当前位置:文档之家› 开普勒定律

开普勒定律

开普勒定律
开普勒定律

度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。3)万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM) {R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G =6.67×10-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2 {M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2 {h≈36000km,h:距地球表面的高度,r地:地球的半径}注: (1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

开普勒定律

目录[隐藏]

开普勒定律的意义

发现

影响

开普勒定律的意义

发现

影响

也统称“开普勒三定律”,也叫“行星运动定律”,是指行星在宇宙空间绕太阳公转所遵循的定律。由于是德国天文学家开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过他本人的观测和分析后,于1609~1619年先后早归纳提出的,故行星运动定律即指开普勒三定律。

开普勒第二定律

具体内容开普勒在1609年发表了关于行星运动的两条定律:

开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

开普勒第二定律(面积定律):对于任何一个行星来说,它与太阳的连线在相等的时间扫过的面积相等。

用公式表示为:SAB=SCD=SEK

简短证明:以太阳为转动轴,由于引力的切向分力为0,所以对行星的力矩为0,所以行星角动量为一恒值,而角动量又等于行星质量乘以速度和与太阳的距离,即L =mvr,其中m也是常数,故vr就是一个不变的量,而在一短时间△t内,r扫过的面积又大约等于vr△t/2,即只与时间有关,这就说明了开普勒第二定律。

1609年,这两条定律发表在他出版的《新天文学》。

1619年,开普勒又发现了第三条定律:

开普勒第三定律(周期定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

用公式表示为:R^3/T^2=k

其中,R是行星公转轨道半长轴,T是行星公转周期,k=GM/4π^2=常数

1619年,他出版了《宇宙的和谐》一书,介绍了第三定律,他写道:

“认识到这一真理,这是超出我的最美好的期望的。大局已定,这本书是写出来了,可能当代有人阅读,也可能是供后人阅读的。它很可能要等一个世纪才有信奉者一样,这一点我不管了。”

Windows7安装ubuntu10.04双系统图文教程

减小字体增大字体作者:佚名来源:本站整理发布时间:2010-7-1 11:18:04

ubuntu10.04的映像文件已经下载下来几天了,今天抽空安装了一次,供其他和我一样才接触ubuntu又想玩双系统的朋友参考。

安装前的准备:

1.一个能容纳ubuntu镜像文件的U盘。

2.UltraISO(用来写入ISO到U盘)。

3.正常工作的PC机

具体方法如下:

1、现在系统中划出一部分空间来安装ubuntu(我是先手动删除一个分区,如下图:)

2、用ultraiso写入ubuntu映像文件到U盘,方法如下图:

弹出的窗口选择你主板识别的方式,如HDD+

重启电脑的时候选择从U盘启动,出现下图的启动界面:(下面的是用我手机照的,效果不好)

直接安装,我不爱先去测试,因为通常是没问题的。

选择简体中文,其他的都是比较简单的下一步搞定。

到了硬盘分区了,这里选择“使用最大的连续空间”,然后安装就行了。

下面点击安装就开始复制文件等操作了,几分钟的时间就搞定,

正在复制文件中,比以前的版本安装更加快一点了,个人这么觉得。

安装完毕,重启动。

Windows7+ubuntu双系统启动菜单

到这里双系统就安装完毕了,现在只需要进入UBUNTU升级系统补丁、语言文件等操作就可以了。赶快去试试吧

:-D 开心:-( 不悦

:-P 吐舌头:-* 亲吻 ;-) 眨眼:-x 闭嘴

<※花束:-O 惊讶

$_$ 见钱眼开@_@ 困惑

>_< 抓狂T_T 哭泣

= =b 冒冷汗>3< 亲亲

≧◇≦感动==#生气

(×_×) 晕倒|(-_-)| 没听到(︶︿︶) 不满(=^_^=) 喵喵( ̄﹁ ̄) 流口水(T_T) 哭泣

╮( ̄▽ ̄)╭两手一摊╭(╯_╰)╭路过(*+﹏+*)~@ 受不了*\(^_^)/* 为你加油づ ̄3 ̄)づ飞吻b( ̄▽ ̄)d 竖起大拇指( ̄(工) ̄) 大狗熊^(oo)^ 猪头囧无可奈何的脸Orz 我服了你

正余弦定理实际应用

三角恒等变换与解三角形 学习目标: 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心,试题多为选择题或填空题. 2.利用正弦定理或余弦定理解三角形、判断三角形的形状或求值等,并经常和三角恒等变换结合进行综合考查. 重难点:利用正弦定理或余弦定理解三角形、判断三角形的形状或求值等,并经常和三角恒等变换结合进行综合考查. 真 题 感 悟 1.若tan α=2tan π5,则cos ? ??? ? α-3π10sin ? ??? ?α-π5=( ) A.1 B.2 C.3 D.4 2.(2015·广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π 6 ,则b =________. 3.在△ABC 中,a =4,b =5,c =6,则sin 2A sin C =________. 4.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 考 点 整 合 1.三角函数公式 (1)同角关系:sin 2 α+cos 2 α=1,sin α cos α =tan α. (2)诱导公式:在k π 2 +α,k ∈Z 的诱导公式中“奇变偶不变,符号看象 限”. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β;cos(α±β)=cos αcos β?sin αsin β;tan(α±β)=tan α±tan β 1?tan αtan β . (4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. 2.正、余弦定理、三角形面积公式

开普勒定律

度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。3)万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM) {R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G =6.67×10-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2 {M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2 {h≈36000km,h:距地球表面的高度,r地:地球的半径}注: (1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。 开普勒定律 目录[隐藏] 开普勒定律的意义 发现 影响 开普勒定律的意义 发现 影响 也统称“开普勒三定律”,也叫“行星运动定律”,是指行星在宇宙空间绕太阳公转所遵循的定律。由于是德国天文学家开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过他本人的观测和分析后,于1609~1619年先后早归纳提出的,故行星运动定律即指开普勒三定律。

常微分 用万有引力定律推导开普勒三定律

万有引力推导开普勒定律 万有引力定律的阐明: 任意两个质点由通过连心线方向上的力相互吸引。该引力大小与它们质量的乘积成正比,与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。 开普勒定律的阐明: ①椭圆定律:所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。 ②面积定律:行星和太阳的连线在相等的时间间隔内扫过相等的面积。 ③所有行星绕太阳一周的恒星时间()的平方与它们轨道长半轴(ai)的立 方成比例,即 一、开普勒第二定律导引: 由于太阳超重于行星,我们可以假设太阳是固定的。用方程式表示为: ; 其中,是太阳作用于行星的万有引力、是行星的质量、是太阳的质量、是行星相对于太阳的位移向量、是的单位向量。 牛顿第二定律声明:物体受力后所产生的加速度,和其所受的浮力成正比, 和其质量成反比。用方程式表示: 。 合并这两个方程式: (1) 思考位置向量,随时间微分一次可得到速度向量,再微分一次则 可得到加速度向量: 在这里,我们用到了单位向量微分方程式:

, 。(2) 合并方程式 (1) 与 (2) ,可以得到向量运动方程式: 取各个分量,我们得到两个常微分方程式,一个是关于径向加速度,另一个是关于切向加速度: ,(3) 。(4) 导引开普勒第二定律只需切向加速度方程式。试想行星的角动量。 由于行星的质量是常数,角动量随时间的导数为: 。 角动量也是一个运动常数,即使距离与角速度都可能会随时间变化。从 时间到时间扫过的区域: 。 行星太阳连线扫过的区域面积相依于间隔时间。 所以,开普勒第二定律是正确的。 二、开普勒第一定律导引: 设定。这样,角速度是: 。 随时间微分与随角度微分的关系为: 。 随时间微分径向距离:

开普勒定律的推导及应用

开普勒定律的推导及应用 江苏南京师范大学物科院王勇江苏海安曲塘中学周延怀 随着人类航天技术的飞速发展和我国嫦娥绕月卫星的发射成功,以天体运动为载体的问题将成为今后考查热点。在现行的高中物理教材中主要引用了开普勒三大定律来描述了天体的运动的规律,这三条定律的主要内容如下: (1)所有行星绕太阳运动的轨道都是椭圆,太阳位于椭圆轨道的一个焦点上。 (2)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 (3)所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值。 至于行星绕太阳的轨道为何是椭圆以及中的常量C与那些量相关并无说明。为了更深入的理解天体和人造卫星的运行规律,本文将以椭圆的性质为基础从理论上推导开普勒定律。 一、开普勒第一定律 1.地球运行的特点 (1)由于地球始终绕太阳运动,则太阳对地球的万有引力的力矩始终为零,所以地球在运动过程中角动量守恒。 (2)若把太阳与地球当作一个系统,由于万有引力为保守力且无外力作用在这个系统上,所以系统机械能守恒。 2.地球运行轨迹分析 地球在有心力场中作平面运动且万有引力的作用线始终通过太阳,所以建立如图所示的极坐标系,则P点坐标为(r,θ)。 若太阳质量为M,地球质量为m,极径为r时地球运行的运行速度为v。

当地球的运行速度与极径r垂直时,则地球运行过程中的角动量(1)若取无穷远处为引力势能的零参考点,则引力势能,地球在运行过程中的机械能(2) (1)式代入(2)式得:(3) 由式(3)得:(4) 由式(4)可知,当地球的运行速度与极径r垂直时,地球运行的极径r有两解,由于初始假设地球的运行速度与极径垂直,所以r为地球处在近日点和远日点距太阳的距离。考 虑到地球的这两个位置在极坐标系中分别相当于和,可把式(4)中 的号改写为更普遍的形式极坐标方程。 则地球的运行轨迹方程为(5)(5)式与圆锥曲线的极坐标方程吻合,其中(p 为决定圆锥曲线的开口),(e为偏心率,决定运行轨迹的形状),所以地球的运行轨迹为圆锥曲线。由于地球绕太阳运动时E<0,则圆锥曲线的偏心率,所以地球绕太阳运行的轨迹为椭圆。 3.人造星体的变轨

开普勒三定律的应用

万有引力及天体运动 一.开普勒行星运动三大定律 1、开普勒第一定律(轨道定律): 所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律): 对于每一个行星而言,太阳和行星的联线在相等的时间扫过相等的面积。 3、开普勒第三定律(周期定律): 所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 1、如图所示是行星m 绕恒星M 运动的情况示意图,则下面的说确的是: A 、速度最大的点是B 点 B 、速度最小的点是C 点 C 、m 从A 到B 做减速运动 D 、m 从B 到A 做减速运动 二、万有引力定律 1、万有引力定律的建立 ①太阳与行星间引力公式 ②月—地检验 ③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律 ①容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。即: ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 地上:忽略地球自转可得: 2)计算重力加速度 地球上空距离地心r=R+h 处 方法: 在质量为M ’,半径为R ’的任意天体表面的重力加速度' 'g 方法: (3)计算天体的质量和密度 利用自身表面的重力加速度: 天上:利用环绕天体的公转: 等等 (注:结合 得到中心天体的密度) (4)双星:两者质量分别为m 1、m 2,两者相距L 特点:距离不变,向心力相等,角速度相等,周期相等。 双星轨道半径之比: 双星的线速度之比: 三、宇宙航行 1、人造卫星的运行规律 2Mm F G r =11226.6710/G N m kg -=??12 2m m F G r =2 R Mm G mg =2' '''' 'R m M G mg =mg R Mm G =2r T m r m r v m r Mm G 222 224πω===33 4 R M πρ?=2 ')(h R Mm G mg +=1 2 2121 m m v v R R ==v Mm 22 24π

正余弦定理的综合应用及答案

正余弦定理的综合应用 1.【河北省唐山一中2018届二练】在ABC ?中,角,,A B C 的对边分别为,,a b c ,且 ()()3,cos sin sin cos 0b A B c A A C =+-+=. (1)求角B 的大小;(2)若ABC ?的面积为 3 2 ,求sin sin A C +的值. 2.【北京市海淀区2018届高三第一学期期末】如图,在ABC ?中,点D 在AC 边上,且 3AD DC =,7AB =,3 ADB π ∠=,6 C π ∠= . (Ⅰ)求DC 的值; (Ⅱ)求tan ABC ∠的值. 【解决法宝】对解平面图形中边角问题,若在同一个三角形,直接利用正弦定理与余弦定理求解,若图形中条件与结论不在一个三角形内,思路1:要将不同的三角形中的边角关系利用中间量集中到一个三角形内列出在利用正余弦定理列出方程求解;思路2:根据图像分析条件和结论所在的三角形,分析由条件可计算出的边角和由结论需要计算的边角,逐步建立未知与已知的联系. 3.【海南省2018届二模】已知在ABC ?中,a ,b ,c 分别为内角A ,B ,C 的对边,且 3cos sin cos b A a A C +sin cos 0c A A +=. (1)求角A 的大小; (2)若3a =,12 B π = ,求ABC ?的面积. 4.【湖北省天门等三市2018届联考】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos cos 3sin cos C A B A B +=. (Ⅰ)求cos B 的值;(Ⅱ)若1a c +=,求b 的取值范围. 5.【山东省淄博市2018届高三3月模拟】在 中,角 对边分别为 ,已知 . (1)求角的大小;(2)若 ,求 的面积. 6.【福建省南平市2018届第一次质检】在中, 分别为角 的对边,且 . (1)若,求及; (2)若 在线段 上,且 ,求的长. 7.【山东省实验中学2017届高三第一次诊,16】在△ABC 中,a ,b ,c 分别是角A ,B , C 的对边, cos 2cos C a c B b -=,且2a c +=.

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

从开普勒定律到万有引力定律

从开普勒定律到牛顿万有引力定律 [摘要]:在高中阶段甚至大学的普通物理中,从开普勒三定律到万有引力定律的推导都是在简化之后的圆轨道上进行的。本文从椭圆轨道出发,推导出了万有引力定律。 [关键词]:万有引力定律、开普勒定律、行星运动、椭圆轨道、极坐标 [正文] 高中阶段,由于缺少数学知识,从开普勒定律到万有引力的推导只能在简化之后的圆轨道上进行。甚至大学阶段,普通物理的教材中,也采用了这个方法。本文力图从原始的椭圆轨道入手,导出万有引力定律。当然,这个过程不可能不涉及高等数学的知识。首先我们做一个准备工作,然后再集中考虑推导的过程。如果“准备”中的知识已完全清楚,则可以直接考虑定律的推导了。 第一部分 准备 一、极坐标中的椭圆方程 椭圆定义为到定点的距离与到定直线的距离之比为常数e 的点的集合。 如图1所示,在极坐标中,Ox 为极轴l 是垂直于极轴的定直线,它与O 点的距离为p 。由椭圆的定义可知: e r p r =+θ cos 整理可得: θ cos 1e pe r -= (1) 二、极坐标中的位置矢量 x O θ 图1 l r

极坐标中,r 表示从原点到曲线上一点的距离,如果我们以原点O 为参考,则r 实际上只表示出了位置矢量的大小。为了明确其方向,我们沿着r 所在的直线做出单位矢量i 作为径向单位向量。另外,将i 旋转2 π 得到j 作为横向单位向量。显然物体的位置矢量可表示为: ri =r (2) 上式中等号右边的r 表示的是位矢的大小,i 表示的位矢的方向。但是应当注意的是,不管是r 还是i ,都不一定是常量。这和直角坐标系中的单位向量是常量是有区别的。 另外,r 和i 都是θ的函数,在运动学中θ又是时间t 的函数。所以,r 和i 都是时间t 的函数,所以我们也可以说位置矢量r 是时间的函数。 在这里,我们必须清楚的是,极坐标中的矢量表示和用极坐标表示函数关系并不完全是一回事。若用极坐标表示数量关系,我们只需要用标量式()θr r =即可,在表示矢量时,我们不得不在这个基础上加上了单位向量i 。 三、极坐标中的速度和加速度 下面我们先求单位向量对时间的导数。 在图3中,以Ox 方向为x 轴,O 为原点,垂直Ox 向上为y 轴建立直角坐标系,用ξ、 η表示沿x 轴、y 轴的单位向量,则i 、j 可分别表示为: θηθξsin cos +=i x 图3 r i j θd θ O Δi θd x O θ 图2 r i j

正余弦定理在实际生活中的应用

正余弦定理在实际生活中的应用 正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题. 求解此类问题的大概步骤为: (1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等; (2)根据题意画出图形; (3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答. 1.测量中正、余弦定理的应用 例1 某观测站C 在目标A 南偏西25?方向,从A 出发有一条南偏东35?走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ?,求角B .再解ABC ?,求出AC ,再求出AB ,从而求出AD (即为所求). 解:由图知,60CAD ∠=?. 22222231202123 cos 22312031BD BC CD B BC BD +-+-===???, 3 s i n B =. 在ABC ?中,sin 24sin BC B AC A ?= =. 由余弦定理,得222 2cos BC AC AB AC AB A =+-??. 即2223124224cos60AB AB =+-????. 整理,得2243850AB AB --=,解得35AB =或11AB =-(舍). 故15AD AB BD =-=(千米). 答:此人所在D 处距A 还有15千米. 评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理. 2.航海中正、余弦定理的应用 例2 在海岸A 处,发现北偏东45?方向,距A 1海里的B 处有一艘走私船,在A 处北偏西75?方向,距A 为2海里的C 处的缉私船奉命以/小时 A C D 31 21 20 35? 25? 东 北

开普勒定律万有引力定律重力加速度

开普勒定律、万有引力定律、重力加速度深析知识达标: 1、关于宇宙的两种学说 2、开普勒行星运动定律 (1)开普勒第一定律: (2)开普勒第二定律: (3)开普勒第三定律: 3、万有引力定律: (1)论证 (2)公式 (3)引力常量 4、重力加速度深析 5、计算天体的质量和密度

经典题型: 1、已知万有引力恒量,在以下各组数椐中,根椐哪几组可以测地球质量( ) ①地球绕太阳运行的周期信太阳与地球的距离 ②月球绕地球运行的周期信月球离地球的距离 ③地球半径、地球自转周期及同步卫星高度 ④地球半径及地球表面的重力加速度 A. ①②③ B. ②③④ C.①③④ D.①②④ 2、火星与地球的质量之比为P ,半径之比为q ,则火星表面的重力加速度和地球表面的重力加速度之比为( ) A. 2q p B.2pq C.q p D.pq 3、地球表面处的重力加速度为g ,则在距地面高度等于地球半径处的重力加速度为( ) A. g B. g/2 C. g/4 D. 2g 4、一名宇航员来到某星球上,如果该星球的质量为地球的一半,它的直径也为地球的一半,那么这名宇航员在该星球上的重力是他在地球上重力的( ) A. 4倍 B. 0.5倍 C. 0.25倍 D. 2倍 5、关于地球的运动,正确的说法有( ) A. 对于自转,地表各点的线速度随纬度增大而减小 B. 对于自转,地表各点的角速度随纬度增大而减小 C. 对于自转,地表各点的向心加速度随纬度增大而增大 D. 公转周期等于24小时

6、已知金星绕太阳公转的周期小于1年,则可判定( ) ①金星到太阳的距离小于地球到太阳的距离 ②金星的质量大于地球的质量 ③金星的密度大于地球的密度 ④金星的向心加速度大于地球的向心加速度 A. ①③ B. ②③ C. ①④ D.②④ 7、人造地球卫星所受的向心力与轨道半径r 的关系,下列说法中正确的是( ) A. 由2r Mm G F =可知,向心力与r 2成反比 B. 由22r v m F =可知,向心力与r 成反比 C. 由r m F 2ω=可知,向心力与r 成正比 D. 由v m F ω=可知,向心力与r 无关 8、关于人造地球卫星及其中物体的超重和失重问题,下列说法正确的是( ) ①在发射过程中向上加速时产生超重现象 ②在降落过程中向下减速时产生失重现象 ③进入轨道时作匀速圆周运动,产生失重现象 ④失重是由于地球对卫星内物体的作用力减小而引起的 A. ①③ B.②③ C. ①④ D.②④ 9、设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆轨道运动,则与开采前相比 ( ) ①地球与月球间的万有引力将变大; ②地球与月球间的万有引力将变小; ③月球绕地球运动的周期将变长; ④月球绕地球的周期将变短。 A. ①③ B. ②③ C.①④ D.②④

正余弦定理的应用举例

正余弦定理的应用举例 正、余弦定理的应用举例 知识梳理 一、解斜三角形应用题的一般步骤: 分析:理解题意,分清已知与未知,画出示意图 建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 二.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题. 三.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决. 典例剖析 题型一距离问题 例1.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲

船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里? 解:如图,连结,由已知, 又,是等边三角形, 由已知,,, 在中,由余弦定理,.. 因此,乙船的速度的大小为.答:乙船每小时航行海里.题型二高度问题 例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30,至点c处测得顶端A的仰角为2,再继续前进10至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。 解法一:由已知可得在AcD中, Ac=Bc=30,AD=Dc=10,ADc=180-4, =。sin4=2sin2cos2 cos2=,得2=30=15,在RtADE中,AE=ADsin60=15 答:所求角为15,建筑物高度为15 解法二:设DE=x,AE=h 在RtAcE中,+h=30在RtADE中,x+h= 两式相减,得x=5,h=15在RtAcE中,tan2== =30,=15

对开普勒行星运动定律的理解

对开普勒行星运动定律的理解德国天文学家开普勒用了20年的时间,通过对丹麦天文学家第谷的行星观测记录,以“日心说”为理论基础,总结了开普勒三定律,也叫“行星运动定律”,指行星在宇宙空间绕太阳公转所遵循的定律,它否定了古人奉行的“地心说”的错误观点。下面本人就开普勒定律谈谈自己的一些理解。 开普勒第一定律也称椭圆定律,它指出所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。我们把像太阳这样被其他星体环绕的天体称为中心天体,其他围绕中心天体运动的行星称为环绕天体。这个定律的提出,首先否定了“天体运动为一个圆周”的错误理论,开创了天体运动科学研究的新局面。另外,我们还应了解,太阳系中不同行星运动的椭圆轨道是不同的,但这些椭圆有一个共同的焦点,即在太阳所在位置。其次,不仅在太阳系中各行星的轨道如此,其他星系中,各环绕天体和中心天体也符合开普勒第一定律。比如,在地月系中,月球和其他地球卫星围绕地球运动的轨道也为一个椭圆,而地球也处在它们椭圆轨道的一个焦点上。 开普勒第二定律,也称面积定律,它指出在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。这一定律实际揭示了行星绕太阳公转的角动量守恒。行星在椭圆轨道运动时,极径 (又 称向径R)所扫过面积与经过的时间成正比,即掠面速度守恒,亦即矢积守恒,又称动量矩(角动量)守恒。天体运动若每走一步的时间

都相等,则向径所扫过的面积也相等,即面速度不变而形状变化。据此我们可以得出,离太阳越近的环绕天体运动的线速度越大,或者说低轨道运行行星比高轨道运行行星的速度大。其次,该定律还蕴含着行星与太阳之间的相互作用力在行星和太阳的连线上。我们还应理解,该定律对于其他星系也同样适用。 “所有行星的轨道半长轴的三次方跟公转周期的二次方的比值都相等”,这就是开普勒第三定律的表述,也称调和定律。这个定律的得出比前两个定律要晚些,它是通过所有行星围绕太阳运动的轨道半长轴与公转周期的比较得出的,是三个定律中应用较为广泛的一个,当然也可以用与其他星系。其物理表达式为a3/T2=K,它蕴含着行星运动的动力学关系,是牛顿得出万有引力定律的基础。公式中的K值是一个只与中心天体质量有关的量,与环绕天体无关,也就是说,只要中心天体一定,则K值就一定。比如,在太阳系中所有围绕太阳运动的轨道半长轴与公转周期的比值K与月球围绕地球运动的轨道半长轴与公转周期的比值K就不一样,这里一定要注意理解。 下面举个例子,已知飞船沿半径为R 的圆周绕地球运动,其周期为T,如图所示如果飞船要返回地面,可在轨道上的某点A将速度降低到适当的数值,从而使飞船沿着地心为焦点的椭圆轨道运行,椭圆与地球表面在B点相切,求飞船由A 点到B 点所需的时间。(已知 地球半径为R0) 分析:无论飞船是沿圆轨道运行还是沿椭圆轨道运行,

万有引力定律应用的12种典型案例

万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32GT r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是

高中物理模块要点回眸11开普勒三定律的理解和应用新人教版必修

第11点开普勒三定律的理解和 应用 开普勒定律不仅适用于行星绕太阳的运动,也适用于卫星绕行星的运动.我们可以从以下三方面应用开普勒定律迅速解决天体运动问题. 1.由开普勒第一定律知所有行星围绕太阳运动时的轨道都是椭圆,不同的行星绕太阳运动时的椭圆轨道是不同的,太阳处在椭圆的一个焦点上,如图1所示.该事实否定了圆形轨道的说法,建立了正确的行星轨道理论,而且准确地给出了太阳的位置. 图1 2.由开普勒第二定律知:当离太阳比较近时,行星运行的速度比较快,而离太阳比较远时,行星运动的速度比较慢. 3.由开普勒第三定律知:所有行星的轨道的半长轴的三次方和公转周期的平方的比值都相等.该定律揭示了周期和轨道半径的关系,其中的比例常数与行星无关,只与中心天体有关. 对点例题1火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等

C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解题指导太阳位于木星运行椭圆轨道的一个焦点上,选项A 错误;由于火星和木星沿各自的椭圆轨道绕太阳运行,火星和木星绕太阳运行速度的大小变化,选项B 错误;根据开普勒行星运动定律可知,火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方,选项C 正确;相同时间内,火星与太阳连线扫过的面积不等于木星与太阳连线扫过的面积,选项D 错误. 答案C 特别提醒本题中的D 项是学生作答中的易错点.对开普勒三定律理解时要注意对象的同一性,不能张冠李戴将该行星和其他行星的相关量混为一谈. 对点例题2飞船沿半径为R 的圆周绕地球运动,其周期为T .如图2所示,飞船要返回地面,可以在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在B 点相切.如果地球半径为R 0,求飞船由A 点运动到B 点所需的时间. 图2 解题指导由开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时其半长轴的三次方跟周期平方的比值. 飞船椭圆轨道的半长轴为R +R 02, 设飞船沿椭圆轨道运动的周期为T ′, 则有R 3T 2=(R +R 0)3 8T ′ 2, 因此飞船从A 点运动到B 点所需的时间为 t =T ′2=(R +R 0)T 4R R +R 02R . 答案(R +R 0)T 4R R +R 02R 木星绕太阳运动的周期为地球绕太阳运动周期的12倍,那么,木星绕太阳运动轨道的半长

开普勒三定律的数学证明

开普勒三定律的数学证明 摘 要:本文依次对开普勒第二,第三和第一定律进行详细的数学证明,并用物理学中角动量守恒的方法对开普勒第二定律进行证明。 关键字:开普勒定律;角动量守恒 Mathematical Proofs of Kepler ’s Law Du Yonghao (Civil Engineering Department of Southeast University, Nanjing 211189, China) Abstract: My paper particularly derives Kepler ’s Second Law, Third Law and First Law in mathematical methods in order. Law of Conservation of Angular Momentum is also applied to derive Kepler ’s Second Law. Key words: Kepler ’s Law; Law of Conservation of Angular Momentum 1 前言 开普勒第一定律,也称椭圆定律、轨道定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。开普勒第二定律,也称面积定律:在相等的时间内,太阳和运动中的行星的连线(向量半径)所扫过的面积都是相等的。这一定律实际揭示了行星绕太阳公转的角动量守恒。开普勒第三定律,也称调和定律、周期定律:各个行星绕太阳的椭圆轨道的半长轴的立方和它们公转周期的平方成正比[1]。 2 开普勒第二定律证明 数学方法 令()t r 为行星在t 时刻的位失,令()t t r ?+为行星在()t t ?+时刻的位失。面积A ?为在t 时刻 与()t t ?+时刻间行星位失扫过的面积,即()t r 与 ()()t r t t r r -?+=?所围成的三角形面积,如图1,得: ()r t r A ??≈ ?2 1 所以: ()t r t r t A ???≈??21 令0→?t ,得: ()()t r t r dt dA '?=2 1 ()1 图1[2]

开普勒定律和极坐标在天体运动中的应用

开普勒定律和极坐标在天体运动中的应用 肖雷 有关行星和卫星等天体运动的问题是力学课程中最有趣味的课题之一。可惜许多教科书都把这类问题与牛顿万有引力定律联系起来。在教学中,为了把轨道概念较早地引入力学课程之中,通常不得不把问题局限为圆周轨道,这样往往会使一些学生误以为只存在圆形轨道,或者至少以为只有圆形轨道才是重要的。 我认为把行星和卫星的椭圆形轨道运动问题,建立在开普勒三个定律的基础上,而不是放在牛顿万有引力定律的基础上,这样会更好一些。当然,开普勒定律和牛顿万有引力定律是紧密相关的。但是我认为应当首先在开普勒定律的引导下讨论椭圆运动,这样不仅思路清晰,而且能使问题简化;同时应用其所对应的极坐标方程来解决其中的数学问题,可以避免冗长而繁琐的数学运算。 当然,要应用开普勒定律解决椭圆轨道问题,我们首先得熟悉其所对应的极坐标方程的数学形式: 第一定律:θcos 1e p r += , e <1 (1) 第二定律:c dt d r =θ2 , (2) 第三定律:k T a =23 , (3) 其中e 是离心率,p 是正焦弦,a 是半长轴, T 是椭圆轨道的周期; c 是因各个行星(卫星)而异的常数,k 是对每个行星(卫星)都相同的常数. 此外,轨道上任一点的速度表达式为: )1 2 (2a r k v -=。 (4) 由于某些有关椭圆轨道的问题,实际上纯粹是几何问题,显然可用几何方法求解。例如: 1.已知轨道的某些性质(最远点,最近点,离心率,周期,半长轴,或者在某特定点的速度),求其它性质; 2.由于速度改变,从一轨道换到另一轨道; 3.在行星之间或者在卫星之间对轨道作霍曼(hohmann)半椭圆变换; 4.同步通讯卫星。 对于这些问题,如果我们应用开普勒定律的极坐标表达的数学形式来解就比使用牛顿运动定律的数学表达式要容易的多。

正余弦定理的应用举例教案

天津职业技术师范大学 人教A版数学必修5 1.2正弦定理余弦定理 的应用举例 理学院 数学0701 田承恩

一、教材分析 本课是人教A版数学必修5 第一章解三角形中1.2的应用举例中测量长度问题。因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。同学们在学习时可以考虑,题中为什么要给出这些已知条件,而不是其他条件?要注意的是在某种特殊的实际问题下哪些条件可以测量,哪些不能。这节课我们就跟同学们共同研究这个问题。 (一)重点 1.正弦定理、余弦定理各自的公式记忆。 2.解斜三角形问题的实际应用以及全章知识点的总结归纳。 (二)难点 1.根据已知条件如何找出最简单的解题方法。 2.用应用数学的思想解决实际问题。 (三)关键 让学生灵活运用所学正弦定理、余弦定理。并具备解决一些基本实际问题的能力。 二、学情分析 学生已经学习了高中数学大部分内容,已经有了必要的数学知识储备和一定的数学思维能力;作为高中高年级学生,也已经具有了必要的生活经验。因此,可以通过生活中的例子引入如何用正弦定理、余弦定理解决实际问题。让学生自然而然地接受一些固定解法,这样,学生既学习了知识又培养了能力。 三、学习目标 (一)知识与技能 1.熟练掌握正弦定理、余弦定理的公式 2.掌握应用正弦定理、余弦定理解题的基本分析方法和步骤 (二)过程与方法 1.通过应用举例的教学,培养学生的推理能力,优化学生的思维品

质 2.通过教学中的不断设问,引导学生经历探索、解决问题的过程 (三)情感、态度与价值观 让同学找到学习数学的乐趣,让同学们感受到数学在现实中应用的广泛性。 四、教学手段 计算机,ppt,黑板板书。 五、教学过程(设计)

万有引力推导开普勒三大定律

万有引力推导开普勒定律 牛顿万有引力定律阐明:任意两个粒子由通过连线方向的力相互吸引。该引力的的大小与它们的质量乘积成正比,与它们距离的平方成反比。由于太阳超重于行星,我们可以假设太阳是固定的。 用方程式表示, ; 是行星的质量、是太阳的质量、是行这里,是太阳作用於行星的万有引力、 向量、是位移的单位向量。星相对于太阳的成正比,和其質量,和其所受的淨力声明:牛顿第二定律物體受力後所产生的加速度 成反比。用方程式表示,。合并这两个方程式,。(1) ,随时间思考位置向量微分一次可得到速度向量,再微分一次则可得到加速度向量: , 。 (2) 在这里,我们用到了单位向量微分方程式: , 。 合并方程式(1) 与(2) ,可以得到向量运动方程式: 取各个分量,我们得到两个常微分方程式,一个是关于径向加速度,另一个是关于切向加速度:

,(3) 。(4) 。由于行星导引开普勒第二定律只需切向加速度方程式。试想行星的角动量的质量是常数,角 动量随时间的导数为。,即使距离与角速度都可能会随时间变化。角动量也是一个运动常数从时间到时间扫过的区域, 。 。所以,开普勒第二定律是正确的。行星太阳连线扫过的区域面积相依于间隔时间 [编辑开普勒第一定律导引] 。这样,角速度是设定。 随时间微分与随角度微分的关系为 。 :随时间微分徑向距離 。 再微分一次: 。.,,代入径向运动方程式(3) 。 ,则可得到一个简单的常係数非齐次线性全微分方程式将此方程式除以来描述行星轨道: 。

特征方程式为 。 求解剩馀的常係数齐次线性全微分方程式, 。 其特解方程式为 ; 都是任意积分常数。综合特征方程式与特解方程式,这里,与 。 ,。代回选择坐标轴,让 。 ,则所描述的是椭圆轨道。所以,开普勒第一定律是正确的。假若开普勒第三定律导引] 编辑[ 在建立牛顿万有引力定律的概念与数学架构上,开普勒第三定律是牛顿依据的重要线索之一。假若我们接受牛顿运动定律。试想一个虚拟行星环绕着太阳公转,行星的移动轨道恰巧 。那末,太阳作用于行星的万有引力为。行星移动速呈圆形,轨道半径为 成反比。所以,与半径的平方根。依照开普勒第三定律,这速度度为 。猜想这大概是牛顿发现万有引力定律的思路,虽然我们并不能完全万有引力确定,因为我们无法在他的计算本裡,找到任何关于这方面的证据。

开普勒的三大定律典型例题

典型例题 关于开普勒的三大定律 例1 月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样. 分析:月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道的半径的三次方跟圆周运动周期的二次方的比值都是相等的. 解:设人造地球卫星运行半径为R,周期为T,根据开普勒第三定律有: 同理设月球轨道半径为,周期为,也有: 由以上两式可得: 在赤道平面内离地面高度: km 点评:随地球一起转动,就好像停留在天空中的卫星,通常称之为定点卫星.它们离地面的高度是一个确定的值,不能随意变动。 利用月相求解月球公转周期 例2 若近似认为月球绕地球公转与地球绕日公转的轨道在同一平面内,且都为正圆.又知这两种转动同向,如图所示,月相变化的周期为29.5天(图是相继两次满月,月、地、日相对位置示意图).

解:月球公转(2π+)用了29.5天. 故转过2π只用天. 由地球公转知. 所以=27.3天. 例3如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三 颗人造地球卫星,下列说法中正确的是哪个?() A.B、C的线速度相等,且大于A的线速度 B.B、C的周期相等,且大于A的周期 C.B、C的向心加速度相等,且大于A的向心加速度 D.若C的速率增大可追上同一轨道上的B 分析:由卫星线速度公式可以判断出,因而选项A是错误的. 由卫星运行周期公式,可以判断出,故选项B是正确的. 卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项C是错误的. 若使卫星C速率增大,则必然会导致卫星C偏离原轨道,它不可能追上卫星B,故D也是错误的. 解:本题正确选项为B。

相关主题
文本预览
相关文档 最新文档