当前位置:文档之家› 齿槽转矩脉动

齿槽转矩脉动

齿槽转矩脉动

齿槽转矩脉动

齿槽转矩是由转子的永磁体磁场同定子铁心的齿槽相互作用,在圆周方向产生的转矩。此转矩与定子的电流无关,它总是试图将转子定位在某些位置。在变速驱动中,当转矩频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能,和位置控制系统中的高精度定位。解决齿槽转矩脉动问题的方法主要集中在电机本体的优化设计

上。

(1)斜槽法定子斜槽或转子斜极是抑制齿槽转矩脉动最有效且应用广泛的方法之一,该方法主要用于定子槽数较多且轴向较长的电机。实践表明,采用斜槽角度为10°时,齿槽转矩的基波转矩幅值相当于直槽时的90%,3次谐波幅值相当于直槽时的30%,5次谐波幅值相当于直槽时的19%。值得注意的是,为产生恒定的电磁转矩,反电动势波形必须是平顶宽度大于120°的理想梯形波,而斜槽或斜极引起的绕组反电动势的正弦化将会增大电磁转矩纹波。因此,选择合适的斜槽角度是有效抑制齿槽转矩脉动的关键。

(2)分数槽法该方法可以提高齿槽转矩基波的频率,使齿槽转矩脉动量明显减少。但是,采用了分数槽后,各极下绕组分布不对称,从而使电机的有效转矩分量部分被抵消,电机的平均转矩也会因此而相应减

小。

(3)磁性槽楔法采用磁性槽楔法就是在电机的定子槽口上涂压一层磁性槽泥,固化后形成具有一定导磁性能的槽楔。磁性槽楔减少了定子槽开口的影响,使定子与转子间的气隙磁导分布更加均匀,从而减少由于齿槽效应而引起的转矩脉动。由于磁性槽楔材料的导磁性能不是很好,因而对于转矩脉动的削弱程度有限。

(4)闭口槽法闭口槽即定子槽不开口,槽口材料与齿部材料相同。因槽口的导磁性能较好,所以闭口槽比磁性槽楔能更有效地消除转矩脉动。但采用闭口槽,给绕组嵌线带来极大不便,同时也会'大大增加槽漏抗,增大电路的时间常数,从而影响电机控制系统的动态特性。

(5)无齿槽绕组为了消除齿槽转矩脉动,可采用无槽绕组的永磁无刷直流电机,这种结构的电机定子可使用非导磁铁心的无齿槽空心杯定子结构(见图),能够彻底消除了齿槽转矩脉动的影响;但绕组电感显著减小,一般只有几μH到几十μH,因此定子电流中的PWM分量非常明显。

一种三级式同步电机转矩脉动抑制方法

第19卷一第11期2015年11月一电一机一与一控一制一学一报Electri c 一Machines 一and 一Control 一Vol.19No.11Nov.2015 一一一一一一一种三级式同步电机转矩脉动抑制方法 马鹏,一刘卫国,一毛帅,一骆光照 (西北工业大学自动化学院,陕西西安710072) 摘一要:针对三级式同步电机在电动起动过程中,主发电机的转子励磁脉动导致输出转矩脉动较大二带载起动性能较低的问题,分析了转子励磁脉动对主发电机运行特性的影响,以及在采用矢量控制策略时,由于受到谐波电流的影响而输出的误差电压矢量的分布特点三为了提高主发电机的带载起动性能,本文提出了一种采用极坐标确定控制器调制电压矢量的起动控制方法,与传统的矢量控制策略相比,该方法在一个调节周期内不会产生电压幅值调节误差,仅会产生较小的矢量角调节误差三实验结果表明,在100r /min 转速时,传统矢量控制方法仅能拖动5N 四m 的负载,新方法则能够稳定拖动40N 四m 负载,说明新方法更适合电机在拖动航空发动机起动过程中低转速二大负载的运行工况三 关键词:三级式同步电机;航空发动机;励磁脉动;起动控制;转矩脉动抑制 DOI :10.15938/j.emc.2015.11.015 中图分类号:TM 341文献标志码:A 文章编号:1007-449X(2015)11-0098-06 Torque ripple reduction in three-stage brushless synchronous machines MA Peng,一LIU Wei-guo,一MAO Shuai,一LUO Guang-zhao (School of Automation,Northwestern Polytechnical University,Xi an 710072,China)Abstract :Considering the large torque ripple and poor start performance with load which are caused by the excitation current pulsation of the main generator in the electric start process of three-stage brushless synchronous machines,the impact of the excitation current pulsation was analyzed on operating character-istics of the main generator and distribution characteristics of output voltage vector error caused by har-monic currents when vector control strategy was adopted.In order to improve the start performance of the three-stage brushless synchronous machine with load,a start control method was proposed using the polar coordinate to determine the output voltage https://www.doczj.com/doc/088855510.html,pared with the traditional vector control strategy,this method does not produce amplitude error,but only small angle error,of the vector voltage.The ex-perimental results show that,at a speed of 100r /min,the electric start system adopting the new method can operate steadily with a load of 40N四m,while for the traditional vector control method,it is only 5N四m.Therefore,the new method is more suitable for the low speed and heavy load operating condi-tions at the start mode of aircraft engines.Keywords :three-stage synchronous machine;aircraft engine;excitation pulsation;start control;torque ripple reduction 收稿日期:2014-09-21 基金项目:国家自然科学基金(51277152) 作者简介:马一鹏(1984 ),男,博士研究生,研究方向为多级电励磁无刷同步电机伺服控制; 刘卫国(1960 ),男,博士,教授,博士生导师,研究方向为永磁电机设计理论及驱动控制技术; 毛一帅(1989 ),男,博士研究生,研究方向为电励磁同步电机驱动控制技术; 骆光照(1972 ),男,博士,教授,博士生导师,研究方向为永磁同步电机驱动控制技术三 通讯作者:马一鹏

齿槽转矩脉动

齿槽转矩脉动 齿槽转矩是由转子的永磁体磁场同定子铁心的齿槽相互作用,在圆周方向产生的转矩。此转矩与定子的电流无关,它总是试图将转子定位在某些位置。在变速驱动中,当转矩频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能,和位置控制系统中的高精度定位。解决齿槽转矩脉动问题的方法主要集中在电机本体的优化设计 上。 (1)斜槽法定子斜槽或转子斜极是抑制齿槽转矩脉动最有效且应用广泛的方法之一,该方法主要用于定子槽数较多且轴向较长的电机。实践表明,采用斜槽角度为10°时,齿槽转矩的基波转矩幅值相当于直槽时的90%,3次谐波幅值相当于直槽时的30%,5次谐波幅值相当于直槽时的19%。值得注意的是,为产生恒定的电磁转矩,反电动势波形必须是平顶宽度大于120°的理想梯形波,而斜槽或斜极引起的绕组反电动势的正弦化将会增大电磁转矩纹波。因此,选择合适的斜槽角度是有效抑制齿槽转矩脉动的关键。 (2)分数槽法该方法可以提高齿槽转矩基波的频率,使齿槽转矩脉动量明显减少。但是,采用了分数槽后,各极下绕组分布不对称,从而使电机的有效转矩分量部分被抵消,电机的平均转矩也会因此而相应减 小。 (3)磁性槽楔法采用磁性槽楔法就是在电机的定子槽口上涂压一层磁性槽泥,固化后形成具有一定导磁性能的槽楔。磁性槽楔减少了定子槽开口的影响,使定子与转子间的气隙磁导分布更加均匀,从而减少由于齿槽效应而引起的转矩脉动。由于磁性槽楔材料的导磁性能不是很好,因而对于转矩脉动的削弱程度有限。 (4)闭口槽法闭口槽即定子槽不开口,槽口材料与齿部材料相同。因槽口的导磁性能较好,所以闭口槽比磁性槽楔能更有效地消除转矩脉动。但采用闭口槽,给绕组嵌线带来极大不便,同时也会'大大增加槽漏抗,增大电路的时间常数,从而影响电机控制系统的动态特性。 (5)无齿槽绕组为了消除齿槽转矩脉动,可采用无槽绕组的永磁无刷直流电机,这种结构的电机定子可使用非导磁铁心的无齿槽空心杯定子结构(见图),能够彻底消除了齿槽转矩脉动的影响;但绕组电感显著减小,一般只有几μH到几十μH,因此定子电流中的PWM分量非常明显。

无刷直流电机转矩脉动抑制方法综述

无刷直流电机转矩脉动抑制方法综述 周杰,侯燕 (河南工业大学电气工程学院,450007) 摘要:为扩大无刷直流电机在精度较高的伺服系统中的应用,必须尽量减小其转矩脉动。详细论述了无刷直流电机各种有效的转矩脉动抑制方法,并进行分类归纳。 关键词:无刷直流电机;转矩脉动;综述 中图分类号:TM33 文献标识码:B 文章编号:1004-0420(2007)06-0005-04 The review on torque ripple minimization of brushless DC motors ZHOU Jie,HOU Yan (College of Electrical Engineering,Henan University of Technology,450007) Abstract:To enlarge the application of brushless DC motor in higher accurateness servos,the torque ripple of brushless DC motor must be minimized. Aiming at the torque ripple attenuation of brushless DC motor,many efficient methods were discussed and classified in detail. Key words:brushless DC motor; torque ripple; review 0 引言 近年来,无刷直流电机(BLDCM)以其体积小、结构简单、功率密度高、输出转矩大、动态性能好等特点而得到了广泛应用[1],尤其是在机器人、精密电子仪器与设备等对电机性能、控制精度要求较高的场合和领域,其应用和研究更是受到普遍重视。目前,无刷直流电机最突出的问题就是具有转矩脉动,转矩脉动会直接降低电力传动系统控制特性和驱动

电机输出扭矩计算公式

电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n 电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿?米(N?m),工程技术中也曾用过公斤力?米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。 三相异步电动机的转矩公式为: S R2 M=C U12 公式[2 ] R22+(S X20)2 C:为常数同电机本身的特性有关;U1 :输入电压; R2 :转子电阻;X20 :转子漏感抗;S:转差率 可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。 转矩的类型 转矩可分为静态转矩和动态转矩。 静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。 根据转矩的不同情况,可以采取不同的转矩测量方法。 转矩=9550*功率/转速 同样 功率=转速*转矩/9550 平衡方程式中:功率的单位(kW);转速的单位(r/min);转矩的单位(N.m);9550是计算系数。

电机转速和扭矩(转矩)计算公式

电机转速和扭矩(转矩)公式 含义: 1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义: 9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能?有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-呎(lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。汽车驱动力的计算方式:将扭矩除以车轮半径即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢?答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部1.6升的发动机大约可发挥15.0kg-m的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。

电机转速和扭矩(转矩)计算公式

电机转速和扭矩(转矩)公式 1、电机有个共同的公式,P=MN/9550 P为额定功率,M为额定力矩,N为额定转速,所以请确认电机功率和额定转速就可以得出额定力矩大小。注意P的单位是KW,N的单位是R/MIN(RPM),M的单位是NM 2、扭矩和力矩完全是一个概念,是力和力臂长度的乘积,单位NM(牛顿米) 比如一个马达输出扭矩10NM,在离输出轴1M的地方(力臂长度1M),可以得到10N的力;如果在离输出轴10M的地方(力臂长度10M),只能得到1N的力 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 力矩、转矩和扭矩在电机中其实是一样的。一般在同一篇文章或同一本书,上述三个名词只采用一个,很少见到同时采用两个或以上的。虽然这三个词运用的场合有所区别,但在电机中都是指电机中转子绕组产生的可以用来带动机械负载的驱动“矩”。所谓“矩”是指作用力和支点与力作用方向相垂直的距离的乘积。 对于杠杆,作用力和支点与力作用方向相垂直的距离的乘积就称为力矩。对于转动的物体,若将转轴中心看成支点,在转动的物体圆周上的作用力和转轴中心与作用力方向垂直的距离的乘积就称为转矩。当圆柱形物体,受力而未转动,该物体受力后只存在因扭力而发生的弹性变形,此时的转矩就称为扭矩。因此,在运行的电机中严格说来只能称为“转矩”。采用“力矩”或“扭矩”都不太合适。不过习惯上这三种名称使用的历史都较长至少也有六七十年了,因此也没有人刻意去更正它。 至于力矩、转矩和扭矩的单位一般有两种,就是千克·米(kg·m)和牛顿·米(N·m) 两种,克·米(g·m)只是千克·米(kg·m)千分之一。如一楼的朋友所说,“1kg力=9.8N”。1千克·米(kg·m)=9.8牛顿·米(N·m)。 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能?有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋

什么是扭矩 扭矩计算公式和单位

什么是扭矩扭矩计算公式和单位 2008年01月07日 10:07 转载作者:本站用户评论(0) 关键字: 什么是扭矩 扭矩:扭矩是使物体发生转动的力。发动机的扭矩就是指发动机从曲轴端输出的力矩。在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。 扭矩和功率一样,是汽车发动机的主要指数之一,它反映在汽车性能上,包括加速度、爬坡能力以及悬挂等。它的准确定义是:活塞在汽缸里的往复运动,往复一次做有一定的功,它的单位是牛顿。在每个单位距离所做的功就是扭矩了。是这样的,扭矩是衡量一个汽车发动机好坏的重要标准,一辆车扭矩的大小与发动机的功率成正比。举个通俗的例子,比如,像人的身体在运动时一样,功率就像是身体的耐久度,而扭矩是身体的爆发力。对于家用轿车而言,扭矩越大加速性越好;对于越野车,扭矩越大其爬坡度越大;对于货车而言,扭矩越

大车拉的重量越大。在排量相同的情况下,扭矩越大说明发动机越好。在开车的时候就会感觉车子随心所欲,想加速就可加速,“贴背感”很好。现在评价一款车有一个重要数据,就是该车在0-100公里/小时的加速时间。而这个加速时间就取决于汽车发动机的扭矩。一般来讲,扭矩的最高指数在汽车2000-4000/分的转速下能够达到,就说明这款车的发动机工艺较好,力量也好。有些汽车在5000/分的转速左右才达到该车扭矩的最高指数,这说明“力量”就不是此车所长。 扭矩在物理学中就是力矩的大小,等于力和力臂的乘积,国际单位是牛米Nm,此外我们还可以看见kgm、lb-ft这样的扭矩单位,由于G=mg,当g=9.8的时候,1kg=9.8N,所以1kgm =9.8Nm,而磅尺lb-ft则是英制的扭矩单位,1lb=0.4536kg;1ft=0.3048m,可以算出1lb-ft =0.13826kgm。在人们日常表达里,扭矩常常被称为扭力(在物理学中这是2个不同的概念)。现在我们举个例子:8代Civic 1.8的扭矩为173.5Nm@4300rpm,表示引擎在4300转/分时的输出扭矩为173.5Nm,那173.5N的力量怎么能使1吨多的汽车跑起来呢?其实引擎发出的扭矩要经过放大(代价就是同时将转速降低)这就要靠变速箱、终传和轮胎了。引擎释放出的扭力先经过变速箱作“可调”的扭矩放大(或在超比挡时缩小)再传到终传(尾牙)里作进一步的放大(同时转速进一步降低),最后通过轮胎将驱动力释放出来。如某车的1 挡齿比(齿轮的齿数比,本质就是齿轮的半径比)是3,尾牙为4,轮胎半径为0.3米,原扭矩是200Nm的话,最后在轮轴的扭力就变成200×3×4=2400Nm(设传动效率为100%)在除以轮胎半径0.3米后,轮胎与地面摩擦的部分就有2400Nm/0.3m=8000N的驱动力,这就足以驱动汽车了。 若论及机械效率,每经过一个齿轮传输,都会产生一次动力损耗,手动变速箱的机械效率约在95%左右,自排变速箱较惨,约剩88%左右,而传动轴的万向节效率约为98%。整体而言,汽车的驱动力可由下列公式计算: 扭矩×变速箱齿比×最终齿轮比×机械效率 驱动力= ———————————————————— 轮胎半径(单位:米) 小结:1kgm=9.8Nm 1lb-ft=0.13826kgm 1lb-ft=1.355Nm 一般来说,在排量一定的情况下,缸径小,行程长的汽缸较注重扭矩的发挥,转速都不会太高,适用于需要大载荷的车辆。而缸径大,行程短的汽缸较注重功率的输出,转速通常较高,适用于快跑的车辆。简单来说:功率正比于扭矩×转速 补充一点:为什么引擎的功率能由扭矩计算出来呢? 我们知道,功率P=功W÷时间t 功W=力F×距离s 所以,P=F×s/t=F×速度v

电机转速和扭矩计算公式

电机转速和扭矩计算公式 电机转速公式:n=60f/P n=转速,f=电源频率,P=磁极对数 电机扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩和功率及转速的关系式,是电机学中常用的关系式,近期在百度知道上常有看到关于扭矩和功率及转速的相关计算式的问答,一般回答者都是直接给出计算公式,公式中的常数采用近似值,常数往往不容易记住,本文的目的就是帮助大家方便的记住这些公式,并在工程应用中熟练的使用。 一记住扭矩和功率的公式形式

扭矩和功率及转速的关系式一般用于描述电机的转轴的做功问题,扭矩越大,轴功率越大;转速越高,轴功率越大,扭矩和转速都是产生轴功率的必要条件,扭矩为零或转速为零,输出轴功率为零。因此,电机空转或堵转就是轴功率等于零的两个特例。 功率和扭矩及转速成正比,扭矩和功率的关系式具有如下形式:P=aTN 上式中,a为常数,对应的有: T=(1/a)(1/N)P 即扭矩和功率成正比,和转速成反比。 记忆方法: 记住扭矩T和功率P成正比,扭矩T和转速N成反比,而系数a 不必记忆。

二记住力做功的基本公式 提问者通常都知道上述关系式,问题的焦点在于常数a的具体数值。 如果不是经常使用该公式,的确很难记住这个常数,本人亦是如此。 不过,只要记住扭矩和转速公式的推导方式,可以很快推导出结果,得到系数a的准确值。 我们知道力学中力做功的功率计算公式为: P=FV (2) 上述公式为力做功的基本公式。然而,基本公式中没有出现扭矩T和转速N。 如果我们注意到:扭矩实际上就是力学上的力矩。就很容易联想到扭矩T和力F的关系。 由于力矩等于力F和力臂的乘积,而力臂是轴的半径r,因此有:T=Fr或

转矩脉动抑制

International Journal of Automotive Technology , Vol. 12, No. 2, pp. 291?297 (2011)DOI 10.1007/s12239?011?0034?8 Copyright ?2011KSAE 1229?9138/2011/057?16 291 TORQUE RIPPLE MINIMIZA TION CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTORS FOR EPS APPLICA TIONS G . H. LEE 1), W. C. CHOI 1), S. I. KIM 2), S. O. KWON 2) and J. P . HONG 2)* 1) Graduate School of Automotive Engineering, Kookmin University, Seoul 136-702, Korea 2) Department of Automotive Engineering, Hanyang University, Seoul 133-791, Korea (Received 18 February 2009; Revised 9 August 2010) ABSTRACT ?This paper identifies a control method used to reduce torque ripple of a permanent magnet synchronous motor (PMSM) for an electric power steering (EPS) system. NVH (Noise Vibration Harshness) is important for safe and convenient driving. Vibration caused by motor torque is a problem in column type EPS systems. Maintaining a very low torque ripple is one solution that allows for smoother steering. Theoretically, it is possible to design and drive the motor without torque ripple.However, in reality, a PMSM system torque ripple is caused by the motor itself (saturation in the iron core and EMF distortion)and the imperfect driver. This paper analyzes torque ripple of a PMSM system, and an advanced PMSM control method for the column typed EPS system is presented. Results of the analysis indicate that the compensation current is needed in order to minimize torque ripple when a PMSM is driven. KEY WORDS :Electric power steering, Magnetic saturation, PMSM, Torque ripple, Deadtime, EMF distortion 1. INTRODUCTION Research is being performed to improve the fuel efficiency of vehicles. One of the main areas of focus is on the steering of auxiliary equipment. Electric Power Steering (EPS) is receiving more attention than Hydraulic Power Steering (HYPS). Electric power steering (EPS) is a system that supplies motor power directly to the steering to assist steering torque while HYPS uses an oil pump that is driven by the engine (Shimizu and Kawai, 1991). A permanent magnet synchronous motor (PMSM) has been used to improve the performance of EPS. Since a PMSM has many advantages, such as high efficiency and high torque per rotor volume, it is especially suitable for automotive applications in which space and energy savings are critical (Miyoshi et al ., 2005). In a column type EPS system, the PMSM is linked to the steering shaft via a reduction gear. This connection transfers the motor vibration and torque fluctuation directly through the steering wheel to the hands of the driver (Zhang et al .,2008). For this reason, only the ripple between one and three percent of rated torque is permitted. Several technical papers have presented a motor design andcontrol technique to reduce cogging torque and torque pulsation (Islam et al ., 2005; Mattavelli et al ., 2005; Bianchi et al ., 2002; Lee et al ., 2008). However, this paper discusses an estimation method of compensation current for suppress-ing torque ripple caused by a PMSM (Lee et al ., 2008).In an EPS application, the magnetic saturation in the stator core and distortion of EMF is inevitable due to spatial and cost limitations(Lee, 2010). Imperfections of a low voltage inverter for EPS can be severe. This paper also analyzes torque ripple caused by the motor, deadtime effects, and current offset problems of the PMSM driver.The harmonic current distribution is calculated using finite element analysis, and the effective dead time compensation method is proposed. 2. TORQUE RIPPLE OF PMSM 2.1. Torque Ripple of PMSM for the EPS Figure 1 indicates a fabricated PMSM for the column type EPS system. The rotor configuration was skewed to reduce cogging torque. Segment type and ring type rotors are used for the purpose of this research. The specifications for a PMSM are listed in Table 1. Cogging torque and total harmonic distortion (THD) of a back-EMF required in the motor are less than 0.02 Nm and 0.7% respectively. If the rotor of a SPMSM is composed of segment-type permanent magnets, there is relatively low THD in the back-EMF (0.7%). A ring-type magnet has a higher THD in the back-EMF (2.3%) and an acceptable level of productivity.The torque waveforms of segment and ring magnets are shown in Figure 2. In order to measure torque ripple accurately, the motor is driven at 10 rpm, and input current is controlled with a THD less than 0.5%. As the magnetic torque increases, the electric frequency increases by a *Corresponding author . e-mail: hongjp@hanyang.ac.kr

电机转速转矩计算公式

针对你的问题有公式可参照分析: 电机功率:P=1.732×U×I×cosφ 电机转矩:T=9549×P/n ; 电机功率转矩=9550*输出功率/输出转速 转矩=9550*输出功率/输出转速 P = T*n/9550 公式推导 电机功率,转矩,转速的关系 功率=力*速度 P=F*V---公式1 转矩(T)=扭力(F)*作用半径(R) 推出 F=T/R ---公式2 线速度(V)=2πR*每秒转速(n秒) =2πR*每分转速(n 分)/60 =πR*n分/30---公式3 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位Nm, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P= T * n 电机转速:n=60f/p,p为电机极对数,例如四级电机的p=2; 注:当频率达50Hz时,电机达到额定功率,再增加频率,其功率时不会再增的,会保持额定功率。 电机转矩在50Hz以下时,是与频率成正比变化的;当频率f达到50Hz时,电机达到最大输出功率,即额定功率;如果频率f在50Hz以后再继续增加,则输

出转矩与频率成反比变化,因为它的输出功率就是那么大了,你还要继续增加频率f,那么套入上面的计算式分析,转矩则明显会减小。

转速的情况和频率是一样的,因为电源电压不变,其频率的变化直接反应的结果就是转速的同比变化,频率增,转速也增,它减另一个也减。 关于电压分析起来有点麻烦,你先看这几个公式。 电机的定子电压:U = E + I×R (I为电流, R为电子电阻, E为感应电势); 而:E = k×f×X (k:常数, f: 频率, X:磁通); 对异步电机来说:T=K×I×X (K:常数, I:电流, X:磁通); 则很容易看出频率f的变化,也伴随着E的变化,则定子的电压也应该是变化的,事实上常用的变频器调速方法也就是这样的,频率变化时,变频器输出电压,也就是加在定子两端的电压也是随之变化的,是成正比的,这就是恒V/f比变频方式。这三个式子也可用于前面的分析,可得出相同结果。 当然,如果电源频率不变,电机转矩肯定是正比于电压的,但是一定是在电机达到额定输出转矩前。 电机的“扭矩”,单位是N?m(牛米) 计算公式是T=9549 * P / n 。 P是电机的额定(输出)功率单位是千瓦(KW) 分母是额定转速n 单位是转每分(r/min) P和n可从电机铭牌中直接查到。 电机转速和扭矩(转矩)公式 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW

方波无刷直流电机转矩脉动分析

方波无刷直流电机转矩脉动分析 作 者:中国中铁电气化局集团第二工程有限公司 李 庆 [专家点评] 引言 永磁方波无刷直流电动机具有体积小、重量轻、出力大、控制简单和调速方便等优点,被广泛应用于军事、工业和家电等各行业。但是,方波无刷直流电机转矩脉动大,限制了它在一些场合的应用。转矩脉动主要是由于电磁因素引起的,本文分析了无刷直流电动机转矩脉动的成因,并从系统的观点提出改善转矩脉动的措施。 方波无刷直流电机转矩脉动成因[2] 永磁无刷直流电动机的气隙磁场为方波,相应的逆变装置采用二二导通模式,以保证定子电流波形与气隙磁场波形一致,这样电机转矩脉动最小,几乎为零。但是现实中做到定子电流波形与气隙磁场波形完全一致是不可能的,同时由于电机本身存在定子绕组的换流问题,这就带来了转矩的脉动。从转矩公式 (1) 式中:t e为转矩;为相反电;为相电流;ω角速度;从式中可以看出,转矩脉动主要与定子电流和气隙磁场有关。 定子电流对转矩脉动的影响 控制逆变装置目的就是调整电流,使之尽量接近理想的方波波形,但是由于定子绕组存在电感,使得定子中的电流上升和下降都有个过程,使得定子电流达不到理想方波波形,导致了转矩的脉动。同时由于斩波频率的限制,非换相期间电流的脉动也带来的精度允许范围之内的转矩脉动。 气隙磁场对转矩脉动的影响 电机气隙磁场在设计时是梯形波磁场,但是由于机械加工制造等方面的影响,使得气隙磁场达不到理想的梯形波形,同时由于定子齿槽的存在使得气隙磁场有脉动[1];当电机带负载运行时,定子磁场与转子磁场相互作用,有电枢反应,使得气隙磁场产生畸变,偏离理想梯形波,这也带来了转矩的脉动。 抑制转矩脉动的措施 为了抑制转矩脉动主要从三方面来采取措施: (1)从主回路角度,尽量采用高频器件,提高谐波次数,减少谐波转矩脉动; (2)从控制的角度,采用最佳的逆变器控制模式,尽量增加有效电磁转矩,采用合适的控制方法抑制换流带来的电流脉动导致的转矩脉动;

LCI驱动同步电机低速转矩脉动抑制策略研究

目录 摘要 .......................................................................................................................... I ABSTRACT ................................................................................................................ II 目录 ....................................................................................................................... I V 第1章绪论 (1) 1.1课题背景及研究意义 (1) 1.2国内外在该方向的研究现状 (3) 1.2.1 无传感器检测技术研究现状 (3) 1.2.2 无传感器转子位置检测方法 (5) 1.3本文主要研究内容 (7) 第2章转矩脉动抑制技术 (9) 2.1引言 (9) 2.2低速转矩脉动产生机理 (9) 2.3零速转子位置检测原理 (10) 2.4低速转子位置检测原理 (14) 2.5低速转矩脉动抑制策略 (20) 2.6本章小结 (21) 第3章反电动势信号处理及其硬件设计 (22) 3.1引言 (22) 3.2反电动势信号处理方案 (22) 3.3高频信号提取 (23) 3.3.1 高频信号频率选择 (23) 3.3.2 带通滤波器的设计 (24) 3.4包络线提取方案 (29) 3.4.1 峰值保持器 (30) 3.4.2 BA3826S的应用 (32) 3.4.3 ADL5511的应用 (34) 3.5其他硬件电路的设计 (37) 3.6本章小结 (40) 第4章转子位置检测软件设计 (41) 4.1引言 (41)

电机转矩的计算公式

电机转速和扭矩(转矩)计算公式(转载) 2010-01-11 12:03 含义:1kg= 1千克的物体受到地球的吸引力是牛顿。 含义:·m 推力点垂直作用在离磨盘中心1米的位置上的力为了。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上

应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-呎(lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以即可。汽车驱动力的计算方式:将扭矩除以车轮半径即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部1.6升的发动机大约可发挥15.0kg-m的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/=公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。 36公斤的力量怎么推动一公吨的车重呢而且动辄数千转的发动机转速更不可能恰好成为轮胎转速,否则车子不就飞起来了幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。 举例说明,以小齿轮带动大齿轮,假设小齿轮的齿数为15齿,大齿轮的齿

电机扭矩计算方法

电机转速和扭矩(转矩)计算公式 含义: 1kg=9.8N???? 1千克的物体受到地球的吸引力是9.8牛顿????? 含义:9.8N·m????? 推力点垂直作用在离磨盘中心1米的位置上的力为了9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n ????? T是扭矩,单位N·m ????? P是输出功率,单位KW ????? n是电机转速,单位r/min 扭矩公式:T=973P/n ???? T是扭矩,单位Kg·m ???? P是输出功率,单位KW ???? n是电机转速,单位r/min 形象的比喻: ????? 功率与扭矩哪一项最能具体代表车辆性能?有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车

辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 ????? 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度 9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-尺(lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。汽车驱动力的计算方式:将扭矩除以车轮半径即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢?答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部1.6升的发动机大约可发挥15.0kg-m 的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。 ???? 36公斤的力量怎么推动一公吨的车重呢?而且动辄数千转的发动机转速更不可能恰好成为轮胎转速,否则车子不就飞起来了?幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。

相关主题
文本预览
相关文档 最新文档