当前位置:文档之家› 永磁同步电机转矩脉动抑制的研究

永磁同步电机转矩脉动抑制的研究

永磁同步电机转矩脉动抑制的研究
永磁同步电机转矩脉动抑制的研究

永磁同步电机基础知识

(一)PMSM的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1)忽略电机的磁路饱和,认为磁路是线性的; 2)不考虑涡流和磁滞损耗; 3)当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4)驱动开关管和续流二极管为理想元件; 5)忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型山电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (1)电机在两相旋转坐标系中的电压方程如下式所示: 叫=RJd + Ld - — 3趴 at 此 dt 其中,Rs为定子电阻;ud、uq分别为d、q轴上的两相电压;id、iq分别为d、q轴上对应的两相电流;Ld、Lq分别为直轴电感和交轴电感;为电角速度;巾d、Wq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 / X cos 8 一sin。 (22 、 2 / \ = cos(。一—-sm(8— 3 3 宀 2 2 cos(& + -?r) 一sin(8 + - I 3 3丿 (2)d/q轴磁链方程: 其中,Wf为永磁体产生的磁链,为常数,,而◎=% 是机械角速度,P为同步电机的 极对数,3c为电角速度,eO为空载反电动势,其值为

永磁同步电机基础知识

(一) P M S M 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 (2)d/q 轴磁链方程: 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 把它带入上式可得: 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq ,则不存在磁阻转矩,此时,转矩方程为: 这里,t k 为转矩常数,32 t f k p ψ=。 (4)机械运动方程: 其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量(包括电机惯量和负载惯量),B 是摩擦系数。 (二) 直线电机原理 永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定子和动子沿轴向剖开,然后将电机展开成直线,由定子演变而来的一侧称为初级,转子演变而来的一侧称为次级。由此得到了直线电机的定子和动子,图1为其转变过程。

永磁同步电机弱磁控制的控制策略研究

永磁同步电机弱磁控制的控制策略研究 摘要 永磁同步电机是数控机床、机器人控制等的主要执行元件,随着稀土永磁材料、永磁电机设计制造技术、电力电子技术、微处理器技术的不断发展和进步,永磁同步电机控制技术成为了交流电机控制技术的一个新的发展方向。基于它的优越性,永磁同步电机获得了广泛的研究和应用。本文对永磁同步电机的弱磁控制策略进行了综述,并着重对电压极限椭圆梯度下降法弱磁控制、采用改进的超前角控制弱磁增速、内置式永磁同步电动机弱磁控制方面进行了调查、研究。 关键词:永磁同步电机、弱磁控制、电压极限椭圆梯度下降法、超前角控制、内置式永磁同步电动机 一、永磁同步电机弱磁控制研究现状 1.永磁同步电机及其控制技术的发展 任何电机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电机的主磁场和电枢磁场在空间互差90°电角度,因此可以独立调节;而交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,交流电机的转矩控制性能不佳。经过长期的研究,目前交流电机的控制方案有:矢量控制、恒压频比控制、直接转矩控制等[1]。 1.1 矢量控制 1971年德国西门子公司F.Blaschke等与美国P.C.Custman等几乎同时提出了交流电机磁场定向控制的原理,经过不断的研究与实践,形成了现在获得广泛应用的矢量控制系统。矢量控制系统是通过坐标变换,把交流电机在按照磁链定向的旋转坐标系上等效成直流电机,从而模仿直流电机进行控制,使交流电机的调速性能达到或超过直流电机的性能。 1.2 恒压频比控制 恒压频比控制是一种开环控制,它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出进行控制,使电机以一定的转速运转。但是它依据电机的稳态模型,从而得不到理想的动态控制性能。要获得很高的动态性能,必须依据电机的动态数学模型,永磁同步电机的动态数学模型是非线性、多变量,它含有角速度与电流或的乘积项,因此要得到精确控制性能必须对角速度和电流进行解耦。近年来,研究了各种非线性控制器,来解决永磁同步电机非线性的特性。 1.3 直接转矩控制 矢量控制方案是一种很有效的交流伺服电机控制方案,但是由于该方案需要进行矢量旋转变换,坐标变换比较复杂。此外,由于电机的机械常数慢于电磁常数,矢量控制中转矩响应的速度不够迅速。针对矢量控制的上述缺点,德国学者

齿槽转矩测试的必要性和方法

齿槽转矩测试的必要性和方法 近年来随着永磁材料的发展,永磁电机成了电机行业的新宠。然而在永磁电机中,齿槽转矩的存在给电机的控制性能造成了很大的影响,那齿槽转矩到底是怎么产生的?我们又该怎么去测呢? 玩过永磁电机的朋友都有过类似的经历:我们在电机掉电的情况下去转电机的转子,发现会有一种卡顿的感觉,而不像传统直流电机那么顺畅的就能把转子徒手转起来。这种卡顿其实就是因为永磁电机存在齿槽转矩。永磁电机内部结构图如图1所示,齿槽转矩是永磁电机的固有的特征之一,它是在电枢绕组不通电的状态下,由永磁体产生的磁场同电枢铁心的齿槽作用在圆周方向上产生的转矩。它其实是永磁体与电枢齿之间的切向力,使永磁电动机的转子有一种沿着某一特定方向与定子对齐的趋势,试图将转子定位在某些位置,由此趋势产生的一种振荡转矩就是齿槽转矩。 图1 永磁同步电机结构图 齿槽转矩会使电机产生振动和噪声,出现转速波动,使电机不能平稳运行,影响电机的性能。在变速驱动中,当转矩脉动频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能和位置控制系统中的高精度定位。所以做永磁电机研发的工程师希望把自己做的电机的齿槽转矩降到最小,使用永磁电机的工程师则希望了解手上这台电机的齿槽转矩,从而去优化他的控制算法。 在国标GBT/ 30549-2014里对齿槽转矩的测试有了明确的定义:电机绕组开路时,电机回转一周内,由电枢铁心开槽,有趋于最小磁阻位置的倾向而产生的周期性力矩。齿槽转矩的测试方法常用的有:杠杆测量法、转矩仪法。杠杆测量法比较简单,测量精度比较差,所以主要用于对精度要求不高的场合。转矩仪法架构图如图2所示,由于伺服电机的齿槽转矩非常小,所以测试时需要以一个非常低的转速来带动未上电的被测电机来完成测试,

永磁同步电机研究..

永磁同步电机研究 一、绪论 目前,在电动汽车电驱动系统中,永磁同步电动机(PMSM)系统以其高技、高控制精度、高转矩密度、良好的转矩平稳性及低振动噪声的特点受到国外电动汽车界的高度重视,是更具竞争力的电动汽车驱动电机系统。而且,中国拥有占世界80%储量的稀土资源,发展永磁电机作为电动汽车牵引电机具有得天独厚的优势。 PMSM:permanent magnet synchronous motor 是指根据电机的反电动势进行区分定义的电机:正弦反电势的永磁同步电机。以前采用的交流传动需要一个变速齿轮机构来将电机的转距传递到轮轴上,而采用永磁同步电机可以将电机整体地安装在轮轴上,形成整体直驱系统,即一个轮轴就是一个驱动单元,省去了一个齿轮箱 优点: (1)PMSM起动牵引力大 (2)PMSM本身的功率效率高以及功率因素高; (3)PMSM直驱系统控制性能好; (4)PMSM发热小,因此电机冷却系统结构简单、体积小、噪声小; (5)PMSM允许的过载电流大,可靠性显著提高; (6)在高速范围中电机噪声明显降低; (7)系统传动损耗明显降低,系统发热量小; (8)系统采用全封闭结构,无传动齿轮磨损、无传动齿轮噪声,免润滑油、免维护; (9)整个传动系统重量轻,簧下重量也比传统的轮轴传动的轻,单位重量的功率大; (10)由于电机采用了永磁体,省去了线圈励磁,理论可节能10%以上; (11)由于没有齿轮箱,可对装向架系统随意设计:如柔式装向架、单轴转向架,使列车动力性能大大提高。

二、电动汽车电机的性能要求: 汽车行驶的特点是频繁地启动、加速、减速、停车等。在低速或爬坡时需要高转矩,在高速行驶时需要低转矩。电动机的转速范围应能满足汽车从零到最大行驶速度的要求,即要求电动机具有高的比功率和功率密度。电动汽车电动机应满足的主要要求可归纳为如下10个方面: (1) 高电压。在允许的范围内,尽可能采用高电压,可以减小电动机的尺寸和导线等装备的尺寸,特别是可以降低逆变器的成本。工作电压由THS的274 V提高到THS B的500 V;在尺寸不变的条件下,最高功率由33 kW提高到50 kW,最大转矩由350 N"m提高到400ON"m。可见,应用高电压系统对汽车动力性能的提高极为有利。 (2)转速高。电动汽车所采用的感应电动机的转速可以达到8 000一12 000 r/min,高转速电动机的体积较小,质量较轻,有利于降低装车的装备质量。(3)质量轻,体积小。电动机可通过采用铝合金外壳等途径降低电动机的质量,各种控制装置和冷却系统的材料等也应尽可能选用轻质材料。电动汽车驱动电动机要求有高的比功率(电动机单位质量的输出功率)和在较宽的转速和转矩范围内都有较高的效率,以实现降低车重,延长续驶里程;而工业驱动电动机通常对比功率、效率及成本进行综合考虑,在额定工作点附近对效率进行优化。(4)电动机应具有较大的启动转矩和较大范围的调速性能,以满足启动、加速、行驶、减速、制动等所需的功率与转矩。电动机应具有自动调速功能,以减轻驾驶员的操纵强度,提高驾驶的舒适性,并且能够达到与内燃机汽车加速踏板同样的控制响应。 (5)电动汽车驱动电动机需要有4一5倍的过载,以满足短时加速行驶与最大爬坡度的要求,而工业驱动电动机只要求有2倍的过载就可以了。 (6)电动汽车驱动电动机应具有高的可控性、稳态精度、动态性能,以满足多部电动机协调运行,而工业驱动电动机只要求满足某一种特定的性能。 (7)电动机应具有高效率、低损耗,并在车辆减速时,可进行制动能量回收。 (8)电气系统安全性和控制系统的安全性应达到有关的标准和规定。电动汽车的各种动力电池组和电动机的工作电压可以达到300 V以上,因此必须装备高压保护设备以保证安全。

永磁同步电机直接转矩控制及控制性能研究.

第五章永磁同步电机直接转矩控制及控制性能研究 矢量控制和直接转矩控制是交流电机的两种高性能控制策略,在永磁同步电机驱动控制中的应用与研究己受到众多学者的广泛关注。为了能够更好研究永磁同步电机的控制性能,提高永磁同步电机调速系统的动静态性能,本章针对永磁同步电机直接转矩控制系统,从空间电压矢量出发,在第四章建立永磁同步电机不同的坐标系下的数学模型的基础上,研究永磁同步电机直接转矩控制和空间电压矢量调制直接转矩控制的理论和实现方法,并进行仿真实验研究,分析控制策略的正确性 [24][30] 。 本文研究的转鼓实验台的恒转矩控制方式和惯量模拟控制方式,均采用空间电压矢量调制直接转矩控制策略对交流测功机(即永磁同步电机进行模拟加载。 5.1 永磁同步电机直接转矩控制基本理论 5.1.1 永磁同步电机在x 、y 坐标系下的数学模型 将永磁同步电机在同步旋转坐标系中磁链、电流和电压矢量关系表示在图5-1(即图4-1中所示,图中定义δ为转矩角,即定子磁链和转子磁链之间的夹角。d 、q 为与转子磁场速度 r ω同步旋转的坐标系,d 轴指向转子永磁磁链f ψ方向;x 、y 为与定子磁场速度e ω同步旋 转的坐标系,x 轴指向定子磁链s ψ方向。假设x 轴超前d 轴时转矩角为正,在忽略定子电阻的情况下,转矩角即为功角。当电机稳态运行时,定、转子磁链都以同步转速旋转。因此,在恒定负载的情况下转矩角为恒定值。当电机瞬态运行时,转矩角则因定、转子旋转速度不同而不断变化[31][32]。

A 图5-1 永磁同步电机坐标系 由图5-1可推导出转矩角的表达式为( tan /(tan 1 1 f d d q q sd sq i L i L ψ ψ

永磁同步电机直接转矩控

摘要 直接转矩控制是近年来应用比较广泛的一种控制策略。它的优点包括控制原理直观明了,操作简单快捷,具有良好的转矩响应性。而另一方面,永磁同步电机因为其运行的可靠性高,结构简单,所以在交流伺服电机中所处的地位越来越高。基于这一发展趋势,本文重点研究了把直接转矩控制应用在永磁同步电机上的控制效果。为了更好地分析永磁同步电机直接转矩控制,本文介绍了直接转矩控制的原理和它的优缺点,还有永磁同步电机的分类、结构及其在不同坐标系下的数学模型。然后借助MATLAB 中的Simulink功能,搭建永磁同步电机直接转矩控制系统的模型,对仿真结果进行分析归纳,最后得出结论。结论表明,永磁同步电机直接转矩控制具有较好的转矩响应,基本能实现对永磁同步电机的快速可靠的控制,但是低速性能不佳,得不到快速的转矩响应。这就确定了改善永磁同步电机直接转矩控制在低速时候的转矩响应将成为今后的发展趋势。 关键词:直接转矩控制;永磁同步电机;仿真

目录 摘要Ⅰ 第一章选题背景 1.1 研究背景及研究意义 3 1.2 相关领域的发展情况 3 1.3 研究的主要内容 4 第二章直接转矩控制概述 2.1 直接转据控制原理 4 2.2 直接转矩控制的发展方向 5 2.3 本章小结 6 第三章永磁同步电机概述 3.1 永磁同步电机的分类 6 3.2 永磁同步电机的结构 7 3.4 本章小结 8 第四章永磁同步电机直接转矩控制 4.1 永磁同步电机直接转矩控制原理 8 4.2 逆变器与开关表 10 4.3 定子磁链与电磁转矩的测定 11 4.4 本章小结 13 第五章永磁同步电机直接转矩控制仿真 5.1 仿真软件 13 5.2 仿真模型 14 5.3 仿真结果分析 17 5.4 本章小结 18 第六章结论19参考文献20 第一章选题背景

永磁同步电机齿槽转矩分析与控制总结

永磁同步电机齿槽转矩分析与控制总结 齿槽转矩是永磁电机固有的特性,它会使电机产生转矩脉动,引起速度波动、振动和噪声,当转矩脉动的频率与电机定、转子或端盖的固有频率相等时,电机产生共振,振动和噪声会明显增大。齿槽转矩也会影响电机的低速性能和控制精度。 1.齿槽转矩定义:转子在旋转过程中,定子槽口引起磁路磁阻变化, 转子磁通与定子开槽引起的气隙磁导(磁阻的倒数)交互作用在圆周方向产生的转矩为齿槽转矩。 齿槽转矩也称定位转矩,它的产生来自永磁体与电枢齿间的切向力,使转子有一种沿着某一特定方向与定子对齐的趋势. 2.齿槽转矩影响因素:齿槽形状、磁极极弧系数、永磁体形状、极槽配合、气隙、磁场强度等. 3.齿槽转矩每机械周期齿槽转矩周期数:N co=LCM(Z,2p),Z为槽数,2p为极数,LCM表示最小公倍数. 4.齿槽转矩一个周期机械角度为:θsk=360°/N co 5.齿槽转矩基波频率为: f c=N co n s=N co f p n s=f p (r/s)为同步转速,p为极对数,f为电源频率. 6.齿槽转矩的通用表达式: T co=∑T n ∞ n=1 sin(nN coθ+?n) n=1时对应的齿槽转矩的基波幅值为T1, θ为转子机械角位置. 7.齿槽转矩的计算: 齿槽转矩可以通过计算响应区域的磁能积得到,T ec=dW c dθ ,式中,磁共能: W c=∫Bθ2 2μ0 d(υr)(J) 对气间隙区域应用麦克斯韦张力张量法计算齿槽转矩,有: T ec=L L gμ0∫rB n S g B t ds,

L为有效转子长度;L g为气隙长度;μ0为自由空间磁导率;r为虚拟半径;B n和B t为气间隙磁通的径向和切向分量;S g为气隙表面积. 8.降低齿槽转矩措施: 1)无槽绕组:采用无槽绕组可以完全消除齿槽转矩,但气隙磁通密度会降低, 需要增加永磁体的材料(高度). 2)定子斜槽:通常定子斜槽等于一个槽距,可将齿槽转矩降为零,但定子斜槽 减小电动势,电机性能会下降,转子偏心情况,斜槽有效性降低。 θco=θsk=2πN co 当定子叠片斜过这个角度时,齿槽转矩为: T sk= 1 θsk ∫T co θsk (θ)dθ= 1 θsk ∑∫T n 2π N co ∞ n=1 sin(nN coθ+?n)dθ= 1 θsk ∑[ ?T n cos(nN coθ+?n) nN co ] 2π N co ∞ n=1 =0 3)改变定子槽型:a.齿顶开辅助槽,辅助槽也产生齿槽转矩,辅助槽产生的齿槽 转矩与原定子槽产生的齿槽转矩会相互叠加,产生合成齿槽转矩,其相位差: φnc=2π s(N n+1) ,N n为每齿开的辅助槽数,谐波次数为(N n+1)及其倍数的齿槽转矩相互叠加后不为零且频率提高,而合成转矩的其他高次谐波则被消除。为使辅助槽能有效减小齿槽转矩,需要遵循一定的原则 (HCF[(N n+1),N p]=1, HCF表示最大公约数,N p为1个齿距内的周 期数,N p=2p HCF[Z,2p] ),否则齿槽转矩可能反而会增大。定子齿开槽对电机性能有一定影响,会降低反电动势. b.减少槽口的宽度,一般情况齿槽转矩随着槽口宽度增大而增大,优化槽宽与 槽距的比值可降低齿槽转矩,但转矩波动可能会增大. c.闭口槽,设计闭口槽时需要正确设计相邻齿的连接桥,连接桥太厚,定子槽 漏磁太大而不可接受. d.不等齿宽槽.

永磁同步力矩电机的多领域联合设计与分析

喏名L乃农别名阄2018,45 (2)研究与设计I EMCA 永磁同步力矩电机的多领域联合设计与分析 李天宇,代颖,赵剑飞,郑江 (上海大学机电工程与自动化学院,上海200072) 摘要:基于Ansys、MATLAB/Simulink等仿真软件,对永磁同步力矩电机的工作特性进行多领域分析。 以抑制转矩脉动和振动为目标对电机进行电磁仿真和模态分析;仿真电机转速的转子力和转 子结构形变;校核技术指标要求的最高转速工作点的运行可靠性;基于Ansys Simplorei■平台对电机控制系统 的转矩特性进行仿真;分析电机加工工艺对电机性能的。系发,寻求的电 机设计方案。 关键词:永磁同步力矩电机;电磁场"动力学特性"联合仿真 中图分类号:TM 351 文献标志码:A 文章编号:1673-6540(2018)02-0097-05 Multi-Physical Field United Designand Analysis of Permanent Magnet Synchronous Torque Motor* LI Tianyu,DAI Ying,ZH AO (School of M echatronics E n g in eerin g an d A u to m atio n,S hanghai U n iv ersity,S hanghai 200072, C h in a) Abstract: Based o n Ansys,MATLAB/Simulink simulation software,the working characteristics of a permanent magnet synchronous torque motor o n formulti-physical field were analyzed. The motor electromagnetic simulation and modal to suppress t he torque ripple and vibration; Simulate the centrifugal stress and rotor structure deformation of rotor in highest no load speed was analyzed. Check the technical index requirements of the r speed running point; United design the torcque characteristics of motor control system based on Ansys Simplorer platform. Analyze the i nfluences of the processing technology in motor performance,and sought the optimal design scheme of motor from the aspects of overall system. Key words :permanent magnet synchronous torque motor ;electromagnetic feld;dynamic characteristic ;united design 0引言 力矩电机电机和驱动电机发展成的电机,其直接拖动负载运行,同时制的制进行转。永磁同步 力矩电机转矩特性,同 、机特性与特性好、运行可靠、振动小等优点,机床、电等需要平运行的场多的[1_2]。永磁同步力矩电机通常工作转状态下,甚天一转。由于作用于,所以对其转矩的平稳性要求,转矩的波动对系统。的永磁同步力矩电机年研究的热点,对永磁力矩电机进行设计 及要电机的动力学特性。本文基于A n sy s、M A T L A B/S im u lin k等仿真软件,对 永磁同步力矩电机进行多领域分析,电机系 的可靠运行,从系发,寻求的电机 *基金项目:国家自然科学基金-青年科学基金项目(51007050);台达环境与教育基金会《电力电子科教发展计划》资助项目 (D R E G2016015) 作者简介:李天宇(1995—),男,硕士研究生,研究方向为电机设计和多物理场分析。 代颖(1980—),女,博士,副教授,研究方向为电机振动噪声及多物理场分析。(通讯作者) 97

基于ANSOFT的永磁同步伺服电机齿槽转矩分析

基于ANSOFT的永磁同步伺服电机齿槽转矩分析 第32 卷第4 期2014 年07 月佳木斯大学学报( 自然科学版) Journal of Jiamusi University ( Natural Science Edition) Vol.32 No.4 July 2014 文章编号: 1008 -1402( 2014) 04 -0559 -04 基于ANSOFT 的永磁同步伺服电机齿槽转矩分 析 1 2 1 黄金霖,易靓,曹光华 ( 1.安徽机电职业技术学院电气工程系,安徽芜湖241000; 2.江西理工大学电气工程与自动化学院,江西赣州341000) ① 摘要: 齿槽转矩是永磁电机的固有属性,引起电机的转矩波动,产生振动和噪声.为减小齿槽转矩,提高永磁伺服电机的控制精度,在研究永磁电机齿槽转矩产生机理的基础上,根据永磁电机齿槽转矩的解析式,研究定子齿部开辅助槽和转子磁极偏移对永磁电机齿槽转矩的影响; 利用有限元软件ANSOFT,建立36 槽8 极永磁伺服电机的有限元分析模型,计算不同尺寸辅助槽和磁极偏心距离时的齿槽转矩,分析辅助槽尺寸和磁极偏心距离对齿槽转矩的影响.研究结果表明,合理的辅助槽尺寸和磁极偏心距离可有效削弱永磁伺服电机的齿槽转矩.关键词: 齿槽

转矩; 磁极偏心; 辅助槽; 永磁电机 中图分类号: TM303 文献标识码: A 随着矢量控制算法、电力电子器件和计算机控制技术的不断发展,永磁伺服电机的应用越来越广.在数控机床、小型机器人、机械传动设备以及混合电动汽车等领域,永磁伺服电机已经代替传统的异步电机和直流电机成为许多领域必不可少的传[1], 动设备. 永磁伺服电机结构与普通异步电机相比,转子永磁体取代了传统的转子绕组,转子永磁体的存在,使得电机的效率和功率密度高; 与此同时,转子永磁体与定子槽相互作用,产生齿槽转矩,使得电机转矩波动增加,产生振动与噪声,影响伺服电机的控制精度.齿槽转矩是永磁电机特有的属性,因此,怎样减小永磁电机的齿槽转矩成为相关专家学者研究[2] 的重点之一. 其中,μ0 是空气磁导率. ( 2) 以及气隙磁密随着电机定转根据式( 1) 、 子相对位置角和沿气隙切向不同位置分布的解析表达式,得到齿槽转矩的表达式为: T cog = - 1 α

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项

永磁同步电机直接转矩控制及控制性能研究

第五章 永磁同步电机直接转矩控制及控制性能研究 矢量控制和直接转矩控制是交流电机的两种高性能控制策略,在永磁同步电机驱动控制中的应用与研究己受到众多学者的广泛关注。为了能够更好研究永磁同步电机的控制性能,提高永磁同步电机调速系统的动静态性能,本章针对永磁同步电机直接转矩控制系统,从空间电压矢量出发,在第四章建立永磁同步电机不同的坐标系下的数学模型的基础上,研究永磁同步电机直接转矩控制和空间电压矢量调制直接转矩控制的理论和实现方法,并进行仿真实验研究,分析控制策略的正确性[24][30]。 本文研究的转鼓实验台的恒转矩控制方式和惯量模拟控制方式,均采用空间电压矢量调制直接转矩控制策略对交流测功机(即永磁同步电机)进行模拟加载。 5.1 永磁同步电机直接转矩控制基本理论 5.1.1 永磁同步电机在x 、y 坐标系下的数学模型 将永磁同步电机在同步旋转坐标系中磁链、电流和电压矢量关系表示在图5-1(即图4-1)中所示,图中定义δ为转矩角,即定子磁链和转子磁链之间的夹角。d 、q 为与转子磁场速度 r ω同步旋转的坐标系,d 轴指向转子永磁磁链f ψ方向;x 、y 为与定子磁场速度e ω同步旋 转的坐标系,x 轴指向定子磁链s ψ方向。假设x 轴超前d 轴时转矩角为正,在忽略定子电阻的情况下,转矩角即为功角。当电机稳态运行时,定、转子磁链都以同步转速旋转。因此,在恒定负载的情况下转矩角为恒定值。当电机瞬态运行时,转矩角则因定、转子旋转速度不同而不断变化[31][32]。 A 图5-1 永磁同步电机坐标系 由图5-1可推导出转矩角的表达式为

)( tan )/(tan 11f d d q q sd sq i L i L ψψψδ+==-- (5-1) 式中: sd ψ、sq ψ:定子磁链在d 、q 坐标系下的分量(Wb ); f ψ:转子永磁磁链(Wb ); i d 、i q :定子电流 i s 在d 、q 坐标系下的分量(A ); L q :定子电感s L 的d 轴分量,即交轴电感(H ); L d :定子电感s L 的q 轴分量,即直轴电感(H )。 将d 、q 坐标系中物理量转换到x 、y 坐标系,可以得到 ??? ??????? ??-=??????q d y x F F F F δδ δδcos sin sin cos (5-2) 反变换为 ??? ?????????-=??????y x q d F F F F δδ δδ cos sin sin cos (5-3) 式中:F :可以代表电压、电流、磁链; 1.x 、y 参考坐标系下的转矩表达式[33][34] 由图5-1可知 s sq ψψδ= sin (5-4) s sd ψψδ= cos (5-5) 式中:s ψ:定子磁链幅值。 又由第四章的电磁转矩T e 的矢量形式表达式 s s p e i n T ?= ψ2 3 式中:i s :定子电流(A ); s ψ:定子磁链(Wb )。 综合式(5-2)、(5-4)、(5-5),将(5-2)代入电磁转矩T e 的矢量表达式可以得到x 、y 轴系的转矩表达式 )]sin cos ()cos sin ([2 3δδψδδψy x sq y x sd p e i i i i n T --+= ][2322 s sq y s sq sd x s sd y s sq sd x p i i i i n ψψψψψψψψψψ+-+=y s p i n ψ23= (5-6)

永磁同步电机的直接转矩控制(中文)外文翻译

在永磁同步电机直接转矩控制系统中的模拟研究 摘要-为了提高永磁同步电机的动态性能,提出了永磁同步电机( PMSM )的直接转矩控制( DTC )方案。基于永磁同步电机的数学模型和DTC 系统的工作原理的深入分析,在Matlab / Simulink 中建立这个系统的仿真模型,来进行模型的广泛研究。大量的仿真结果表明永磁同步电机的DTC 系统具有较快的响应速度和良好的动态性能,验证了这个系统的正确性和可行性。 关键词-永磁同步电机;磁链估计;直接转矩控制; 空间矢量脉宽调制 I.引言 在过去的几年里永磁同步电机( PMSM )在越来越多的广泛应用中被熟悉,由于它的特性,例如体积小、重量轻、效率高、惯性小、转子无散热问题等[ 1]。 直接转矩控制( DTC )是矢量控制之后的一种新的控制方法。它摈弃了矢量解耦思想控制,并使用该定子磁链直接控制磁链和电动机的转矩。因此,该系统的动态反应是非常快的[2]。 DTC 控制策略应用于永磁同步电动机,以提高电机的转矩特性,其目前已经引起了人们的广泛关注。 传统的DTC 通常采用开关控制策略来实施。但这种控制策略不能同时满足系统在转矩和磁链上的要求,这导致由系统生成的磁链和转矩有很大的波动并导致脉冲电流的问题和更高的开关频率变化引起的开关噪声。空间矢量脉宽调制( SVPWM )控制策略已广泛用于电机速度控制领域,由于其潜在的优点,例如小电流波形畸变,直流电压的高利用率,易于数字实现,恒定的开关逆变器的频率,从而有效地降低电机转矩和磁链的脉动等等。 本文研究的对象是永磁同步电机。在应用中, 基于空间矢量脉宽调制的DTC 策略被用来模拟。结果表明,该系统具有响应速度快的优势,良好的动态性能等[3] [4]。 II.永磁同步电机的直接转矩控制技术 永磁同步电机的定子磁链不仅包括由定子电流产生的,而且还包括由永磁转子产生的,这取决于定子和转子的参考系之间的位置角度r θ。因此定子磁链可以表示为: r j s s s PM L i e θ ψψ=+ (1) 其中,下标s 是静态的参考坐标系, s L 是定子自感, PM ψ是转子永磁磁链。 基于定子参考框架的永磁同步电机定子电压方程可以被表示为以下等式: s s s s d u R i dt ψ=+ (2) 因此

永磁同步电机及其控制技术的研究现状

永磁同步电机及其控制技术的研究现状 A直流电机、异步电机、同步电机三大电机系统中,衣磁同步电机为其性能优良和结构多样,在工农业生产制造.日常生活以及航空航天事业等领域中得到广泛的应用。为使得电机有较好的控制性能,需要便用变频器时永卓同步电动机进行驱动和控制.因此,研究如何在通用变额器上实现永嵐同步电动机矢呈控制具有非常重硬的实用价值: (1)永磁同步电机矢量控制系统是一种髙性能的交流调速系统.由于永礎同步电机结构简单、体积小、重量轻、效率高、过载能力大、转动惯虽小以及转矩脉动小零优点,并且利用矢量控制思想*永磁同步电机可以便得输出转矩随定了电流线性变化,永磁同步电机矢畐拎制系统可以达到优越的控制性能⑴. (2)我国是世界上星早利用磁的国家,早在公元前2500年前后就己经有相黄天然磁石的记载◎同时,水磁材料产业的发展与电子信息、通信技术、矿业、航空航天、交通运输等行业密切相关.具有璽宴的战略意义I*】. (3)殺电子技术的发脱促进了数孑技术在调速系统屮的应用,配合髙效软件可提供较好的灵活性和控制性能"电机控制系统的数了化进程是实现现代调速系统发展的方向之一。相比了:模拟控制,数字控制更易于实现先进控制饺毎同时数字控制系统的硬件成本低、结构简帕且高效节能固° 人类最早发明的电机是利用天然磁铁建立磁场的.1821年9月.法拉第发现通电匕线在雄场中会受到力的作用,他第一次实现了把电能转化为机械能.从而在实骡峑建立了堀初的电机模型,被认为是世界上第一台电机° 1831年*在发现电磁感应现象之后不典,法拉第利用电磁感应原理发明了111界上弟一台真正恿义上的电机——法捡第岡盘发电机?】旳2年,斯特金发明了换向器,制件了世界上第一台能够连续运动的旌转电机.1845年.英国的惠斯通用电磁铁代替永久磴铁,并取得了乍利权,这是增强发电机输岀功率的一个重雯措施,1967年.锣诂永磁材料的岀现,开创『永磁电机发展的新纪元. 随着科学技术的发展,各类电机不审问世,电机的种类越来越多。上要分为白漩电机和交流电机两大樂而交流电机主耍分为并步电机和同步qi动机届步电机结构简单,造价低廉且维护较少,可应用于衽环境恶劣的场合,但也存在不少缺点,运转过程中电

浅析永磁同步电机控制策略

浅析永磁同步电机控制策略 【摘要】近年来,永磁同步电机凭借其体积小、损耗低、效率高等优点,被广泛应用于各种生产实践中。与此同时,对永磁同步电机的控制研究也得到了广泛的重视。本文就永磁同步电机的控制策略做出简单阐述,对比其优缺点,分析永磁同步电机控制侧率的发展方向。 【关键词】永磁同步电机;恒压频比开环控制;矢量控制;直接转矩控制 1.引言 近年来,随着电力电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。永磁同步电动机具有体积小,损耗低,效率高等优点,在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。因此。这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。 2.永磁同步电机的数学模型 永磁同步电机(PMSM)的永磁体和绕组,绕组和绕组之间的相互影响,电磁之间的关系十分复杂,由于磁路饱和等非线性因素,建立精确的数学模型是很困难的。为了简化PMSM的数学模型,我们通常作如下的假设: (1)磁路不饱和,电机电感不受电流变化影响,不计涡流和磁滞损耗; (2)忽略齿槽、换相过程和电枢反应的影响; (3)三相绕组对称,永久磁钢的磁场沿气隙周围正弦分布; (4)电枢绕组在定子内表面均匀连续分布; (5)驱动二极管和续流二极管为理想元件; (6)转子磁链在气隙中呈正弦分布。 对于永磁同步电机来说,即用固定转子的参考坐标来描述和分析其稳态和动态性能是十分方便的。此时,取永磁体基波励磁磁场轴线即永磁体磁极的轴线为d轴,而q轴逆时针方向朝前90o电角度。d轴与参考轴A之间夹角为。图1为永磁同步电机(PMSM)矢量图。 图1 PMSM空间向量图 Fig.1 Space vector diagram of PMSM

永磁同步电机控制系统研究

永磁同步电机控制系统研究 【摘要】由于使用场合的特殊性,电梯驱动用电机应该具有振动小、噪声低、起动电流小、有足够的起动转矩和运行平稳等性能要求。永磁同步电机具有转矩纹波小,转速平稳,动态响应快速准确,过载能力强等优点,不仅能满足以上要求,而且可以显著提高功率因数,降低损耗,提高效率,长期运行,可以起到降本增效的作用。 【关键词】永磁同步电机;电梯驱动;弱磁控制 0.引言 正弦波永磁同步电动机可根据多种矢量控制方法来构成变频调速系统,实现高性能、高精度的传动,在动态响应要求高的场合其应用前景尤其看好。永磁同步电机的矢量控制,也是基于磁场定向的控制策略,由于转子上的永磁体所提供的磁场恒定,加之其结构和参数各异,相应的控制方法也有所不同。这些控制方法主要有:id=0(转子磁链定向)控制、cosφ=1控制、总磁链恒定控制、最大转矩/电流控制、最大输出功率控制、直接转矩控制等。它们各具特点,如cosφ=1控制可以降低与之匹配的变频器容量,恒磁链控制可以增大电动机的最大输出转矩等。而id=0控制最为简单,它的基本思想是通过控制逆变器使三相定子的合成电流(磁动势)超前转子位置90°(电角度),则电机的电磁转矩只和定子电流幅值成正比,即控制定子电流的幅值,就能很好地控制电磁转矩。本文采用id=0与弱磁控制相结合的控制方式。 1.控制原理 1.1PMSM数学模型 永磁同步电机具有正弦形的反电动势波形,其定子电压、电流也应为正弦波。假设电动机是线形的,参数不随温度等变化,忽略磁滞/涡流损耗,转子无阻尼绕组,那么基于转子坐标系(d-q轴系)中的永磁同步电动机定子磁链方程为: Ψ=Li+Ψ Ψ=L·i 式中:Ψ为转子磁钢在定子上的耦合磁链;L、L为永磁同步电动机的直、交轴主电感;i、i为定子电流矢量的直、交轴分量。 PMSM定子电压方程: u=ri+pΨ-ωΨ

相关主题
文本预览
相关文档 最新文档