由A和B的所有公共元素构成的集合,称为A 与B的交,记为A∩B。即A∩B ={x∣x∈A且x∈B}。 性质:(1)A∩B?A,A∩B?B; (2)A∩Φ =Φ,A∩U = A,A∩A = A。 3、定义:设有集合A和B,属于A而不属于B的所有元素构成的集合,称为A与B的差,记为A-B。即A-B ={x∣x∈A且x ? B}。 4、定义:全集中所有不属于A的元素构成的集合,称为A的补集,记为A。即A={x∣x∈U且x ? A}。 性质:A∪A =U,A∩A=Φ。 习题7、8:

(完整版)同济大学高等数学上第七版教学大纲(64学时)

福建警察学院 《高等数学一》课程教学大纲 课程名称:高等数学一 课程编号: 学分:4 适用对象: 一、课程的地位、教学目标和基本要求 (一)课程地位 高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。 (二)教学目标 通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。 (三)基本要求 1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。 2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。

二、教学内容与要求 第一章函数与极限 【教学目的】 通过本章学习 1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分 解,掌握基本初等函数的性质及其图形,理解初等函数的概念。 2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。 3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与 左、右极限之间的关系,了解函数极限的性质。 4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。 5、掌握极限运算法则。 6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 7、掌握无穷小的比较方法,会用等价无穷小求极限。 8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、了解连续函数的运算和初等函数的连续性, 10、了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理), 并会应用这些性质。 【教学重点与难点】 本章重点是求函数极限的方法(极限运算法则、两个重要极限、无穷小的比较、初等函数的连续性)。难点是数列、函数极限的证明方法。 【教学内容】 第一节映射与函数 一、映射 1.映射概念

高等数学 电子教案(下)

高等数学电子教案(下) 《高等数学》 2008 ,2009 学年第二学期 教师姓名: 李石涛 授课对象:1.化学工程与工艺0801,0803,应用化学0801,0802 2.高分子材料工程0801,0802;环境工程0801,0802 授课学时: 128/64 选用教材《高等数学》史俊贤主编 大连理工大学出版社 2006/2 基础部数学教研室 沈阳工业大学教案 第 1 周授课日期 09.2.18 授课章节:第六章 6.1 定积分元素法 教学目的: 1、理解定积分元素法的基本思想, 2、掌握用定积分表达和计算一些几何量,平面图形的面积、平面曲线 的弧长, 教学重点:平面图形的面积、平面曲线的弧长教学难点:平面图形的面积教学内容纲要: 一、定积分的元素法, 二、平面图形的面积、教 学三、平面曲线的弧长、 实采用的教学形式:讲授施 过教学方法:启发式教学

程教学步骤: 设 1、复习定积分的概念~引出定积分的元素法, 计 2、举例讲解平面图形的面积 3、举例讲解平面曲线的弧长 课后复习及作业或思考题: 1、复习定积分的元素法。 2、课后习题6-2 1、2、4、5。 教学后记: 时间: 沈阳工业大学教案 第 1 周授课日期 09.2.20 授课章节:6.2 定积分在几何学上的应用 教学目的: 1、理解定积分元素法的基本思想, 2、掌握用定积分表达和计算一些几何量,旋转体的体积及侧面积、平行截面面积为 已知的立体体积, 教学重点:旋转体的体积、平行截面面积为已知的立体体积教学难点:旋转体的体积、平行截面面积为已知的立体体积 教学内容纲要: 一、旋转体的体积、 二、平行截面面积为已知的立体体积, 教 学采用的教学形式:讲授 实教学方法:启发式教学施

高等数学电子教案(大专版)

《高等数学》教案 第一讲 函数与极限 1.函数的定义 设有两个变量x ,y 。对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。记作y=f(x),x ∈D 。其中x 叫自变量,y 叫因变量。 函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。 例1:设f(x+1)=2x 2+3x-1,求f(x). 解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2 ∴f(x)=2x 2 – x – 2 定义域:使函数有意义的自变量的集合。因此,求函数定义域需注意以下几点: ①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0 例2 求函数y= 6—2x -x +arcsin 7 1 2x -的定义域. 解:要使函数有定义,即有: 1|7 12|062≤-≥--x x x ? 4323≤≤--≤≥x x x 或?4323≤≤-≤≤-x x 或 于是,所求函数的定义域是:[-3,-2] [3,4]. 例3 判断以下函数是否是同一函数,为什么? (1)y=lnx 2与y=2lnx (2)ω=u 与y=x 解 (1)中两函数的 定义域不同,因此不是相同的函数. (2)中两函数的 对应法则和定义域均相同,因此是同一函数. 2. 初等函数 (1)基本初等函数 常数函数:y=c(c 为常数) 幂函数: y=μ x (μ为常数) 指数函数:y=x a (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数) 三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx (2)复合函数 设),(u f y =其)(x u ?=中,且)(x ?的值全部或部分落在)(u f 的定义域内,则称)]([x f y ?=为x 的复合函数,而u 称为中间变量. 例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0, ∴sinx ≥0,x ∈[2k π,π+2k π] 例5:分析下列复合函数的结构

高等数学(上册)教案22定积分的概念与性质

高等数学(上册)教案22定积分的概念与性 质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例5.1.1 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示).下面来求该曲边 梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间 [,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间 [,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于 y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边图5-1 图5-2

梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个 与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边 梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积 (如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩 形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . (1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x -- , 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点 1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的 面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ, 将其作为曲边梯形面积的近似值,即 11()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ (max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值, 即 01lim ()n i i i A f x λξ→==?∑. 5.1.1 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插 入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的 乘积),,2,1()(n i x f i i =?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i =, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区

高等数学电子教案7.

第七章微分方程 教学目的: 1.了解微分方程及其解、阶、通解,初始条件和特等概念。 2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。 4.会用降阶法解下列微分方程: ()() n y f x =,(,) y f x y ''' +和(,) y f y y ''' = 5.理解线性微分方程解的性质及解的结构定理。 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。 9.会解微分方程组(或方程组)解决一些简单的应用问题。 教学重点: 1、可分离的微分方程及一阶线性微分方程的解法 2、可降阶的高阶微分方程 ()() n y f x =,(,) y f x y ''' +和(,) y f y y ''' = 3、二阶常系数齐次线性微分方程; 4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微 分方程; 教学难点: 1、齐次微分方程、伯努利方程和全微分方程; 2、线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。 青岛科技大学数理学院高等数学课程建设组

青岛科技大学数理学院高等数学课程建设组 4、欧拉方程 §7. 1 微分方程的基本概念 函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程.含有未知函数的导数或微分的方程叫做微分方程。历史悠久(与微积分同时诞生),应用广泛。 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程. 解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程) x dx dy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件: x =1时, y =2, 简记为y |x =1=2. (2) 把(1)式两端积分, 得(称为微分方程的通解) ? =xdx y 2, 即y =x 2+C , (3) 其中C 是任意常数. 把条件“x =1时, y =2”代入(3)式, 得 2=12+C , 由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1. 例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式 4.02 2-=dt s d . (4)

高等数学(下册)电子教案

第四章常微分方程 §4.1 基本概念和一阶微分方程 甲内容要点 一.基本概念 1.常微分方程 含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程,若未知函数是一元函数则称为常微分方程,而未知函数是多元函数则称为偏微分方程,我们只讨论常微分方程,故简称为微分方程,有时还简称为方程。 2.微分方程的阶 微分方程中未知函数的导数的最高阶数称为该微分方程的阶 3.微分方程的解、通解和特解 满足微分方程的函数称为微分方程的解; 通解就是含有独立常数的个数与方程的阶数相同的解; 通解有时也称为一般解但不一定是全部解; 不含有任意常数或任意常数确定后的解称为特解。 4.微分方程的初始条件 要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件,满足初始条件的解称为满足该初始条件的特解。 5.积分曲线和积分曲线族 微分方程的特解在几何上是一条曲线称为该方程的一条积分曲线;而通解在几何上是一族曲线就称为该方程的积分曲线族。 6.线性微分方程 如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程。不含未知函数和它的导数的项称为自由项,自由项为零

的线性方程称为线性齐次方程;自由项不为零的方程为线性非齐次方程。 二.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式:()()()()0≠=y Q y Q x P dx dy 通解 ()()??+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解 ()()()()C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln (2) ()()0,0≠≠++=b a c by ax f dx dy 令u c by ax =++, 则()u bf a dx du += ()c x dx u bf a du +==+?? (3) ??? ? ??++++=222111c y b x a c y b x a f dx dy

高等数学第一章函数极限与连续教案

教学内§1.1 函数 教学目的】 理解并掌握函数的概念与性质 教学重点】 函数的概念与性质 教学难点】 函数概念的理解 教学时数】 4 学时 一、组织教学,引入新课 极限是微积分学中最基本、最重要的概念之一,极限的思想与理论,是整个高等数 学的基础,连续、微分、积分等重要概念都归结于极限 . 因此掌握极限的思想与方法是 学好高等数学的前提条件 . 本章将在初等数学的基础上,介绍极限与连续的概念 、讲授新课 (一)、实数概述 1、实数与数轴 1)实数系表 2)实数与数轴关系 x,x 0 1)绝对值的定义: x x,x 0 x,x 0 2)绝对值的几何意义 3)绝对值的性质 练习:解下列绝对值不等式:① x 5 3 ,② x 1 2 3、区间 (1)区间的定义:区间是实数集的子集 (2)区间的分类:有限区间、无限区间 ① 有限区间:长度有限的区间 设 a 与 b 均为实数,且 a b ,则 (3)实数的性质: 封闭性 有序性 稠密性 连续性

数集{ x a x b }为以 a 、 b 为端点的半开半闭区间,记作 [a ,b ) 数集{ x a x b }为以a 、 b 为端点的半开半闭区间,记作( a ,b ] 区间长度: b a ② 无限区间 数集{ xa x }记作[a , ), 数集{xa x }记作( a , ) 数集{ x x a }记作( ,a], 数集{ x x a }记作( ,a ) 实数集 R 记作( , ) 3)邻域 ① 邻域:设 a 与 均为实数,且 0 ,则开区间( a , a )为点 a 的 邻域 记作U(a, ) ,其中点 a 为邻域的中心, 为邻域的半径 ② 去心邻域:在的 邻域中去掉点 a 后,称为点 a 的去心邻域,记作 U (a, ) (二) 、函数的概念 1、函数的定义 : 设有一非空实数集 D ,如果存在一个对应法则 f ,使得对于每一个 x D ,都有一个 惟一的实数 y 与之对应,则称对应法则 f 是定义在 D 上的一个函数. 记作 y f(x), 其中 x 为自变量, y 为因变量,习惯上 y 称是的函数。 定义域: 使函数 y f ( x )有意义的自变量的全体,即自变量 x 的取值范围 D 函数值:当自变量 x 取定义域 D 内的某一定值 x 0时,按对应法则 f 所得的对应 值 y 0 称 为函数 y f(x)在 x x 0时的函数值,记作 y 0 f(x 0)。 值 域:当自变量 x 取遍 D 中的一切数时,所对应的函数值 y 构成的集合,记 数集{ x a x b }为以 a 、 b 为端点的闭区间,记作 [a ,b ] 数集{ x a x b }为以 a 、 b 为端点的开区间,记作 ( a ,b )

相关主题
文本预览
相关文档 最新文档