当前位置:文档之家› 专题电磁感应与电路

专题电磁感应与电路

专题电磁感应与电路
专题电磁感应与电路

专题电磁感应与电路 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

专题 4 电磁感应与电路

思想方法提炼

电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。

在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数知识(如函数数值讨论、图像法等)的能力。 高考的热点问题和复习对策:

1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧.

2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。

3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。 此部分涉及的主要内容有: 1.电磁感应现象.

(1)产生条件:回路中的磁通量发生变化.

(2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流.

(3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路.

2.法拉第电磁感应定律:E=n ,E=BLvsinq , 注意瞬时值和平均值的计算方法不同.

3.楞次定律三种表述:

(1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例. (2)感应电流引起的运动总是阻碍相对运动. (3)自感电动势的方向总是阻碍原电流变化. 4.相关链接

(1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识.

(2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识. (3)能的转化与守恒定律.

感悟 · 渗透 · 应用

【例1】三个闭合矩形线框Ⅰ、Ⅱ、Ⅲ处在同一竖直平面内,在线框的正上方有一条固定的长直导线,导线中通有自左向右的恒定电流,如图所示,若三个闭合线框分别做如下运动:Ⅰ沿垂直长直

导线向下运动,Ⅱ沿平行长直 导线方向平动,Ⅲ绕其竖直中心 轴OO ′转动.

(1)在这三个线框运动的过程中, 哪些线框中有感应电流产生 方向如何

(2)线框Ⅲ转到图示位置的瞬间,是否有感应电流产生

【解析】此题旨在考查感应电流产生的条件.根据直线电流周围磁场的特点,判断三个线框运动过程中,穿过它们的磁通量是否发生变化.

(1)长直导线通有自左向右的恒定电流时,导线周围空间磁场的强弱分布不变,但离导线越远,磁场越弱,磁感线越稀;离导线距离相同的地方,磁场强弱相同.

t

??Φ

线框Ⅰ沿垂直于导线方向向下运动,穿过它的磁通量减小,有感应电流产生,电流产生的磁场方向垂直纸面向里,根据楞次定律,感应电流的磁场方向也应垂直纸面向里,再由右手螺旋定则可判断感应电流为顺时针方向;线框Ⅱ沿平行导线方向运动,与直导线距离不变,穿过线框Ⅱ的磁通量不变,因此线框Ⅱ中无感应电流产生;线框Ⅲ绕OO ′轴转动过程中,穿过它的磁通量不断变化,在转动过程中线框Ⅲ中有感应电流产生,其方向是周期性改变的.

(2)线框Ⅲ转到图示位置的瞬间,线框中无感应电流,由于长直导线下方的磁场方向与纸面垂直,在该位置线框Ⅲ的两竖直边运动方向与磁场方向平行,不切割磁感线,所以无感应电流;从磁通量变化的角度考虑,图示位置是线框Ⅲ中磁通量从增加到最大之后开始减小的转折点,此位置感应电流的方向要发生变化,故此时其大小必为0.

【解题回顾】对瞬时电流是否存在应看回路中磁通量是否变化,或看回路中是否有一段导体做切割磁感线运动,要想知道线框在磁场中运动时磁通量怎样变化,必须知道空间的磁场强弱、方向分布的情况,对常见磁体及电流产生的磁场要相当熟悉.

【例2】如图所示,在倾角为θ的光滑的

斜面上,存在着两个磁感应强度相等的匀强磁场, 方向一个垂直斜面向上,另一个垂直斜面向下, 宽度均为L ,一个质量为m ,边长也为L 的

正方形线框(设电阻为R)以速度v 进入磁场时, 恰好做匀速直线运动.若当a b 边到达gg ′与ff ′ 中间位置时,线框又恰好做匀速运动,则:

(1)当a b 边刚越过ff ′时,线框加速度的值为多少 (2)求线框开始进入磁场到a b 边到达gg ′与ff ′ 中点的过程中产生的热量是多少

【解析】此题旨在考查电磁感应与能量之间的关系.线框刚越过ff ′时,两条边都在切割磁感线,其电路相当于两节相同电池的串联,并且这两条边还同时受到安培力的阻碍作用. (1)a b 边刚越过ee ′即做匀速直线运动,表明线框此时所受的合力为0,即

在a b 边刚越过ff ′时,a b 、cd 边都切割磁感线产生感应电动势,但线框的运动速度不能突变,则此时回路中的总感应电动势为E ′=2BLv ,设此时线框的加速度为a ,则2BE ′L/R-mgsinq=m a ,a =4B 2L 2v/(Rm)-gsinq=3gsinq ,方向沿斜面向上.

(2)设线框再做匀速运动时的速度为v ′,则mgsinq=(2B 2L 2v ′/R)×2,即v ′=v/4,从线框越过ee ′到线框再做匀速运动过程中,设产生的热量为Q ,则由能量守恒定律得:

【解题回顾】电磁感应过程往往涉及多种能量形式的转化,适时选用能量守恒关系常会

使求解很方便,特别是处理变加速直线运动或曲线运动问题. 【例3】如图所示,d a 、cb 为相距L 的平行导轨(电阻可以 忽略不计).a 、b 间接有一个固定 电阻,阻值为R.长直细金属杆 MN 可以按任意角架在水平导轨上, 并以速度v 匀速滑动(平移),v 的方向

和d a 平行. 杆MN 有电阻,每米长的电阻值为R.整个空间充满匀强磁场,磁感应强度的大小为B ,方向垂直纸面(dabc 平面)向里

(1)求固定电阻R 上消耗的电功率为最大时θ角的值 (2)求杆MN 上消耗的电功率为最大时θ角的值.

L

R

BLv B mg ??=θsin 2

223215

sin 23'2

1

21sin 23mv mgL mv mv L mg Q +=-+?=θθ

【解析】如图所示,杆滑动时切割磁感线而产生感应电动势E=BLv ,与q 角无关.

以r 表示两导轨间那段杆的电阻,回路中的电流为:

(1)电阻R 上消耗的电功率为:

由于E 和R 均与q 无关,所以r 值最小时,P R 值达最大.当杆与导轨垂直时两轨道间的杆长最短,r 的值最小,所以P R 最大时的q 值为q=p/2.

(2)杆上消耗的电功率为: P r = 要求P r 最大,即要求 取最大值.由于 显然,r=R 时, 有极大值因每米杆长的电阻值为R ,r=R 即要求两导轨间的杆长为1m ,

所以有以下两种情况:

①如果L ≤1m ,则q 满足下式时r=R 1×sinq=L 所以q=arcsinL

②如果L >1m ,则两导轨间那段杆长总是大于1m ,即总有r >R 由于

在r >R 的条件下,上式随r 的减小而单调减小,r 取最小值时, 取最小值, 取最大值,所以,Pr 取最大值时q 值为

【例4】如图所示,光滑的平行导轨P 、Q 相距 L=1m ,处在同一水平面中,导轨左端接有如图所示 的电路,其中水平放置的平行板电容器C 两极板间 距离d=10mm ,定值电阻R 1=R 3=8Ω,R 2=2Ω,导轨 电阻不计.

磁感应强度B=的匀强磁场竖直向下 穿过导轨面.当金属棒a b 沿导轨向右匀速运动

(开关S 断开)时,电容器两极板之间质量m=1×10-14kg 、

带电量Q=-1×10-15C 的微粒恰好静止不动;当S 闭合时,微粒以加速度a =7m/s 2向下做匀加速运动,取g=10m/s 2,求:

(1)金属棒a b 运动的速度多大电阻多大

(2)S 闭合后,使金属棒a b 做匀速运动的外力的功率多大

【解析】(1)带电微粒在电容器两极板间静止时,受向上的电场力和向下的重力作用而 平衡,则得到:mg=

求得电容器两极板间的电压

由于微粒带负电,可知上极板电势高.

由于S 断开,R 1上无电流,R 2、R 3串联部分两端总电压等于U 1,电路中的感应 电流,即通过R 2、R 3的电流为:

r R E I +=22

2)(r R R

E R I P R +=

=2

22

)(r R r E r I +=2

)(r R r

+])(1[41)(2

2

R r R r R r R r +--=+2

)(r R r

+22)

21()(R r R R r R r +-=+-2

)

(R

r R r +-2)(R r r +2

π

θ=d

U q 1

V V q mgd U 110

01.0101015

141=??==--A A R R U I 1.02

81

3211=+=+=

由闭合电路欧姆定律,a b 切割磁感线运动产生的感应电动势为E=U 1+Ir ① 其中r 为a b 金属棒的电阻

当闭合S 后,带电微粒向下做匀加速运动,根据牛顿第二定律,有:mg-U 2q/d=m a

求得S 闭合后电容器两极板间的电压

:

这时电路中的感应电流为 I 2=U 2/R 2=2A=

根据闭合电路欧姆定律有

② 将已知量代入①②求得E=,r=2W 又因E=BLv

∴v=E/(BL)=×1)m/s=3m/s

即金属棒a b 做匀速运动的速度为3m/s ,电阻r=2W

(2)S 闭合后,通过a b 的电流I 2=,a b 所受安培力F 2=BI 2L=×1×=a b 以速度v=3m/s 做匀速运动时,所受外力必与安培力F 2大小相等、方向相反,即F=,方向向右(与v 同向),可见外力F 的功率为: P=Fv=×3W=

【例5】已知某一区域的地下埋有一根与地面平行的直线电缆,电缆中通有变化的电流,在其周围有变化的磁场,因此,可以通过在地面上测量闭合试探小线圈中的感应电动势来探测电缆的确切位置、走向和深度.当线圈平面平行地面时,a 、c 在两处测得试探线圈感应电动势为0,b 、d 两处测得试探线圈感应电动势不为0;当线圈平面与地面成45°夹角时,在b 、d 两处测得试探线圈感应电动势为0;经测量发现,a 、b 、c 、d 恰好位于边长为1m 的正方形的四个顶角上,

如图所示,据此可以判定地下电缆在 两点连线的 正下方,离地表面的深度为 m.

【解析】当线圈平面平行地面时,a 、c 在两处测得试探线圈感应电动势为0,b 、d 两处测得试探线圈感应电动势不为0;可以判断出地下电缆在a 、c 两点连线的正下方;如图所示a ′c ′表示电缆,当线圈平面与地面成45°夹角时,在b 、d 两处测得试探线圈感应电动势为0;

可判断出O ′b 垂直试 探线圈平面,则作出:

Rt △OO ′b ,其中∠ObO ′=45° 那么OO ′=Ob= /2=(m).

【解题回顾】本题是一道电磁感应现象的实际应用的题目,将试探线圈产生感应电动势的条件应用在数学中,当线圈平面与地面成45°夹角时,在b 、d 两处测得试探线圈感应电动势为0,即电缆与在b 、d 两处时的线圈平面平行,然后作出立体几何的图形,便可用数学方法处理物理问题.

【例6】 在如图所示的水平导轨上(摩擦、电阻忽略不计),有竖直向下的匀强磁场,磁感强度B ,导轨左端的间距为L 1=4L 0,右端间距为L 2=L 0。今在导轨上放置AC ,DE 两根导体棒,质量分别为m 1=2m 0,m 2=m 0,电阻R 1=4R 0,R 2=R 0。若AC 棒以初速度V 0向右运动,求AC 棒运动的过程中产生的总焦耳热Q AC ,以及通过它们的总电量q 。

【错解分析】错解:AC 棒在磁场力的作用下,做变速运动。运动过程复杂,应从功能关系的角度来分析。由于没有摩擦,最后稳

V V q

d a g m U 3.01001.0)710(10)(15

142=?-?=-=--)(23

1312r R R R R

R I E +++=

定的状态应为两棒做匀速运动。根据动量守恒定律m1v0=(m1+m2)v′

整个回路产生的焦耳热

因为R1=4R0,R2=R0。所以AC棒在运动过程中产生的焦耳热

对AC棒应用动量定理:BIL1·△t=m1v′-m1v0

AC棒在磁场力的作用下做变速运动,最后达到运动稳定,两棒都做匀速运动的分析是

正确的。但是以此类推认为两棒的运动速度相同是错误的。如果两棒的速度相同则回路中还有磁通量的变化,还会存在感应电动势,感应电流还会受到安培力的作用,AC,DE不可能

做匀速运动。

【正确解答】

由于棒L1向右运动,回路中产生电流,L l受安培力的作用后减速,L2受安培力加速使回路中的电流逐渐减小。只需v1,v2满足一定关系,

两棒做匀速运动。

两棒匀速运动时,I=0,即回路的总电动势为零。所以有

BL l v1=BL2v2

再对DE棒应用动量定理BL2I·△t = m2v2

【解题回顾】电磁感应现象应用问题,往往涉及到很多知识点,是最为复杂的综合性题.综合性题的处理途径主要是采用“分析法”:按知识点(主要指物理规律)划分若干基础题型,按各基础题型解题步骤建立方程,最后解方程组即可得解.

以前我们做过类似的题。那道题中的平行轨道间距都是一样的。有一些同学不假思索,把那道题的结论照搬到本题中来,犯了生搬硬套的错误。差异就是矛盾。两道题的差别就在平行导轨的宽度不一样上。如何分析它们之间的差别呢还是要从基本原理出发。平行轨道间距一样的情况两根导体棒的速度相等,才能使回路中的磁通量的变化为零。本题中如果两根导轨的速度一样,由于平行导轨的宽度不同导致磁通量的变化不为零,仍然会有感应电流产生,两根导体棒还会受到安培力的作用,其中的一根继续减速,另一根继续加速,直到回路中的磁通量的变化为零,才使得两根导体棒做匀速运动。抓住了两道题的差异之所在,问题就会迎刃而解。

【例7】用均匀导线弯成正方形闭合金属线框abcd,线框每边长80cm,每边的电阻为1Ω。把线框放在磁感强度B=的匀强磁场中,并使它绕轴OO′以ω=100rad/s的角速度匀角

速度旋转,旋转方向如图所示,已知轴OO′在线框平面内,并且垂直于B,od=3oa, O′c=3 O′b,当线框转至和B平行的瞬间。求:

(1)每条边产生的感应动势大小;

(2)线框内感应电流的大小;

(3)e,f分别是ab和cd的中点,ef两点间的电势差。

【错解分析】错解:线圈在转动时,只有ab边和cd边作切割磁感线运动,产生感应电动势。

(2)由右手定则可知,线框在图示位置时,ab中感应电动势方向向上,而cd中感应电势的方向向下。

(3)观察fcbe电路

本题解共有4处错误。第一,由于审题不清没有将每一条边的感应电动势求出,即缺少εad和εbc。即使它们为零,也应表达出来。第二,边长中两部分的的倍数关系与每一部分占总长的几分之几表述不正确。第三,ab边和cd边的感应电动势的方向分别向上、向下。但是它们的关系是电源的串联,都使电路中产生顺时针方向的电流,闭合回路的总电动势应为:εcd+εab,而不是相减。第四,求U ef时,研究电路fcbe,应用闭合电路欧姆定律,内电路中产生电动势的边长只剩下一半,感应电动势也只能是εcd/2。

【正确解答】

(1)线框转动时,ab边和cd边没有切割磁感线,所以εad=0,εbc=0。

(3)观察fcbe电路

【解题回顾】没有规矩不能成方圆。解决电磁感应的问题其基本解题步骤是:

(1)通过多角度的视图,把磁场的空间分布弄清楚。(2)在求感应电动势时,弄清是求平均电动势还是瞬时电动势,选择合适的公式解题。(3)进行电路计算时要画出等效电路图作电路分析,然后求解。

【例8】如图所示,在跟匀强磁场垂直的平面内放置一个折成锐角的

裸导线MON,∠MON=α。在它上面搁置另一根与ON垂直的导线PQ,PQ

紧贴MO,ON并以平行于ON的速度V,从顶角O开始向右匀速滑动,

设裸导线单位长度的电阻为R0,磁感强度为B,

求回路中的感应电流。

【错解分析】错解:设PQ从顶角O开始向右运动的时间为Δt,

Ob=v·Δt,

ab=v·Δt·tgα,

不是我们要求的电动

势的瞬时值。因为电

阻(1+cosα+sinα)

由于两者不对应,结果就不可能正确。

【正确解答】

设PQ从顶角O开始向右运动的时间为Δt,Ob=v·Δt,ab=v·Δ

回路中ε=Blv=B·ab·v=Bv2·Δt·tgα。回路中感应电流

时间增大,产生的感应

电动势不是恒量。避免出错的办法是先判断感应电动势的特征,根据具体情况决定用瞬时值的表达式求解。

【例9】如图所示,以边长为50cm的正方形导线框,放置在B=的

匀强磁场中。已知磁场方向与水平方向成37°角,线框电阻为Ω,

求线框绕其一边从水平方向转至竖直方向的过程中通过导线横截面积

的电量。

【错解分析】错解:线框在水平位置时穿过线框的磁通量

Φ1=BScos53°=×10-2Wb

线框转至竖直位置时,穿过线框的磁通量Φ2=BScos37°=×10-8

(Wb)

这个过程中的平均电动势

通过导线横截面的电量

磁通量Φ1=BScosθ,公式中θ是线圈所在平面的法线与磁感线方向的夹角。若θ<90°时,Φ为正,θ>90°时,Φ为负,所以磁通量Φ有正负之分,即在线框转动至框平面与B方向平行时,电流方向有一个转变过程。错解就是忽略了磁通量的正负而导致错误。

【正确解答】

设线框在水平位置时法线(图中)n方向向上,穿过线框的磁通量

Φ1=BScos53°=×10-2Wb

当线框转至竖直位置时,线框平面的法线方向水平向右,

与磁感线夹角θ=143°,穿过线框的磁通量Φ1=BScos143°=×10-2Wb

通过导线横截面的电量

【小结】

通过画图判断磁通量的正负,然后在计算磁通量的变化时考虑磁通量的正负才能避免出现错误。

【例10】、如图所示,两根互相平行、间距d=米的金属导

轨,水平放置于匀强磁场中,磁感应强度B=,磁场垂直于导轨

平面,金属滑杆ab、cd所受摩擦力均为f=。两根杆电阻均为

r=Ω,导轨电阻不计,当ab杆受力F=的恒力作用时,ab杆以

V

1

做匀速直线运动,cd杆以V

2

做匀速直线运动,求速度差(V

1

V

2

)等于多少

分析与解:在电磁感应现象中,若回中的感应电动势是由导体

做切割磁感线运动而产生的,则通常用ε=BlVsinθ来求ε较

方便,但有时回路中的电动势是由几根棒同时做切割磁感线运

动产生的,如果先求出每根导体棒各自的电动势,再求回路的总电动势,有时就会涉及“反电动势”而超纲。如果取整个回路为研究对象,直接将法拉第电磁感应定律ε=用于整个回路上,即可“一次性”求得回路的总电动势,避开超纲总而化纲外为纲内。

cd棒匀速向右运动时,所受摩擦力f方向水平向左,则安培力F

cd

方向水平向右,由左手定则可得电流方向从c到d,且有:

F

cd

= IdB = f

I = f /Bd ①

取整个回路abcd为研究对象,设回路的总电势为ε,由法拉第电磁感应定律ε=,根据B不变,则△φ=B△S,在△t时间内,

△φ=B(V

1

-V

2

)△td

所以:ε=B(V

1

-V

2

)△td/△t=B(V

1

-V

2

)d ②

又根据闭合电路欧母定律有:I=ε/2r ③

由式①②③得:V

1

-V

2

= 2fr / B2d2

代入数据解得:V

1

-V

2

=(m/s)

【例11】.如图所示,线圈abcd每边长L=m,线圈质量m

1

kg、电阻R=Ω,砝码质量

图32-1

m2=kg.线圈上方的匀强磁场磁感强度B=T,方向垂直线圈平面向里,磁场区域的宽度为

h=L =m.砝码从某一位置下降,使ab边进入磁场开始做匀速运动.求线圈做匀速运动的速度.

解析:该题的研究对象为线圈,线圈在匀速上升时受到的安培力F安、绳子的拉力F和重力m1g相互平衡,即

F=F安+m1g. ① 砝码受力也平衡: F=m2g. ②

线圈匀速上升,在线圈中产生的感应电流 I=BL v/R, ③ 因此线圈受到向下的安培力 F安=BIL . ④

联解①②③④式得v=(m2-m1)gR/B2L 2. 代入数据解得:v=4(m/s)

【例12】如图所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中粗线表示),

R 1=4Ω、R 2=8Ω(导轨其它部分电阻不计)。导轨OAC 的形状满

足方程)3

sin(2x y π

=(单位:m )。磁感强度

B =的匀强磁场方向垂直于导轨平面。一足够长的金属棒在水平外

力F 作用下,以恒定的速率v =s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻。求:(1)外力F 的最大值;(2)金属棒在导轨上运动时电阻丝R 1上消耗的最大功率;(3)在滑动过程中通过金属棒的电流I 与时间t 的关系。

解析:(1)金属棒匀速运动 安外F F = BLv =ε ① I =ε/R 总 ②

F 外=BIL =B 2L 2v /R 总 ③

)(22

sin 2max m L ==π

)(3/82

12

1Ω=+=

R R R R R 总 ⑤

∴ )(3.08/30.522.022max N F =???= ⑥

(2))(14/0.522.0//2221222121W R v L B R P =??===ε ⑦

(3)金属棒与导轨接触点间的长度随时间变化 ))(3

sin(2m x L π

= 且 ,vt x =

BLv =ε, ∴ ))(3

5sin(43)3sin(2A t vt R Bv R I π

πε

===

=

总总

专题电磁感应与电路

专题电磁感应与电路 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

专题 4 电磁感应与电路 思想方法提炼 电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。 在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数知识(如函数数值讨论、图像法等)的能力。 高考的热点问题和复习对策: 1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧. 2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。 3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。 此部分涉及的主要内容有: 1.电磁感应现象. (1)产生条件:回路中的磁通量发生变化. (2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流. (3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路. 2.法拉第电磁感应定律:E=n ,E=BLvsinq , 注意瞬时值和平均值的计算方法不同. 3.楞次定律三种表述: (1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例. (2)感应电流引起的运动总是阻碍相对运动. (3)自感电动势的方向总是阻碍原电流变化. 4.相关链接 (1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识. (2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识. (3)能的转化与守恒定律. 感悟 · 渗透 · 应用 【例1】三个闭合矩形线框Ⅰ、Ⅱ、Ⅲ处在同一竖直平面内,在线框的正上方有一条固定的长直导线,导线中通有自左向右的恒定电流,如图所示,若三个闭合线框分别做如下运动:Ⅰ沿垂直长直 导线向下运动,Ⅱ沿平行长直 导线方向平动,Ⅲ绕其竖直中心 轴OO ′转动. (1)在这三个线框运动的过程中, 哪些线框中有感应电流产生 方向如何 (2)线框Ⅲ转到图示位置的瞬间,是否有感应电流产生 【解析】此题旨在考查感应电流产生的条件.根据直线电流周围磁场的特点,判断三个线框运动过程中,穿过它们的磁通量是否发生变化. (1)长直导线通有自左向右的恒定电流时,导线周围空间磁场的强弱分布不变,但离导线越远,磁场越弱,磁感线越稀;离导线距离相同的地方,磁场强弱相同. t ??Φ

电磁感应与电路

电磁感应与电路 1、如图所示,匀强磁场的磁感应强度B=1T,平行导轨宽 l=1m。两根相同的金属杆MN、PQ在外力作用下均以v=1m/s 的速度贴着导轨向左匀速运动,金属杆电阻为r="0.5" ?。导轨 右端所接电阻R=1?,导轨电阻不计。(已知n个相同电源的并 联,等效电动势等于任意一个电源的电动势,等效内阻等于任 意一个电源内阻的n分之一) (1)运动的导线会产生感应电动势,相当于电源。用电池等符号画出这个装置的等效电路图(2)求10s内通过电阻R的电荷量以及电阻R产生的热量 2、如图所示,宽度为L=0.20 m的足够长的平行光滑金属导轨固 定在绝缘水平面上,导轨的一端连接阻值为R=1.0Ω的电阻。导轨 所在空间存在竖直向下的匀强磁场,磁感应强度大小为B="0.50" T。一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好, 导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉 动导体棒沿导轨向右匀速运动,运动速度v="10" m/s,在运动过程中保持导体棒与导轨垂直。求: (1)在闭合回路中产生的感应电流的大小;(2)作用在导体棒上的拉力的大小; 3、如图所示,带有微小开口(开口长度可忽略)的单匝线圈处于垂直 纸面向里的匀强磁场中,线圈的直径为m,电阻,开口 处AB通过导线与电阻相连,已知磁场随时间的变化图 像如乙图所示,求:⑴线圈AB两端的电压大小为多少?⑵在前2 秒内电阻上的发热量为多少?

4、(12分)如图所示,在竖直向上磁感强度为B的匀 强磁场中,放置着一个宽度为L的金属框架,框架的右 端接有电阻R.一根质量为m,电阻忽略不计的金属棒 受到外力冲击后,以速度v沿框架向左运动.已知棒与 框架间的摩擦系数为μ,在整个运动过程中,通过电阻 R的电量为q,设框架足够长.求: (1)棒运动的最大距离;(2)电阻R上产生的热量。 5、(15分)如图所示,两平行金属导轨间的距离 L=0.40m,金属导轨所在的平面与水平面夹角θ=37o,在导 轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于 导轨所在平面的匀强磁场。金属导轨的一端接有电动势 E=4.5V、内阻r=0.50Ω的直流电源。现把一个质量 m=0.04kg的导体棒ab放在金属导轨上,导体棒恰好静止。 导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨 接触的两点间的电阻R0=2.5Ω,金属导轨的其它电阻不 计,g取10m/s2。已知sin37o=0.60, cos37o=0.80,试求: ⑴通过导体棒的电流⑵导体棒受到的安培力大小⑶导体棒受到的摩擦力的大小。 6、(10分)如图所示,固定于水平桌面上足够长的 两平行光滑导轨PQ、MN,其电阻不计,间距 d=0.5m,P、M两端接有一只理想电压表,整个装置 处于竖直向下的磁感应强度B0=0.2T的匀强磁场中, 两金属棒L1、L2平行地搁在导轨上,其电阻均为r= 0.1Ω,质量分别为M1=0.3kg和M2=0.5kg。固定棒L1,使L2在水平恒力F=0.8N的作用下,由静止开始运动。试求: (1) 当电压表读数为U=0.2V时,棒L2的加速度为多大; (2)棒L2能达到的最大速度v m.

电磁感应电路和图像问题

学案46 电磁感应中的电路与图象问题 一、概念规律题组 图1 1.用均匀导线做成的正方形线框边长为0.2 m,正方形的一半放在垂直纸面向里的匀强磁场中,如图1所示.当磁场以10 T/s的变化率增强时,线框中a、b两点间的电势差是() A.U ab=V B.U ab=-V C.U ab=V # D.U ab=-V 图2 2.如图2所示,导体AB在做切割磁感线运动时,将产生一个感应电动势,设导体AB 的电阻为r,导轨左端接有阻值为R的电阻,磁场磁感应强度为B,导轨宽为d,导体AB匀速运动,速度为v.下列说法正确的是() A.在本题中分析电路时,导体AB相当于电源,且A端为电源正极 B.U CD=Bdv C.C、D两点电势关系为:φC<φD D.在AB中电流从B流向A,所以φB>φA 3.穿过闭合回路的磁通量Φ随时间t变化的图象分别如图3所示,下列关于回路中产生的感应电动势的论述,正确的是() !

图3 A.图①中,回路产生的感应电动势恒定不变 B.图②中,回路产生的感应电动势一直在变大 C.图③中,回路在0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电动势 D.图④中,回路产生的感应电动势先变小再变大 二、思想方法题组 4.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如下图所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是() 5.如图4甲所示,光滑导轨水平放置在斜向下且与水平方向夹角为60°的匀强磁场中,匀强磁场的磁感应强度B随时间t的变化规律如图乙所示(规定斜向下为正方向),导体棒ab 垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~t 时间内,能正确反映流过导体棒ab的电流i和导体棒ab所受水平外力F随时间t变化的图象是() > 图4 一、电磁感应中的电路问题 1.内电路和外电路

(含答案解析)电磁感应中的电路问题

电磁感应中的电路问题 一、基础知识 1、内电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路. 2、电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦ Δt . (2)路端电压:U =IR =E -Ir . 3、对电磁感应中电源的理解 (1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定. (2)电源的电动势的大小可由E =Blv 或E =n ΔΦ Δt 求解. 4、对电磁感应电路的理解 (1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势. 5、解决电磁感应中的电路问题三步曲 (1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =n ΔΦ Δt 或E =Blv sin θ求感应电动势的大小,利用右手定则 或楞次定律判断电流方向. (2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 二、练习 1、[对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场 中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 ( )

答案 B 解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Blv .在A 、C 、D 中,U ab =14Blv ,B 中,U ab =3 4 Blv ,选项B 正确. 2、如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直 时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环 的最高点A 铰链连接的长度为2a 、电阻为R 2 的导体棒AB 由水平 位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两 端的电压大小为 ( ) A. Bav 3 B. Bav 6 C.2Bav 3 D .Bav

电磁感应中的电路和图象问题汇总.doc

第三节 电磁感应中的电路和图象问题 一、电磁感应中的电路问题 1.内电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻 ,其余部分是外电阻. 2.电源电动势和路端电压 (1)电动势:E =Bl v 或E =n ΔΦ Δt . (2)路端电压:U =IR =E R +r ·R . 1.(单选)如图所示 ,一个半径为L 的半圆形硬导体AB 以速度v 在水平U 形 框架上向右匀速滑动 ,匀强磁场的磁感应强度为B ,回路电阻为R 0 ,半圆形硬导体AB 的电阻为r ,其余电阻不计 ,则半圆形导体AB 切割磁感线产生的感应电动势大小及AB 之间的电势差分别为( ) A .BL v BL v R 0 R 0+r B .2BL v BL v C .2BL v 2BL v R 0 R 0+r D .BL v 2BL v 答案:C 二、电磁感应中的图象问题 1.图象类型 (1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型 (1)由给定的电磁感应过程判断或画出正确的图象. (2)由给定的有关图象分析电磁感应过程 ,求解相应的物理量. (3)利用给出的图象判断或画出新的图象. 2.(单选)(2015·泉州模拟)如图甲所示 ,光滑导轨水平放置在与水平方向夹 角为60°的斜向下的匀强磁场中 ,匀强磁场的磁感应强度B 随时间t 的变化规律如图乙所示

(规定斜向下为正方向) ,导体棒ab 垂直导轨放置 ,除电阻R 的阻值外 ,其余电阻不计 ,导体棒ab 在水平外力F 作用下始终处于静止状态.规定a →b 的方向为电流的正方向 ,水平向右的方向为外力F 的正方向 ,则在0~t 1时间内 ,选项图中能正确反映流过导体棒ab 的电流i 和导体棒ab 所受水平外力F 随时间t 变化的图象是( ) 答案:D 考点一 电磁感应中的电路问题 1.对电源的理解:在电磁感应现象中 ,产生感应电动势的那部分导体就是电源 ,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能. 2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈 ,外电路由电阻、电容等电学元件组成. 3.解决电磁感应中电路问题的一般思路: (1)确定等效电源 ,利用E =n ΔΦ Δt 或E =Bl v sin θ求感应电动势的大小 ,利用右手定则或楞 次定律判断电流方向. (2)分析电路结构(内、外电路及外电路的串、并联关系) ,画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. (2015·石家庄质检)如图甲所示 ,两根足够长的平行光滑金属导轨MN 、PQ 被 固定在水平面上 ,导轨间距l =0.6 m ,两导轨的左端用导线连接电阻R 1及理想电压表V ,电阻为r =2 Ω的金属棒垂直于导轨静止在AB 处;右端用导线连接电阻R 2 ,已知R 1=2 Ω ,R 2=1 Ω ,导轨及导线电阻均不计.在矩形区域CDFE 内有竖直向上的磁场 ,CE =0.2 m ,磁感应强度随时间的变化规律如图乙所示.开始时电压表有示数 ,当电压表示数变为零后 ,对金属棒施加一水平向右的恒力F ,使金属棒刚进入磁场区域时电压表的示数又变为原来的值 ,金属棒在磁场区域内运动的过程中电压表的示数始终保持不变.求: (1)t =0.1 s 时电压表的示数; (2)恒力F 的大小; (3)从t =0时刻到金属棒运动出磁场的过程中整个电路产生的热量. [思路点拨] (1)在0~0.2 s 内 ,R 1、R 2和金属棒是如何连接的?电压表示数等于感应电动势吗? (2)电压表示数始终保持不变 ,说明金属棒做什么运动? [解析] (1)设磁场宽度为d =CE ,在0~0.2 s 的时间内 ,有E =ΔΦΔt =ΔB Δt ld =0.6 V 此时 ,R 1与金属棒并联后再与R 2串联 R =R 并+R 2=1 Ω+1 Ω=2 Ω

电磁感应与电路全面版

电磁感应与电路 思想方法提炼 电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。 在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数知识(如函数数值讨论、图像法等)的能力。 高考的热点问题和复习对策: 1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧. 2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。 3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。 此部分涉及的主要内容有: 1.电磁感应现象. (1)产生条件:回路中的磁通量发生变化. (2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流. (3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路. 2.法拉第电磁感应定律:E=n ,E=BLvsin θ, 注意瞬时值和平均值的计算方法不同. 3.楞次定律三种表述: (1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例. (2)感应电流引起的运动总是阻碍相对运动. (3)自感电动势的方向总是阻碍原电流变化. 4.相关链接 (1)受力分析、合力方向与速度变化,牛顿定律、动量定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识. (2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识. t ??Φ

§9.3互感和自感电磁感应中的电路问题

§9.3 互感和自感电磁感应中的电路问题 1.互感现象 当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,此现象称为互感。 2. 自感 (1)自感现象:由于导体自身电流发生变化而产生的电磁感应现象。自感现象是电磁感应的特例.一般的电磁感应现象中变化的原磁场是外界提供的,而自感现象中是靠流过线圈自身变化的电流提供一个变化的磁场.它们同属电磁感应,所以自感现象遵循所有的电磁感应规律. (2)自感电动势:自感现象中产生的电动势叫做自感电动势。自感电动势和电流的变化率(△I/△t)及自感系数L成正比。自感系数由导体本身的特性决定,线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大;线圈中加入铁芯,自感系数也会增大。 自感电动势仅仅是减缓了原电流的变化,不会阻止原电流的变化或逆转原电流的变化.原电流最终还是要增加到稳定值或减小到零. (3)通电自感:通电时电流增大,阻碍电流增大,自感电动势和原来电流方向相反。 (4)断电自感:断电时电流减小,阻碍电流减小,自感电动势与原来电流方向相同。 自感现象只有在通过电路的电流发生变化时才会产生.在判断电路性质时,一般分析方法是:当流过线圈L的电流突然增大瞬间,我们可以把L 看成一个阻值很大的电阻;电路电流稳定时,看成导线;当流经L的电流突然减小的瞬间,我们可以把L看作一个电源,它提供一个跟原电流同向的电流. 当电路中的电流发生变化时,电路中每一个组成部分,甚至连导线,都会产生自感电动势去阻碍电流的变化,只不过是线圈中产生的自感电动势比较大,其它部分产生的自感电动势非常小而已.3.涡流 当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内且形成旋涡,很象水中的旋涡,简称涡流。 (1)把块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内将产生感应电流,这种电流在金属块内自成闭合电路,很像水里的漩涡,称涡电流,涡流常常很强。 (2)涡流的减小:在各种电机和变压器中,为了减少涡流的损失,在电机和变压器上通常用涂有绝缘漆的薄硅钢片叠压制成的铁芯。 (3)涡流的利用:冶炼金属的高频感应炉就是利用强大的涡流使金属尽快熔化,电学测量仪表的指针快速停止摆动也是利用铝框在磁场中转动产生的涡流。 4. 电磁感应中电路问题 在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路充当电源.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是: ①确定电源,用电磁感应的规律确定感应电动势的大小和方向; ②分析电路结构,明确内、外电路,必要时画等效电路; ③运用闭合电路欧姆定律、串并联电路性质,电功率等公式联立求解. 【典型例题】 [例1]在如图(a)(b)所示电路中,电阻R和自感线圈L的电阻值都很小,且小于灯D 的电阻, 接通开关S,使电路达到稳定,灯泡D发光,则() (a)(b) A.在电路(a)中,断开S,D将逐渐变暗 B.在电路(a)中,断开S,D将先变得更亮,然后才变暗 C.在电路(b)中,断开S,D将逐渐变暗 D.在电路(b)中,断开S,D将先变得更亮,然后渐暗 [例2]如图甲所示,空间存在着一个范围足够大的竖直向下的匀强磁场区 域,磁场的磁感应强度大小 为B 。边长为L的正方形 金属abcd(下简称方框)放 在光滑的水平面上,其外侧 套着一个与方框边长相同 的U型金属框架MNPQ(下 c a b M d N B Q P

高中物理经典复习资料电磁感应与电路规律的综合应用

黑龙江省哈尔滨市木兰高级中学高中物理 经典复习资料 电磁感应与 电路规律的综合应用 教学目标: 1.熟练运用右手定则和楞次定律判断感应电流及感应电动势的方向。 2.熟练掌握法拉第电磁感应定律,及各种情况下感应电动势的计算方法。 3.掌握电磁感应与电路规律的综合应用 教学重点:电磁感应与电路规律的综合应用 教学难点:电磁感应与电路规律的综合应用 教学方法:讲练结合,计算机辅助教学 教学过程: 一、电路问题 1、确定电源:首先判断产生电磁感应现象的那一部分导体(电源),其次利用t n E ??Φ=或θsin BLv E =求感应电动势的大小,利用右手定则或楞次定律判断电流方向。 2、分析电路结构,画等效电路图 3、利用电路规律求解,主要有欧姆定律,串并联规律等 二、图象问题 1、定性或定量地表示出所研究问题的函数关系 2、在图象中E 、I 、B 等物理量的方向是通过正负值来反映 3、画图象时要注意横、纵坐标的单位长度定义或表达 【例1】如图所示,平行导轨置于磁感应强度为B 的匀强磁场 中(方向向里),间距为L ,左端电阻为R ,其余电阻不计,导轨右 端接一电容为C 的电容器。现有一长2L 的金属棒ab 放在导轨上,ab 以a 为轴顺时针转过90°的过程中,通过R 的电量为多少? 解析:(1)由ab 棒以a 为轴旋转到b 端脱离导轨的过程中,产

生的感应电动势一直增大,对C 不断充电,同时又与R 构成闭合回路。ab 产生感应电动势的平均值 t S B t E ??=??Φ= ① S ?表示a b 扫过的三角形的面积,即223321L L L S =?= ? ② 在这一过程中电容器充电的总电量Q =CU m ⑤ U m 为ab 棒在转动过程中产生的感应电动势的最大值。即 ωω22)22 1(2BL L L B U m =???= ⑥ 联立⑤⑥得:C BL Q ω222= (2)当ab 棒脱离导轨后(对R 放电,通过R 的电量为 Q 2,所以整个过程中通过 R 的总电量为: Q =Q 1+Q 2=)223(2C R BL ω+ 电磁感应中“双杆问题”分类解析 【例2】匀强磁场磁感应强度 B=0.2 T ,磁场宽度L=3rn ,一正方形金属框边长ab=l =1m ,每边电阻r=0.2Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求:

电磁感应与电路

专题检测(六) (时间90分钟,满分100分) 一、选择题(每小题5分,共50分) 1.(2010·重庆理综)一输入电压为220 V ,输出电压为36 V 的变压器副线圈烧坏.为获知此变压器原、副线圈匝数,某同学拆下烧坏的副线圈,用绝缘导线在铁芯上新绕了5匝线圈,如图1所示,然后将原线圈接到220 V 交流电源上,测得新绕线圈的端电压为1 V .按理想变压器分析,该变压器烧坏前的原、副线圈匝数分别为 A .1 100,360 B .1 100,180 C .2 200,180 D .2 200,360 解析 根据U 1U 2=n 1n 2可得2001=n 1 5,可知n 1=1 100.排除C 、D 两项.再由22036=n 1 n 2 可知n 2=180,故A 错B 对. 答案 B 2.(2010·福建理综)中国已投产运行的1 000 kV 特高压输电是目前世界上电压最高的输电工程.假设甲、乙两地原来用500 kV 的超高压输电,输电线上损耗的电功率为P .在保持输送电功率和输电线电阻都不变的条件下,现改用1 000 kV 特高压输电,若不考虑其他因素的影响,则输电线上损耗的电功率将变为 A.P 4 B.P 2 C .2P D .4P 解析 设输送功率为P ,输送电流为I ,输送电压为U ,则P =UI ,I =P U ,P 损=I 2R .输送电压升为原来的2倍,则输送电流降为原来的一半,P 损降为原来的四分之一,故选A. 答案 A 3.(2009·海南国兴中学联考)如图2所示,等腰三角形内分布有垂直于纸面向外的匀强磁场,它的底边在x 轴上且长为2L ,高为L .纸面内一边长为L 的正方形导线框沿x 轴正方向做匀速直线运动穿过匀强磁场区域,在t =0时刻恰好位于图中所示的位置.以顺时针方向为导线框中电流的正方向,在图3中能够正确表示电流-位移(I -x )关系的是

电磁感应中的电路和图像问题

第3节电磁感应中的电路和图像问题 要点一电磁感应中的电路问题 1.电磁感应中电路知识的关系图 1.(多选)(2015焦作一模)如图9-3-2所示,两根足够长的光滑金属导轨水平平行放置,间距为I = 1 m, cd间、de间、cf间分别接着阻值R= 10 Q的电阻。一阻值R= 10 Q的导体棒ab以速度v = 4 m/s匀速向左运动, 导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B= 0.5 T、方向竖直向下的匀强磁场。 F列说法中正确的是() A.导体棒ab中电流的流向为由b到a B.cd两端的电压为1 V C.de两端的电压为1 V D. fe两端的电压为1 V 2,磁感应强度大小为B的匀强磁场垂直穿过环平面,环的最高点A处用铰链 连接长度为2a、电阻为r的导体棒AB AB由水平位置紧贴环面摆下,当摆到竖直位置时,B点的线速度为v,则此时A B两端的电压大小为()1 2.分析电磁感应电路问题的基本思路

A. gR av 2 C^Rav D. Rav

3、如图所示,匀强磁场B= 0.1 T,金属棒AB长0.4 m , 、1 与框架宽度相同,电阻为3 Q,框架电阻不计,电阻 2 Q, 艮=1 Q,当 金属棒以5 m/s的速度匀速向左运动时,求: (1)流过金属棒的感应电流多大? (2)若图中电容器C为0.3折,则充电荷量是多少? 要点二电磁感应中的图像问题 1、(2013山东高考)将一段导线绕成图9-3-4甲所示的闭合 回路,并固定在水平面(纸面)内。回路的ab边置于垂直纸面向里的匀强 磁场I中。回路的圆环区域内有垂直纸面的磁场n,以向里为磁场n的正方 向,其磁感应强度B随时间t变化的图像如图乙所 示。用F表示ab边受到的安培力,以水平向右为F的正方向,能 正确反映F随时间t变化的图像是() (二)V-t图像 2、(2013福建高考)如图9-3-5,矩形闭合导体线框在匀强磁场上方,由不同 高度静止释放,用t1、12分别表示线框ab边和cd边刚进入磁场的时刻。线框下落 X X X 1 ------------------- XXX X n用 X xC x x袖 X X XXX X X X XXX LL L n:T\ t ,\ B D

【高考物理错题】4、电路与电磁感应

在如图1所示的电路中,当滑动变阻器R1的滑片向上滑动时,下列说法正确的是() 图1 A.R2的功率增大 B.R3两端的电压减小 C.电流表的示数变大 D.R1接入电路部分中的电流增大 解析当滑动变阻器R1的滑片向上滑动时,其接入电路的电阻增大,外电路的总电阻增大,则干路电流I减小,路端电压U增大,R3两端的电压等于路端电压,则可知R3两端的电压增大,则通过R3的电流I3增大,通过R2的电流I2=I -I3,I减小,I3增大,则I2减小,故R2的功率减小,选项A、B错误;R2两端电压U2也减小,R4两端的电压U4=U-U2,U增大,U2减小,则可知U4增大,故通过电流表的电流I A增大,电流表的示数变大,选项C正确;流过R1接入电路部分的电流I1=I2-I A,I2减小,I A增大,则I1减小,选项D错误。 答案C (2018·新疆二模)在如图所示的电路中,电源电动势为E,内阻为r,L1和L2为两个相同的灯泡,每个灯泡的电阻和电源内阻的阻值均相同,D为理想二极管,C为电容器,开关S处于断开状态,下列说法中正确的是() A.滑动变阻器滑片向右移动,电流表示数变小 B.滑动变阻器滑片向右移动,电源内阻的发热功率变小 C.开关S闭合后,L2亮度变暗 D.开关S闭合后,电流表示数不变 解析电容器视为断路,所以只有灯泡L2中有电流通过,滑动变阻器滑片向右移动,电流表的示数不变,故选项A错误;滑动变阻器滑片向右移动,电路电流不变,电源内阻的发热功率不变,故选项B错误;开关S闭合后,因为二极管具有单向导电性,二极管处于截止状态,灯泡L1中无电流,电路总电阻不变,总

电流不变,电流表的示数不变,L2亮度不变,故选项C错误,D正确。答案D 如图所示的电路中,电源为恒流源,能始终提供大小恒定的电流。R0为定值电阻,闭合开关S,移动滑动变阻器的滑片,则下列表示电压表示数U、电路总功率P 随电流表示数I变化的关系图线中,可能正确的是() 解析由题图知R0与R并联,电压表测路端电压,电流表测R接入电路部分所在支路的电流。该恒流源提供的电流恒定为I 总 ,流过R0的电流为I0,R0两端的电压为U0,流过R接入电路部分的电流为I,R接入电路部分两端的电压为U。根据并联电路的特点可知U=U0=I0R0=(I总-I)R0=-IR0+I总R0,其中I总、R0为定值,由U=-R0I+I总R0可知U-I图象为直线,-R0<0,即图象的斜率小于0,故选项A、B错误;由电功率的计算公式P=UI知,电路消耗的总功率P=UI总=(I总-I)R0×I总=-I总R0I+I2总R0,其中I总、R0为定值,由P=-I总R0I+I2总R0可知P-I图象为直线,-I总R0<0,即图象的斜率小于0,且I不会为0,P不会为0,故选项C正确,D错误。答案C (多选)如图所示,由于理想变压器原线圈的输入电压降低,电灯L的亮度变暗了,下列哪些措施可以使电灯L重新变亮() A.其他条件不变,P1上移,同时P2下移 B.其他条件不变,P1下移,同时P2上移 C.其他条件不变,断开开关S D.其他条件不变,将滑动变阻器的滑片P向下移动 解析P1上移则n1增大,P2下移则n2减小,由理想变压器规律U1 U2= n1 n2可知U2将 会变得更小,所以电灯L不会重新变亮,选项A错误;P1下移则n1减小,P2上 移则n2增大,由理想变压器规律U1 U2= n1 n2可知U2将会变大,所以电灯L会重新变 亮,选项B正确;其他条件不变,则电压U2不变,断开开关S,并联部分电阻变大,副线圈电流变小,R1分压变小,电灯L两端的电压将变大,所以电灯L会重新变亮,选项C正确;其他条件不变,将滑动变阻器的滑片P向下移动,总电阻变小,总电流变大,R1分压变大,电灯L两端的电压将变小,所以电灯L不

电磁感应的原理(一)

电磁感应原理: 令狐采学 一、什么是电磁感应? 电生磁、磁生电,这就是电磁感应。 1、电生磁:图1.1所示就是一个电生磁的实例 图1.1 图1.2 在一只铁钉上面用导线绕了一个线圈,当把线圈的两端分别连接在一个电池的正极和负极时,电流就会经由线圈流过,这时铁钉就具有了吸引铁屑的能力,铁钉就有了磁性,图1.1所示。此时把连接于电池的导线取消,流过线圈的电流被切断,铁屑有都离开铁钉,掉落下来,铁钉又失去了磁性,图1.2所示。因为线圈有电流流过而产生了磁性,因为线圈的电流被切断停止了电流的流过,又失去了磁性,这就是电生磁的现象。

图1.3 图1.4 既然导体流过电流就能产生磁,那么电流流动的方向和磁极(N极S极)的方向有什么关系呢?。在电工原理的概念中,有一个著名的定则“右手螺旋定则”(也称“安培定则”),就是依据右手握拳,拇指伸直这种手的形态;来判断磁场的方向。也就是根据导体或者线圈内部电流的方向来判断磁场的方向: 图1.3所示;这是一个闭合的回路,图中电流由电池的正极经过线圈流向负极,线圈上箭头方向是电流的方向,线圈内部产生磁力线的方向是左边是S极、右边是N极,这正好和图1.4所示的右手握拳,拇指伸直这种手的形态相吻合,即;右手四

指所指是电流的方向,伸直拇指所指是磁场N极的方向(也就是磁力线的指向)。 同样通电的直导线的周围也会产生以导线为圆心的同心圆磁场,图1.5所示。这个直导线流过电流的磁场和磁场的方向也可以采用右手握拳,拇指伸直这种手的形态来判断: 如图1.6所示;右手握通电的直导线,拇指是电流的方向,握拳的四指就是围绕直导线磁场的方向。 图1.5 图1.6 结论:导体通过电流就会产生磁场,并且磁场的方向和电流的方向有关。 2、磁生电 图1.7是自行车发电机的构造原理图; 图1.7图1.8 在图1.7中,中间有标有N S极的是一个圆形永久磁铁,其磁力线的分布是从N(北极)极指向S(南极)极,图中有箭头

电磁感应中的电路问题专题练习(含答案)

电磁感应中的电路问题专题练习 1.用均匀导线做成的正方形线圈边长为l,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以的变化率增强时,则下列说法正确的是( ) A.线圈中感应电流方向为adbca B.线圈中产生的电动势E=· C.线圈中a点电势高于b点电势 D.线圈中a,b两点间的电势差为· 2.如图所示,用粗细相同的铜丝做成边长分别为L和2L的两只闭合线框a和b,以相同的速度从磁感应强度为B的匀强磁场区域中匀速地拉到磁场外,不考虑线框的重力,若闭合线框的电流分别为I a,I b,则I a∶I b为( ) A.1∶4 B.1∶2 C.1∶1 D.不能确定 3.在图中,EF,GH为平行的金属导轨,其电阻不计,R为电阻,C为电容器,AB为可在EF和GH上滑动的导体棒,有匀强磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当AB棒( D )

A.匀速滑动时,I1=0,I2=0 B.匀速滑动时,I1≠0,I2≠0 C.加速滑动时,I1=0,I2=0 D.加速滑动时,I1≠0,I2≠0 4.如图所示,导体棒在金属框架上向右做匀加速运动,在此过程中( ) A.电容器上电荷量越来越多 B.电容器上电荷量越来越少 C.电容器上电荷量保持不变 D.电阻R上电流越来越大 5.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M,N 两点间的电压分别为U a,U b,U c和U d.下列判断正确的是( ) A.U a

(含答案解析)电磁感应中的电路问题

电磁感应中的电路问题 一、基础知识 1、内电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路. 2、电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =E -Ir . 3、对电磁感应中电源的理解 (1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定. (2)电源的电动势的大小可由E =Blv 或E =n ΔΦΔt 求解. 4、对电磁感应电路的理解 (1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势. 5、解决电磁感应中的电路问题三步曲 (1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导 体或回路就相当于电源,利用E =n ΔΦΔt 或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向. (2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图. (3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 二、练习 1、[对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场 中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 ( )

答案 B 解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Blv .在A 、C 、 D 中,U ab =14Blv ,B 中,U ab =34 Blv ,选项B 正确. 2、如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直 时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环 的最高点A 铰链连接的长度为2a 、电阻为R 2 的导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两 端的电压大小为 ( ) A.Bav 3 B.Bav 6 C.2Bav 3 D .Bav 答案 A

高二物理 知识讲解 电磁感应与电路知识、能的转化和守恒专题 提高含答案

电磁感应与电路知识、能的转化和守恒专题 【学习目标】 1.运用能的转化和守恒定律进一步理解电磁感应现象产生的条件、楞次定律以及各种电磁感应现象中能量转化关系。 2.能够自觉地从能的转化和守恒定律出发去理解或解决电磁感应现象及问题。 3.能够熟练地运用动力学的一些规律、功能转化关系分析电磁感应过程并进行计算。 4.熟练地运用法拉第电磁感应定律计算感应电动势,并能灵活地将电路的知识与电磁感应定律相结合解决一些实际的电路问题。 5.在电磁感应现象中动力学过程的分析与计算。具体地说:就是导体或线圈在磁场中受力情况和运动情况的分析与计算。 6.在电磁感应现象中,不同的力做功情况和对应的能量转化、分配情况。 【要点梳理】 要点一、运用能的转化和守恒定律理解电磁感应现象产生的条件 1.条件 穿过闭合电路的磁通量发生变化。 2.对条件的理解 (1)在电磁感应的过程中,回路中有电能产生。因此电磁感应的过程实质上是一个其它形式的能向电能转化的过程,这个转化过程必定是一个动态的过程,必定伴随着宏观或微观力做功,以实现不同形式能的转化,也就是说必须经过一个动态的或者变化的过程,才能借助磁场将其它形式的能转化为电能。 (2)导体切割磁感线在闭合回路中产生感应电流的过程:如图所示,导体棒ab 运动,回路中有感应电动势E BLv =和感应电流E I R = 产生。有感应电流I 的导体棒在磁场中受到与棒运动方向相反的安培力F BIL =安作用,要维持导体棒运动产生持续的电流必须有外力 F 外克服安培力做功,正是这一外力克服安培力做功的过程使其它形式的能转化为了回路的 电能。可见磁通量发生变化(导体棒相对于磁场运动)是外力克服安培力做功,将其它形式的能转化为电能的充要条件。 (3)闭合电路所包围的磁场随时间发生变化产生感应电流的过程:如图所示,磁感应

电磁感应电路

d B a b c v 电磁感应中的电路问题 【学习目标】 掌握电磁感应与电路规律的综合应用 【复习精要】:1、在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流;将它们接上电容器,便可使电容器充电,因此电磁感应问题又往往跟电路问题联系在一起。解决这类问题,不仅要考虑电磁感应中的有关规律,如右手定则、楞次定律和法拉第电磁感应定律等,还要应用电路中的有关规律,如欧姆定律、串联、并联电路电路的性质等。 2、解决电磁感应中的电路问题,必须按题意画出等效电路图,将感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于内电阻,求电动势要用电磁感应定律,其余问题为电路分析及闭合电路欧姆定律的应用。 3、一般解此类问题的基本思路是:①明确哪一部分电路产生感应电动势,则这部分电路就是等效电源②正确分析电路的结构,画出等效电路图. ③结合有关的电路规律建立方程求解. 1 如图10所示,在绝缘光滑水平面上,有一个边长为L 的单匝正方形线框abcd ,在外力的作用下以恒定的速率v 向右运动进入磁感应强度为B 的有界匀强磁场区域。线框被全部拉入磁场的过程中线框平面 保持与磁场方向垂直,线框的ab 边始终平行于磁场的边界。 已知线框的四个边的电阻值相等,均为R 。求: (1)在ab 边刚进入磁场区域时,线框内的电流大小; (2)在ab 边刚进入磁场区域时,ab 边两端的电压;a (3)在线框被拉入磁场的整个过程中,线框中电流产生的热量。 2 2007年高考天津理综卷24.(18分)两根光滑的长直金属导轨M N 、M ′ N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如图所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C 。长度也为l 、阻值同为R 的金属棒a b 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中。a b 在外力作用下向右匀速运动且与导轨保持良好接触,在a b 运动距离为s 的过程中,整个回路中产生的焦耳热为Q 。求 ⑴.a b 运动速度v 的大小; ⑵.电容器所带的电荷量q 。 3.如图,足够长的光滑平行金属导轨MN 、PQ 固定在一水平面上,两导轨间距L =0.2m ,电阻R =0.4Ω,电容C =2 mF ,导轨上停放一质量m =0.1kg 、电阻r =0.1Ω的金属杆CD ,导轨电阻可忽略不计,整个装置处于方向竖直向上B =0.5T 的匀强磁场中。现用一垂直金属杆CD 的外力F 沿水平方向拉杆,使之由静止开始向右运动。求: ⑴若开关S 闭合,力F 恒为0.5N,CD 运动的最大速度; ⑵若开关S 闭合,使CD 以⑴问中的最大速度匀速运动, 现使其突然停止并保持静止不动,当CD 停止下来后, 通过导体棒CD 的总电量; ⑶若开关S 断开,在力F 作用下,CD 由静止开始作加速度a =5m/s 2 的匀加速直线运动,请写出电压表的读数 U 随时间t 变化的表达式。 4 2007年四川理综卷23.(16分) 如图所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,间距为L 1,处在竖直向下、磁感应强度大小为B 1的匀强磁场中。一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动。质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于竖直平面内,两顶点a 、b 通过细导线与导轨相连,磁感应强度大小为B 2的匀强磁场垂直金属框向里,金属框恰好处于静止状态。不计其余电阻和细导线对a 、b 点的作用力。 (1)通过ab 边的电流I ab 是多大? (2)导体杆ef 的运动速度v 是多大? V M P N Q R C F B C D S

知识讲解电磁感应与电路知识能的转化和守恒专题提高

电磁感应与电路知识、能的转化和守恒专题 编稿:张金虎审稿:李勇康 【学习目标】 1.运用能的转化和守恒定律进一步理解电磁感应现象产生的条件、楞次定律以及各种电磁感应现象中能量转化关系。 2.能够自觉地从能的转化和守恒定律出发去理解或解决电磁感应现象及问题。3.能够熟练地运用动力学的一些规律、功能转化关系分析电磁感应过程并进行计算。4.熟练地运用法拉第电磁感应定律计算感应电动势,并能灵活地将电路的知识与电磁感应定律相结合解决一些实际的电路问题。 5.在电磁感应现象中动力学过程的分析与计算。具体地说:就是导体或线圈在磁场中受力情况和运动情况的分析与计算。 6.在电磁感应现象中,不同的力做功情况和对应的能量转化、分配情况。 【要点梳理】 要点一、运用能的转化和守恒定律理解电磁感应现象产生的条件 1.条件 穿过闭合电路的磁通量发生变化。 2.对条件的理解 (1)在电磁感应的过程中,回路中有电能产生。因此电磁感应的过程实质上是一个其它形式的能向电能转化的过程,这个转化过程必定是一个动态的过程,必定伴随着宏观或微观力做功,以实现不同形式能的转化,也就是说必须经过一个动态的或者变化的过程,才能借助磁场将其它形式的能转化为电能。 (2)导体切割磁感线在闭合回路中产生感应电流的过程:如图所示,导体棒ab运 动,回路中有感应电动势EBLv?和感应电流EIR?产生。有感应电流I的导体棒在磁场中受到与棒运动方向相反的安培力FBIL?安作用,要维持导体棒运动产生持续的电 流必须有外力F外克服安培力做功,正是这一外力克服安培力做功的过程使其它形式的能转化为了回路的电能。可见磁通量发生变化(导体棒相对于磁场运动)是外力克服安培力做功,将其它形式的能转化为电能的充要条件。

相关主题
文本预览
相关文档 最新文档