当前位置:文档之家› 齿槽转矩脉动分析及优化设计思路

齿槽转矩脉动分析及优化设计思路

齿槽转矩脉动分析及优化设计思路
齿槽转矩脉动分析及优化设计思路

齿槽转矩脉动

齿槽转矩是由转子的永磁体磁场同定子铁心的齿槽相互作用,在圆周方向产生的转矩。此转矩与定子的电流无关,它总是试图将转子定位在某些位置。在变速驱动中,当转矩频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能,和位置控制系统中的高精度定位。解决齿槽转矩脉动问题的方法主要集中在电机本体的优化设计上。(1)斜槽法定子斜槽或转子斜极是抑制齿槽转矩脉动最有效且应用广泛的方法之一,该方法主要用于定子槽数较多且轴向较长的电机。实践表明,采用斜槽角度为10°时,齿槽转矩的基波转矩幅值相当于直槽时的90%,3次谐波幅值相当于直槽时的30%,5次谐波幅值相当于直槽时的19%。值得注意的是,为产生恒定的电磁转矩,反电动势波形必须是平顶宽度大于120°的理想梯形波,而斜槽或斜极引起的绕组反电动势的正弦化将会增大电磁转矩纹波。因此,选择合适的斜槽角度是有效抑制齿槽转矩脉动的关键。(2)分数槽法该方法可以提高齿槽转矩基波的频率,使齿槽转矩脉动量明显减少。但是,采用了分数槽后,各极下绕组分布不对称,从而使电机的有效转矩分量部分被抵消,电机的平均转矩也会因此而相应减小。(3)磁性槽楔法采用磁性槽楔法就是在电机的定子槽口上涂压一层磁性槽泥,固化后形成具有一定导磁性能的槽楔。磁性槽楔减少了定子槽开口的影响,使定子与转子间的气隙磁导分布更加均匀,从而减少由于齿槽效应而引起的转矩脉动。由于磁性槽楔材料的导磁性能不是很好,因而对于转矩脉动的削弱程度有限。(4)闭口槽法闭口槽即定子槽不开口,槽口材料与齿部材料相同。因槽口的导磁性能较好,所以闭口槽比磁性槽楔能更有效地消除转矩脉动。但采用闭口槽,给绕组嵌线带来极大不便,同时也会'大大增加槽漏抗,增大电路的时间常数,从而影响电机控制系统的动态特性。(5)无齿槽绕组为了消除齿槽转矩脉动,可采用无槽绕组的永磁无刷直流电机,这种结构的电机定子可使用非导磁铁心的无齿槽空心杯定子结构(见图),能够彻底消除了齿槽转矩脉动的影响;但绕组电感显著减小,一般只有几μH到几十μH,因此定子电流中的PWM分量非常明显。

齿槽转矩脉动

齿槽转矩脉动 齿槽转矩是由转子的永磁体磁场同定子铁心的齿槽相互作用,在圆周方向产生的转矩。此转矩与定子的电流无关,它总是试图将转子定位在某些位置。在变速驱动中,当转矩频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能,和位置控制系统中的高精度定位。解决齿槽转矩脉动问题的方法主要集中在电机本体的优化设计 上。 (1)斜槽法定子斜槽或转子斜极是抑制齿槽转矩脉动最有效且应用广泛的方法之一,该方法主要用于定子槽数较多且轴向较长的电机。实践表明,采用斜槽角度为10°时,齿槽转矩的基波转矩幅值相当于直槽时的90%,3次谐波幅值相当于直槽时的30%,5次谐波幅值相当于直槽时的19%。值得注意的是,为产生恒定的电磁转矩,反电动势波形必须是平顶宽度大于120°的理想梯形波,而斜槽或斜极引起的绕组反电动势的正弦化将会增大电磁转矩纹波。因此,选择合适的斜槽角度是有效抑制齿槽转矩脉动的关键。 (2)分数槽法该方法可以提高齿槽转矩基波的频率,使齿槽转矩脉动量明显减少。但是,采用了分数槽后,各极下绕组分布不对称,从而使电机的有效转矩分量部分被抵消,电机的平均转矩也会因此而相应减 小。 (3)磁性槽楔法采用磁性槽楔法就是在电机的定子槽口上涂压一层磁性槽泥,固化后形成具有一定导磁性能的槽楔。磁性槽楔减少了定子槽开口的影响,使定子与转子间的气隙磁导分布更加均匀,从而减少由于齿槽效应而引起的转矩脉动。由于磁性槽楔材料的导磁性能不是很好,因而对于转矩脉动的削弱程度有限。 (4)闭口槽法闭口槽即定子槽不开口,槽口材料与齿部材料相同。因槽口的导磁性能较好,所以闭口槽比磁性槽楔能更有效地消除转矩脉动。但采用闭口槽,给绕组嵌线带来极大不便,同时也会'大大增加槽漏抗,增大电路的时间常数,从而影响电机控制系统的动态特性。 (5)无齿槽绕组为了消除齿槽转矩脉动,可采用无槽绕组的永磁无刷直流电机,这种结构的电机定子可使用非导磁铁心的无齿槽空心杯定子结构(见图),能够彻底消除了齿槽转矩脉动的影响;但绕组电感显著减小,一般只有几μH到几十μH,因此定子电流中的PWM分量非常明显。

永磁电机齿槽转矩的研究分析

龙源期刊网 https://www.doczj.com/doc/918078459.html, 永磁电机齿槽转矩的研究分析 作者:邓秋玲,黄守道,刘婷,谢芳 来源:《湖南大学学报·自然科学版》2011年第03期 摘要:研究了永磁电机齿槽转矩产生的机理和降低齿槽转矩的一些措施.以4极、48槽表面式稀土永磁同步电动机为例,利用二维有限元法分析了极弧系数、磁极偏移和开辅助槽对永磁电机齿槽转矩的影响.将理论分析得到的齿槽转矩结果与样机的齿槽转矩测试结果进行了比较,两者基本吻合.研究表明:通过选择合理的方法能够有效地降低齿槽转矩. 关键词:永磁电机;齿槽转矩;磁场分析;有限元分析 中图分类号:TM351 文献标识码:A Study of Cogging Torque in Permanentmagnet Machines DENG Qiuling1,2,HUANG Shoudao1, LIU Ting1, XIE Fang1 (1.College of Electrical and Information Engineering, Hunan Univ, Changsha, Hunan 410082, China; 2.College of Electric and Information Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411101,China) Abstract:The mechanism of the cogging torque generated in permanent magnet machines and some measures to reduce cogging torque were studied. Taking a rare earth type, permanent magnet synchronous motor with four poles, fortyeight slots, surfacemounted as an example, this paper analyzed the influence of pole arc coefficient, magnet pole displacement and adding supplementary slot on cogging torque in a twodimensional finite element analysis method. The computed cogging torque values were compared with the experiment values of the sample machine, both of which agree with each other well. The research results have indicated that, with the appropriate choice of these methods, the cogging torque can be reduced effectively. Key words:permanentmagnet machine;cogging torque;magnetic field analysis;finiteelement analysis 随着高性能永磁材料的发展和永磁电机设计制造技术的不断提高,永磁电机广泛应用于速度和位置控制系统中.在开槽永磁电机中,由永磁体和开槽电枢铁心之间相互作用产生的齿槽

无刷直流电机转矩脉动抑制方法综述

无刷直流电机转矩脉动抑制方法综述 周杰,侯燕 (河南工业大学电气工程学院,450007) 摘要:为扩大无刷直流电机在精度较高的伺服系统中的应用,必须尽量减小其转矩脉动。详细论述了无刷直流电机各种有效的转矩脉动抑制方法,并进行分类归纳。 关键词:无刷直流电机;转矩脉动;综述 中图分类号:TM33 文献标识码:B 文章编号:1004-0420(2007)06-0005-04 The review on torque ripple minimization of brushless DC motors ZHOU Jie,HOU Yan (College of Electrical Engineering,Henan University of Technology,450007) Abstract:To enlarge the application of brushless DC motor in higher accurateness servos,the torque ripple of brushless DC motor must be minimized. Aiming at the torque ripple attenuation of brushless DC motor,many efficient methods were discussed and classified in detail. Key words:brushless DC motor; torque ripple; review 0 引言 近年来,无刷直流电机(BLDCM)以其体积小、结构简单、功率密度高、输出转矩大、动态性能好等特点而得到了广泛应用[1],尤其是在机器人、精密电子仪器与设备等对电机性能、控制精度要求较高的场合和领域,其应用和研究更是受到普遍重视。目前,无刷直流电机最突出的问题就是具有转矩脉动,转矩脉动会直接降低电力传动系统控制特性和驱动

电机输出扭矩计算公式

电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n 电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿?米(N?m),工程技术中也曾用过公斤力?米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。 三相异步电动机的转矩公式为: S R2 M=C U12 公式[2 ] R22+(S X20)2 C:为常数同电机本身的特性有关;U1 :输入电压; R2 :转子电阻;X20 :转子漏感抗;S:转差率 可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。 转矩的类型 转矩可分为静态转矩和动态转矩。 静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。 根据转矩的不同情况,可以采取不同的转矩测量方法。 转矩=9550*功率/转速 同样 功率=转速*转矩/9550 平衡方程式中:功率的单位(kW);转速的单位(r/min);转矩的单位(N.m);9550是计算系数。

ANSYS Maxwell 2D求解齿槽转矩的几种方法

ANSYS Maxwell 2D求解齿槽转矩的几种方法 齿槽转矩是永磁电机特有的问题之一,是高性能永磁电机设计和制造中必须考虑和解决的关键问题。其表现是当永磁电机绕组不通电时,永磁体和定子铁芯之间相互作用产生的转矩,它是永磁体与电枢齿之间相互作用力的切向分量引起的。Maxwell 2D可以有效仿真得出永磁电机电磁方案的齿槽转矩,且方法较多。本文以R17.2 RMxprt中的自带案例4极24槽“assm-1”为模板,介绍3种方法。 打开该案例后,首先将系统中的案例另存到工作目录下,然后在DesignSettings 中设置“Fractions 1”,计算并生成Maxwell 2D瞬态场算例。复制该算例,将新算例修改为静磁场算例,并分别再复制一次静磁场和瞬态场算例,删除RMxprt 算例,按照图1重命名各个算例。 图1 算例重命名 首先选中转子轭和4个永磁体,做旋转操作,在弹出窗口中设置旋转角度为变量“my_ang”,并定义变量初始值为“0 deg”,如图2所示。 图2 旋转转子

然后选中模型“Band”,在“Parameters”中定义求解转矩,如图3所示。 图3 定以转矩求解 在“Analysis”中添加1个“Setup”,设置迭代精度误差为0.1%,最后在“Optimetrics”中设置变量“my_ang”的扫描范围为线性步长[0 deg ,20 deg],步长0.2 deg,如图4所示。 图4 Optimetrics扫描范围设置 设置完成后即可求解,求解完成后按照图5的设置,查看静磁场分析报告。因为本电机的轴向长度为65mm,而Maxwell 2D XY平面静磁场求解的对象默认长度为1m,因此需要在求解结果中加入“/1000*65”的运算。

电机转速和扭矩(转矩)计算公式

电机转速和扭矩(转矩)公式 含义: 1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义: 9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能?有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-呎(lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。汽车驱动力的计算方式:将扭矩除以车轮半径即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢?答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部1.6升的发动机大约可发挥15.0kg-m的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。

齿槽转矩测试的必要性和方法

齿槽转矩测试的必要性和方法 近年来随着永磁材料的发展,永磁电机成了电机行业的新宠。然而在永磁电机中,齿槽转矩的存在给电机的控制性能造成了很大的影响,那齿槽转矩到底是怎么产生的?我们又该怎么去测呢? 玩过永磁电机的朋友都有过类似的经历:我们在电机掉电的情况下去转电机的转子,发现会有一种卡顿的感觉,而不像传统直流电机那么顺畅的就能把转子徒手转起来。这种卡顿其实就是因为永磁电机存在齿槽转矩。永磁电机内部结构图如图1所示,齿槽转矩是永磁电机的固有的特征之一,它是在电枢绕组不通电的状态下,由永磁体产生的磁场同电枢铁心的齿槽作用在圆周方向上产生的转矩。它其实是永磁体与电枢齿之间的切向力,使永磁电动机的转子有一种沿着某一特定方向与定子对齐的趋势,试图将转子定位在某些位置,由此趋势产生的一种振荡转矩就是齿槽转矩。 图1 永磁同步电机结构图 齿槽转矩会使电机产生振动和噪声,出现转速波动,使电机不能平稳运行,影响电机的性能。在变速驱动中,当转矩脉动频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能和位置控制系统中的高精度定位。所以做永磁电机研发的工程师希望把自己做的电机的齿槽转矩降到最小,使用永磁电机的工程师则希望了解手上这台电机的齿槽转矩,从而去优化他的控制算法。 在国标GBT/ 30549-2014里对齿槽转矩的测试有了明确的定义:电机绕组开路时,电机回转一周内,由电枢铁心开槽,有趋于最小磁阻位置的倾向而产生的周期性力矩。齿槽转矩的测试方法常用的有:杠杆测量法、转矩仪法。杠杆测量法比较简单,测量精度比较差,所以主要用于对精度要求不高的场合。转矩仪法架构图如图2所示,由于伺服电机的齿槽转矩非常小,所以测试时需要以一个非常低的转速来带动未上电的被测电机来完成测试,

电机转速和扭矩(转矩)计算公式

电机转速和扭矩(转矩)公式 1、电机有个共同的公式,P=MN/9550 P为额定功率,M为额定力矩,N为额定转速,所以请确认电机功率和额定转速就可以得出额定力矩大小。注意P的单位是KW,N的单位是R/MIN(RPM),M的单位是NM 2、扭矩和力矩完全是一个概念,是力和力臂长度的乘积,单位NM(牛顿米) 比如一个马达输出扭矩10NM,在离输出轴1M的地方(力臂长度1M),可以得到10N的力;如果在离输出轴10M的地方(力臂长度10M),只能得到1N的力 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 力矩、转矩和扭矩在电机中其实是一样的。一般在同一篇文章或同一本书,上述三个名词只采用一个,很少见到同时采用两个或以上的。虽然这三个词运用的场合有所区别,但在电机中都是指电机中转子绕组产生的可以用来带动机械负载的驱动“矩”。所谓“矩”是指作用力和支点与力作用方向相垂直的距离的乘积。 对于杠杆,作用力和支点与力作用方向相垂直的距离的乘积就称为力矩。对于转动的物体,若将转轴中心看成支点,在转动的物体圆周上的作用力和转轴中心与作用力方向垂直的距离的乘积就称为转矩。当圆柱形物体,受力而未转动,该物体受力后只存在因扭力而发生的弹性变形,此时的转矩就称为扭矩。因此,在运行的电机中严格说来只能称为“转矩”。采用“力矩”或“扭矩”都不太合适。不过习惯上这三种名称使用的历史都较长至少也有六七十年了,因此也没有人刻意去更正它。 至于力矩、转矩和扭矩的单位一般有两种,就是千克·米(kg·m)和牛顿·米(N·m) 两种,克·米(g·m)只是千克·米(kg·m)千分之一。如一楼的朋友所说,“1kg力=9.8N”。1千克·米(kg·m)=9.8牛顿·米(N·m)。 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能?有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋

ANSYS-Maxwell-2D求解齿槽转矩、饱和电感、饱和磁链的几种方法

齿槽转矩、 一、问题描述 1.齿槽转矩T cog :当永产生的转矩即为T cog ,它是 是永磁电机特有的问题之关键问题。 2.饱和电感:绕组存在导致绕组电感变化。考虑高电机模型精度有重要意 3.饱和磁链:绕组交链存在饱和现象。 二、基于Maxwell 2d 的求Maxwell 2D 可以有效对于求Tcog,方法很多为模板,介绍3种方法。打开该案例后,首先Settings 中设置“Fract 算例,将新算例的类型修例,删除RMxprt 算例,按 1.静磁场扫描转子旋转角首先,选中转子轭和4在弹出窗口中将旋转角度弹出的窗口中,定义变量磁链等随电流变化的规律 ANSYS Maxwell 求解 、饱和电感、饱和磁链 永磁电机绕组不通电时,永磁体和定子是永磁体与电枢齿之间相互作用力的之一,是高性能永磁电机设计和制造中在电感,当电机负载不同时,铁心的虑不同负载电流、不同转子角度下的绕意义。 链有磁链,跟电感一样,磁链也受电流求解T cog 的方法 仿真得出永磁电机电磁方案的齿槽转多。本文以R17.2 RMxprt 中的自带案例 先将系统中的案例另存到工作目录ions 1”,计算并生成Maxwell 2D 修改为静磁场算例,并分别再复制一按照图1重命名各个算例。 图1 算例重命名 角度的方法 个永磁体,做旋转操作(选菜单Edit 度设置为一个新变量“my_ang”(如图量“my_ang”的初值为“0 deg”。律,则类似地在输入电流的地方,将电链的方法 子铁芯之间相互作用 的切向分量引起的。T cog 中必须考虑和解决的的磁饱程度会有差异,绕组电感变化,对提流、转子角度的影响,转矩、电感、磁链。 例4极24槽“assm-1”录下,然后在Design 瞬态场算例。复制该一次静磁场和瞬态场算 t->Arrange->Rotate),图2),并确定;在新(如要求转矩、电感、电流定义为新变量。)

什么是扭矩 扭矩计算公式和单位

什么是扭矩扭矩计算公式和单位 2008年01月07日 10:07 转载作者:本站用户评论(0) 关键字: 什么是扭矩 扭矩:扭矩是使物体发生转动的力。发动机的扭矩就是指发动机从曲轴端输出的力矩。在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。 扭矩和功率一样,是汽车发动机的主要指数之一,它反映在汽车性能上,包括加速度、爬坡能力以及悬挂等。它的准确定义是:活塞在汽缸里的往复运动,往复一次做有一定的功,它的单位是牛顿。在每个单位距离所做的功就是扭矩了。是这样的,扭矩是衡量一个汽车发动机好坏的重要标准,一辆车扭矩的大小与发动机的功率成正比。举个通俗的例子,比如,像人的身体在运动时一样,功率就像是身体的耐久度,而扭矩是身体的爆发力。对于家用轿车而言,扭矩越大加速性越好;对于越野车,扭矩越大其爬坡度越大;对于货车而言,扭矩越

大车拉的重量越大。在排量相同的情况下,扭矩越大说明发动机越好。在开车的时候就会感觉车子随心所欲,想加速就可加速,“贴背感”很好。现在评价一款车有一个重要数据,就是该车在0-100公里/小时的加速时间。而这个加速时间就取决于汽车发动机的扭矩。一般来讲,扭矩的最高指数在汽车2000-4000/分的转速下能够达到,就说明这款车的发动机工艺较好,力量也好。有些汽车在5000/分的转速左右才达到该车扭矩的最高指数,这说明“力量”就不是此车所长。 扭矩在物理学中就是力矩的大小,等于力和力臂的乘积,国际单位是牛米Nm,此外我们还可以看见kgm、lb-ft这样的扭矩单位,由于G=mg,当g=9.8的时候,1kg=9.8N,所以1kgm =9.8Nm,而磅尺lb-ft则是英制的扭矩单位,1lb=0.4536kg;1ft=0.3048m,可以算出1lb-ft =0.13826kgm。在人们日常表达里,扭矩常常被称为扭力(在物理学中这是2个不同的概念)。现在我们举个例子:8代Civic 1.8的扭矩为173.5Nm@4300rpm,表示引擎在4300转/分时的输出扭矩为173.5Nm,那173.5N的力量怎么能使1吨多的汽车跑起来呢?其实引擎发出的扭矩要经过放大(代价就是同时将转速降低)这就要靠变速箱、终传和轮胎了。引擎释放出的扭力先经过变速箱作“可调”的扭矩放大(或在超比挡时缩小)再传到终传(尾牙)里作进一步的放大(同时转速进一步降低),最后通过轮胎将驱动力释放出来。如某车的1 挡齿比(齿轮的齿数比,本质就是齿轮的半径比)是3,尾牙为4,轮胎半径为0.3米,原扭矩是200Nm的话,最后在轮轴的扭力就变成200×3×4=2400Nm(设传动效率为100%)在除以轮胎半径0.3米后,轮胎与地面摩擦的部分就有2400Nm/0.3m=8000N的驱动力,这就足以驱动汽车了。 若论及机械效率,每经过一个齿轮传输,都会产生一次动力损耗,手动变速箱的机械效率约在95%左右,自排变速箱较惨,约剩88%左右,而传动轴的万向节效率约为98%。整体而言,汽车的驱动力可由下列公式计算: 扭矩×变速箱齿比×最终齿轮比×机械效率 驱动力= ———————————————————— 轮胎半径(单位:米) 小结:1kgm=9.8Nm 1lb-ft=0.13826kgm 1lb-ft=1.355Nm 一般来说,在排量一定的情况下,缸径小,行程长的汽缸较注重扭矩的发挥,转速都不会太高,适用于需要大载荷的车辆。而缸径大,行程短的汽缸较注重功率的输出,转速通常较高,适用于快跑的车辆。简单来说:功率正比于扭矩×转速 补充一点:为什么引擎的功率能由扭矩计算出来呢? 我们知道,功率P=功W÷时间t 功W=力F×距离s 所以,P=F×s/t=F×速度v

电机转速和扭矩计算公式

电机转速和扭矩计算公式 电机转速公式:n=60f/P n=转速,f=电源频率,P=磁极对数 电机扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩和功率及转速的关系式,是电机学中常用的关系式,近期在百度知道上常有看到关于扭矩和功率及转速的相关计算式的问答,一般回答者都是直接给出计算公式,公式中的常数采用近似值,常数往往不容易记住,本文的目的就是帮助大家方便的记住这些公式,并在工程应用中熟练的使用。 一记住扭矩和功率的公式形式

扭矩和功率及转速的关系式一般用于描述电机的转轴的做功问题,扭矩越大,轴功率越大;转速越高,轴功率越大,扭矩和转速都是产生轴功率的必要条件,扭矩为零或转速为零,输出轴功率为零。因此,电机空转或堵转就是轴功率等于零的两个特例。 功率和扭矩及转速成正比,扭矩和功率的关系式具有如下形式:P=aTN 上式中,a为常数,对应的有: T=(1/a)(1/N)P 即扭矩和功率成正比,和转速成反比。 记忆方法: 记住扭矩T和功率P成正比,扭矩T和转速N成反比,而系数a 不必记忆。

二记住力做功的基本公式 提问者通常都知道上述关系式,问题的焦点在于常数a的具体数值。 如果不是经常使用该公式,的确很难记住这个常数,本人亦是如此。 不过,只要记住扭矩和转速公式的推导方式,可以很快推导出结果,得到系数a的准确值。 我们知道力学中力做功的功率计算公式为: P=FV (2) 上述公式为力做功的基本公式。然而,基本公式中没有出现扭矩T和转速N。 如果我们注意到:扭矩实际上就是力学上的力矩。就很容易联想到扭矩T和力F的关系。 由于力矩等于力F和力臂的乘积,而力臂是轴的半径r,因此有:T=Fr或

齿槽转矩

永磁同步电机的齿槽转矩 齿槽转矩是永磁电机绕组不通电时永磁体和定子铁心之间相互作用产生的转矩,是由永磁体与电枢齿之间相互作用力的切向分量引起的。齿槽转矩是永磁电机特有的问题之一,会导致转矩波动,引起振动和噪声,影响系统的控制精度,因此在永磁电机的设计中必须考虑和解决。 削弱齿槽转矩的方法可归纳为三大类,即改变永磁磁极参数的方法、改变电枢参数的方法以及电枢槽数和极数的合理组合(极槽配合)。 (1)改变磁极参数的方法 改变磁极参数的方法是通过改变对齿槽转矩起主要作用的Bm 的幅值,达到削弱齿槽转矩的目的。这类方法主要包括:改变磁极的极弧系数、采用不等厚永磁体、磁极偏移、斜极、磁极分段、不等极弧系数组合和采用不等极弧系数等。 (2)改变电枢参数的方法 改变电枢参数能改变对齿槽转矩起主要作用的Gn的幅值,进而削弱齿槽转矩。这类方法主要包括:改变槽口宽度、改变齿的形状、不等槽口宽、斜槽、开辅助槽、槽口偏移等。 齿槽转矩是由于电枢开槽引起的,槽口越大,齿槽转矩也越大。在工程实际中,槽口宽度取决于导线直径、嵌线工艺等因素。从削弱齿槽转矩的角度看,应尽可能减小槽口宽度,如果可能,可以采用闭口槽、磁性槽楔或无齿槽铁心。

(3)合理选择电枢槽数和极数 该方法的目的在于通过合理选择电枢槽数和极数,改变对齿槽转矩起主要作用的Bm和Gn的次数和大小,从而削弱齿槽转矩。 在电机设计和工程实际中,可根据实际情况采用合适的削弱方法,既可采用一种方法·,也可采用几种方法的组合。 专业术语: 永磁同步电机:Permanent Magnet Synchronous Motor(PMSM) 齿槽转矩:cogging torque 永磁体:p ermanent magnet 相互作用力:interaction force 切向力:tangential force 振动:vibration 极槽配合:slot-pole combination 定子:stator 电枢:armature 转矩波动:torque ripple 磁极:magnetic pole 极弧系数:pole-arc coefficient 磁极偏移:permanent magnet shift 斜极:skewed pole 斜槽:skewed slots 槽口偏移:slot-opening shift

转矩脉动抑制

International Journal of Automotive Technology , Vol. 12, No. 2, pp. 291?297 (2011)DOI 10.1007/s12239?011?0034?8 Copyright ?2011KSAE 1229?9138/2011/057?16 291 TORQUE RIPPLE MINIMIZA TION CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTORS FOR EPS APPLICA TIONS G . H. LEE 1), W. C. CHOI 1), S. I. KIM 2), S. O. KWON 2) and J. P . HONG 2)* 1) Graduate School of Automotive Engineering, Kookmin University, Seoul 136-702, Korea 2) Department of Automotive Engineering, Hanyang University, Seoul 133-791, Korea (Received 18 February 2009; Revised 9 August 2010) ABSTRACT ?This paper identifies a control method used to reduce torque ripple of a permanent magnet synchronous motor (PMSM) for an electric power steering (EPS) system. NVH (Noise Vibration Harshness) is important for safe and convenient driving. Vibration caused by motor torque is a problem in column type EPS systems. Maintaining a very low torque ripple is one solution that allows for smoother steering. Theoretically, it is possible to design and drive the motor without torque ripple.However, in reality, a PMSM system torque ripple is caused by the motor itself (saturation in the iron core and EMF distortion)and the imperfect driver. This paper analyzes torque ripple of a PMSM system, and an advanced PMSM control method for the column typed EPS system is presented. Results of the analysis indicate that the compensation current is needed in order to minimize torque ripple when a PMSM is driven. KEY WORDS :Electric power steering, Magnetic saturation, PMSM, Torque ripple, Deadtime, EMF distortion 1. INTRODUCTION Research is being performed to improve the fuel efficiency of vehicles. One of the main areas of focus is on the steering of auxiliary equipment. Electric Power Steering (EPS) is receiving more attention than Hydraulic Power Steering (HYPS). Electric power steering (EPS) is a system that supplies motor power directly to the steering to assist steering torque while HYPS uses an oil pump that is driven by the engine (Shimizu and Kawai, 1991). A permanent magnet synchronous motor (PMSM) has been used to improve the performance of EPS. Since a PMSM has many advantages, such as high efficiency and high torque per rotor volume, it is especially suitable for automotive applications in which space and energy savings are critical (Miyoshi et al ., 2005). In a column type EPS system, the PMSM is linked to the steering shaft via a reduction gear. This connection transfers the motor vibration and torque fluctuation directly through the steering wheel to the hands of the driver (Zhang et al .,2008). For this reason, only the ripple between one and three percent of rated torque is permitted. Several technical papers have presented a motor design andcontrol technique to reduce cogging torque and torque pulsation (Islam et al ., 2005; Mattavelli et al ., 2005; Bianchi et al ., 2002; Lee et al ., 2008). However, this paper discusses an estimation method of compensation current for suppress-ing torque ripple caused by a PMSM (Lee et al ., 2008).In an EPS application, the magnetic saturation in the stator core and distortion of EMF is inevitable due to spatial and cost limitations(Lee, 2010). Imperfections of a low voltage inverter for EPS can be severe. This paper also analyzes torque ripple caused by the motor, deadtime effects, and current offset problems of the PMSM driver.The harmonic current distribution is calculated using finite element analysis, and the effective dead time compensation method is proposed. 2. TORQUE RIPPLE OF PMSM 2.1. Torque Ripple of PMSM for the EPS Figure 1 indicates a fabricated PMSM for the column type EPS system. The rotor configuration was skewed to reduce cogging torque. Segment type and ring type rotors are used for the purpose of this research. The specifications for a PMSM are listed in Table 1. Cogging torque and total harmonic distortion (THD) of a back-EMF required in the motor are less than 0.02 Nm and 0.7% respectively. If the rotor of a SPMSM is composed of segment-type permanent magnets, there is relatively low THD in the back-EMF (0.7%). A ring-type magnet has a higher THD in the back-EMF (2.3%) and an acceptable level of productivity.The torque waveforms of segment and ring magnets are shown in Figure 2. In order to measure torque ripple accurately, the motor is driven at 10 rpm, and input current is controlled with a THD less than 0.5%. As the magnetic torque increases, the electric frequency increases by a *Corresponding author . e-mail: hongjp@hanyang.ac.kr

永磁同步电机齿槽转矩分析与控制总结

永磁同步电机齿槽转矩分析与控制总结 齿槽转矩是永磁电机固有的特性,它会使电机产生转矩脉动,引起速度波动、振动和噪声,当转矩脉动的频率与电机定、转子或端盖的固有频率相等时,电机产生共振,振动和噪声会明显增大。齿槽转矩也会影响电机的低速性能和控制精度。 1.齿槽转矩定义:转子在旋转过程中,定子槽口引起磁路磁阻变化, 转子磁通与定子开槽引起的气隙磁导(磁阻的倒数)交互作用在圆周方向产生的转矩为齿槽转矩。 齿槽转矩也称定位转矩,它的产生来自永磁体与电枢齿间的切向力,使转子有一种沿着某一特定方向与定子对齐的趋势. 2.齿槽转矩影响因素:齿槽形状、磁极极弧系数、永磁体形状、极槽配合、气隙、磁场强度等. 3.齿槽转矩每机械周期齿槽转矩周期数:N co=LCM(Z,2p),Z为槽数,2p为极数,LCM表示最小公倍数. 4.齿槽转矩一个周期机械角度为:θsk=360°/N co 5.齿槽转矩基波频率为: f c=N co n s=N co f p n s=f p (r/s)为同步转速,p为极对数,f为电源频率. 6.齿槽转矩的通用表达式: T co=∑T n ∞ n=1 sin(nN coθ+?n) n=1时对应的齿槽转矩的基波幅值为T1, θ为转子机械角位置. 7.齿槽转矩的计算: 齿槽转矩可以通过计算响应区域的磁能积得到,T ec=dW c dθ ,式中,磁共能: W c=∫Bθ2 2μ0 d(υr)(J) 对气间隙区域应用麦克斯韦张力张量法计算齿槽转矩,有: T ec=L L gμ0∫rB n S g B t ds,

L为有效转子长度;L g为气隙长度;μ0为自由空间磁导率;r为虚拟半径;B n和B t为气间隙磁通的径向和切向分量;S g为气隙表面积. 8.降低齿槽转矩措施: 1)无槽绕组:采用无槽绕组可以完全消除齿槽转矩,但气隙磁通密度会降低, 需要增加永磁体的材料(高度). 2)定子斜槽:通常定子斜槽等于一个槽距,可将齿槽转矩降为零,但定子斜槽 减小电动势,电机性能会下降,转子偏心情况,斜槽有效性降低。 θco=θsk=2πN co 当定子叠片斜过这个角度时,齿槽转矩为: T sk= 1 θsk ∫T co θsk (θ)dθ= 1 θsk ∑∫T n 2π N co ∞ n=1 sin(nN coθ+?n)dθ= 1 θsk ∑[ ?T n cos(nN coθ+?n) nN co ] 2π N co ∞ n=1 =0 3)改变定子槽型:a.齿顶开辅助槽,辅助槽也产生齿槽转矩,辅助槽产生的齿槽 转矩与原定子槽产生的齿槽转矩会相互叠加,产生合成齿槽转矩,其相位差: φnc=2π s(N n+1) ,N n为每齿开的辅助槽数,谐波次数为(N n+1)及其倍数的齿槽转矩相互叠加后不为零且频率提高,而合成转矩的其他高次谐波则被消除。为使辅助槽能有效减小齿槽转矩,需要遵循一定的原则 (HCF[(N n+1),N p]=1, HCF表示最大公约数,N p为1个齿距内的周 期数,N p=2p HCF[Z,2p] ),否则齿槽转矩可能反而会增大。定子齿开槽对电机性能有一定影响,会降低反电动势. b.减少槽口的宽度,一般情况齿槽转矩随着槽口宽度增大而增大,优化槽宽与 槽距的比值可降低齿槽转矩,但转矩波动可能会增大. c.闭口槽,设计闭口槽时需要正确设计相邻齿的连接桥,连接桥太厚,定子槽 漏磁太大而不可接受. d.不等齿宽槽.

电机转速转矩计算公式

针对你的问题有公式可参照分析: 电机功率:P=1.732×U×I×cosφ 电机转矩:T=9549×P/n ; 电机功率转矩=9550*输出功率/输出转速 转矩=9550*输出功率/输出转速 P = T*n/9550 公式推导 电机功率,转矩,转速的关系 功率=力*速度 P=F*V---公式1 转矩(T)=扭力(F)*作用半径(R) 推出 F=T/R ---公式2 线速度(V)=2πR*每秒转速(n秒) =2πR*每分转速(n 分)/60 =πR*n分/30---公式3 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位Nm, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P= T * n 电机转速:n=60f/p,p为电机极对数,例如四级电机的p=2; 注:当频率达50Hz时,电机达到额定功率,再增加频率,其功率时不会再增的,会保持额定功率。 电机转矩在50Hz以下时,是与频率成正比变化的;当频率f达到50Hz时,电机达到最大输出功率,即额定功率;如果频率f在50Hz以后再继续增加,则输

出转矩与频率成反比变化,因为它的输出功率就是那么大了,你还要继续增加频率f,那么套入上面的计算式分析,转矩则明显会减小。

转速的情况和频率是一样的,因为电源电压不变,其频率的变化直接反应的结果就是转速的同比变化,频率增,转速也增,它减另一个也减。 关于电压分析起来有点麻烦,你先看这几个公式。 电机的定子电压:U = E + I×R (I为电流, R为电子电阻, E为感应电势); 而:E = k×f×X (k:常数, f: 频率, X:磁通); 对异步电机来说:T=K×I×X (K:常数, I:电流, X:磁通); 则很容易看出频率f的变化,也伴随着E的变化,则定子的电压也应该是变化的,事实上常用的变频器调速方法也就是这样的,频率变化时,变频器输出电压,也就是加在定子两端的电压也是随之变化的,是成正比的,这就是恒V/f比变频方式。这三个式子也可用于前面的分析,可得出相同结果。 当然,如果电源频率不变,电机转矩肯定是正比于电压的,但是一定是在电机达到额定输出转矩前。 电机的“扭矩”,单位是N?m(牛米) 计算公式是T=9549 * P / n 。 P是电机的额定(输出)功率单位是千瓦(KW) 分母是额定转速n 单位是转每分(r/min) P和n可从电机铭牌中直接查到。 电机转速和扭矩(转矩)公式 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW

相关主题
文本预览
相关文档 最新文档