当前位置:文档之家› 弹塑性理论习题课

弹塑性理论习题课

弹塑性理论习题课
弹塑性理论习题课

弹塑性理论习题课

一、图示为一矩形截面水坝,其右侧面受静水压力(水的密度为ρ)、顶部受集中力P作用,试写出水坝的应力边界条件。

二、试列出下图所示问题的全部边界条件。在其端部边界上,应用圣维南原理列出三个积分的应力边界条件。

三、列出图示变截面平板梁的应力边界条件,其中上边界受线性分布的荷载作用,下边界受均匀分布的剪力作用,左端部受剪力和弯矩的作用,固定端不必考虑。

四、图示为处于平面应力状态下的细长薄板条,除上、下边界受均布力q 作用外,其余边界上均无面力作用,试说明A 、B 、C 点处的应力状态。

五、如图所示矩形截面简支梁受三角形分布荷载作用,试取应力函数,

求简支梁的应力分量(体力不计)。

Fxy Ex Dxy y Cx Bxy y Ax +++++=333533?

六、曲梁及悬臂梁的受力情况如图所示,试分别写出其在极坐标系中的应力边界条件,固定端不必写出。

七、半平面体表面上受有均布水平力q,试用应力函数

求解应力分量。

(?

?

ρC

Φ2

sin

=

B+

2)

八、楔形体两侧面受铅垂方向均匀分布的荷载q1、q2作用,不计体力,试用量纲分析法求其应力分量。

2014.11

弹塑性力学试题

考试科目:弹塑性力学试题 班号 研 班 姓名 成绩 一、概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: ,)11(2)11(10,2,222 2=?? ????--+-+--==+-=+= θθθμμμμμτσσu Cr r A E u C r A C r A r r r 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: ??? ? ???=?????--+-+--=-=+=0)11(2)11(122 2μμμμb C b A E u p C a A b r r 解上述方程组得: ()()()??? ? ???+-- =+---=]21[22121222 2222a b pa C a b b pa A μμμ 则该问题的应力和位移分量的解分别为:

()()()()()()??? ???? ? ? ??? ???=?? ???????? ??---+-???? ??-+-+--==+--+--=+--+---=??011)]21([11)]21([)21(10 21121212112121222222 222 22 222222 22 22222θθθμμμμμμμμτμμμσμμμσu b a pra b a r b pa E u a b pa r a b b pa a b pa r a b b pa r r r 三、已知弹性半平面的o 点受集中力 2 2222 222 2 223 )(2)(2)(2y x y x P y x xy P y x x P xy y x +- =+-=+- =πτπσπσ 利用上述解答求在弹性半平面上作用着n 个集中力i p 构成的力系, 这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。 解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: y y

弹塑性力学习题题库加答案汇编

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及 30106.768 6.77() 104sin 2cos 2sin 602cos 60 221 32 3.598 3.60() 22 x y xy MPa MPa σστατα= --=----+=?+=?-=-?-?=-- 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +2 3030( )cos 2sin 22 2 1041041cos 602sin 6073222226.768 6.77()104 sin 2cos 2sin 602cos 60 22132 3.598 3.60() 2 x y x y xy x y xy MPa MPa σσσσσατα σστατα+-= ++---+= ++=--?+?=----+=-?+=-?+=+?= 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: 题图 1-3

c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??= ==?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε= = ; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = =  ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =500300800300 03008003001100-???? +-?? ??--? ? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τn 。 题—图 16

应用弹塑性力学习题解答[精选.]

应用弹塑性力学习题解答 目录 第二章习题答案 (2) 第三章习题答案 (6) 第四章习题答案 (9) 第五章习题答案 (26) 第六章习题答案 (37) 第七章习题答案 (49) 第八章习题答案 (54) 第九章习题答案 (57) 第十章习题答案 (59) 第十一章习题答案 (62)

第二章习题答案 2.6设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 2.7利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系 可求得。 最终的结果为

2.8已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 2.9已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记

2.10已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,, 2.11已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得

弹塑性理论习题讲解

习题2 2-1 受拉的平板,一边上有一凸出的尖齿,如图2.1。试证明齿尖上完全没有应力。 图 2.1 2-2 物体中某点的应力状态为,101)010101i j σ-?? ?=- ? ?-??(,求三个不变量和三个主应力的大小。 2-3 有两个坐标系,试证明x y z x y z σσσσσσ'''++=++=不变量。 2-4 M 点的主应力为22212375N/cm ,50N/cm ,50N/cm σσσ===-。一斜截面的法线v 与三个主轴成等角,求v P 、v σ及v τ。 2-5 已知某点的应力状态为 ??? ? ? ??ττττττ=σ000ij ) (,求该点主应力的大小和主轴方向。 2-6 已知某点的应力状态为??? ? ? ??σσσσσσσσσ=σ)(ij ,求该主应力的大小和主轴方 向。 2-7 已知某点的应力状态为 ,)x xy xz i j xy y yz xz yz z σττστστττσ?? ? = ? ??? (过该点斜截面法线v 的方向余弦为),,(n m l ,试求斜截面上切应力v τ的表达式。 p p

2-8 物体中某点的应力状态为 ,00)000xz i j yz xz yz τστττ?? ? = ? ??? (求该点主应力的大小和主轴方向。 2-9 已知物体中某点的应力状态为ij σ,斜截面法线的方向余弦为 111333?? ??? 、、,试求斜截面上切应力的大小。 2-10 半径为a 的球,以常速度v 在粘性流体中沿x x 轴方向运动。球面上点 A (z y x ,,)受到的表面力为032x x v p p a a μ-= +,0y y p p a -=,0z z p p a -=, 式中0p 为流体的静水压力。试求球所受的总力量。 2-11 已知物体中某点的应力状态为ij σ,斜截面法线的方向余弦为 111333?? ? ?? 、、,试证明斜截面上的正应力8σ及剪应力8τ分别为8113J σ=、28121 263J J τ= +。

弹塑性力学试题及标准答案(2015、16级工程硕士)

工程硕士研究生弹塑性力学试题 一、简述题(每题5分,共20分) 1.简述弹性力学与塑性力学之间的主要差异。 固体力学是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正是固体力学中的两个重要分支。 弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。 大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。 塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。 2.简述弹性力学中圣维南原理的基本内容。 3.简述薄板弯曲的基本假定。

岩土工程勘察基本知识

第二篇岩土工程勘察 第7 章岩土工程勘察基本知识 7.1 岩土工程勘察的基本任务 岩土工程是土木工程中涉及岩石、土的利用、处理或改良的科学技术。它是以土力学、岩体力学、工程地质学、基础工程学、弹塑性力学和结构力学等为基础理论,并将其直接应用于解决和处理各项土木工程中土或岩石的调查研究、利用、整治或改造的一门技术科学,是土木工程的一个分支。 根据我国近二十年来推行岩土工程体制的实践总结,岩土工程包括岩土工程勘察、岩土工程设计、岩土工程治理、岩土工程检验和监测、岩土工程监理等,涉及工程建设的全过程。 岩土工程勘察是指根据建设工程的要求,查明、分析、评价建设场地的地质、环境特征和岩土工程条件,编制勘察文件的活动。

7.2 岩土工程勘察的基本程序岩土工程勘察的基本程序(即主要工作环节)可分为 ①编制勘察纲要、 ②工程地质测绘和调查、 ③勘探和取样、 ④岩土测试、 ⑤岩土工程分析评价和成果报告的编制等。

7.3 岩土工程勘察的分级 一个岩土工程勘察项目可根据其工程的重要性、场地的复杂程度和地基的复杂程度等三方面因素进行岩土工程勘察等级的划分。 岩土工程勘察等级反映该勘察项目的重要性和复杂性,因而是勘察工程管理、确定勘察工作量和技术要求的重要依据。 根据国家标准《岩土工程勘察规范》( GB5002—2001),岩土 工程勘察等级的划分步骤是先将工程重要性等级、场地等级和地基等级各分为三级,然后根据三者的不同组合确定岩土工程勘察等级。 岩土工程勘察等级分为三级,具体分级方法和步骤如下。 1 )工程重要性等级划分根据工程的规模和特征以及由于岩土工程问题造成工程破坏或影响正常使用的后果,可分为三个工程重要性等级: ①一级工程:重要工程,后果很严重; ②二级工程:一般工程,后果严重; ③三级工程:次要工程,后果不严重。 对于工程重要性,由于涉及各个行业,涉及房屋建筑、地下洞室、线路、电厂及其他工业建筑、废弃物处理工程等,很难做出具体划分标准,上述划分标准仅是比较原则的规定。以住宅和一般公用建筑为例,30层以上的可定为一级,7?30层的可定为二级,6层及6层以下的可定为三级。应注意这一工程重要性划分标准与国家标准《建筑地基基础设计规范》(GB50007-2002)中地基基础设计等级的划分略有差别。 2)场地等级划分根据场地的复杂程度,可按下列规定分为三个场地等级。

弹塑性力学习题及问题详解

实用标准文案 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

弹塑性力学习题及答案

1 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

弹塑性力学总结读书报告

弹塑性力学读书报告 弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 1.1.2线弹性假定(弹性力学)

弹塑性力学讲义全套

弹塑性力学 弹塑性力学 绪论:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹塑性力学是固体力学的一个重要分支,是研究弹性和塑形物体变形规律的一门学科。它推理严谨,计算结果准确,是分析和解决许多工程技术问题的基础和依据。在弹塑性力学中,我们可以看到很多学习材料力学、结构力学等学科所熟知的参数和变量,一些解题的思路也很类似,但是我们不能等同的将弹塑性力学看成材料力学或者是结构力学来学习。材料力学和结构力学的研究对象及问题,往往也是弹塑性力学所研究的对象及问题。但是,在材料力学和结构力学中主要采用简化的初等理论可以描述的数学模型;在弹塑性力学中,则将采用较精确的数学模型。有些工程问题(例如非圆形断面柱体的扭转、孔边应力集中、深梁应力分析等问题)用材料力学和结构力学的方法求解,而在弹塑性力学中是可以解决的;有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的理论,而弹塑性力学则可以给出用初等理论所得结果可靠性与精确度的评价。在弹塑性力学分析中,常采用如下简化假设:连续性假设、均匀各向同性、小变形假设、无初应力假设等假设。 弹塑性力学基本方程的建立需要从几何学、运动学和物理学三方面来研究。在运动学方面,主要是建立物体的平衡条件,不仅物体整体要保持平衡,而且物体内的任何局部都要处于平衡状态。反映这一规律的数学方程有两类,即运动微分方程和载荷的边界条件。以上两类方程都与材料的力学性质无关,属于普适方

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0 cos sin 0x xy yx y σβτβτβσβ+=??+=?……………………………… (a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=?? L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12× 103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()() 3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410x y Pa σσσ?++?=±=????=?=±?=? 则显然: 3312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612 sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ = = ==+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 题图 1-3

弹塑性力学概述

塑性增量本构的基本理论 姓名:学号: 摘要:本文从理论基础的角度讨论弹塑性增量本构模型的基本理论:首先给出弹塑性本构模型研究的基本假设;然后谈论弹塑性本构模型的三个基本组成部分(屈服面、硬化规律和塑性流动法则)。 关键字:本构关系;塑性;屈服面;硬化规律;塑性流动法则 1 引言 尽管弹塑性理论的研究己有一百多年,但随着电子计算机和各种数值方法的快速发展,对弹塑性本构关系模型的不断深入认识,使得解决复杂应力条件、加载历史和边界条件下的塑性力学问题成为可能。现在复杂应力条件下塑性本构关系的研究,已成为当务之急。弹塑性本构模型大都是在整理和分析试验资料的基础上,综合运用弹性、塑性理论建立起来的。在采用有限元法对工程塑性问题进行数值分析时,关键问题就是选择恰当的弹塑性本构模型,因此,弹塑性材料本构模型的研究就显得十分重要【1】。 本文从理论基础的角度讨论弹塑性增量本构模型的基本理论:首先给出弹塑性本构模型研究的基本假设;然后谈论弹塑性本构模型的三个基本组成部分(屈服面、硬化规律和塑性流动法则)。 2基本假设 建立弹塑性材料的本构方程时,应尽量反映塑性材料的主要特性。由于弹塑性变形的现象十分复杂,因此在研究弹塑性本构关系时必须作一些假设【1】。研究弹塑性本构关系理论的基本假设一般有以下几点 : (1)连续性假设:弹塑性体是一种密实的连续介质并在整个变形过程中保持连续性。 (2)小变形假设:在小变形(变形和物体尺寸相比可以忽略不计)情况下,应变和位移导数间的几何关系是线性的。但对于大变形情况,必须考虑几何关系中的二阶或高阶非线性项。 (3)均匀性假设:物体在不同点处的力学性质处处相同。实际上金属材料都可以看作是均匀的。对于混凝土、玻璃钢等非均质材料,如果不细究其不同组份分界面的局部应力,可以釆用在足够大的材料上测得的等效弹塑性参数来简化成均匀材料。 (4)仅考虑等温过程中的应变率无关材料,即忽略了应变率大小(或粘弹性效应)对变形规律的影响。这时任何与时间呈单调递增关系的参数都可取作为变形过程的时间参数。由此得到的本构关系将会有相当的简化。

弹塑性力学基本内容

弹塑性力学基本内容 本课程是以物体的应力、应变理论以及在工程中的应用主要对象的一门基础性、实践性很强的应用学科。 教学目标为在强化物体的应力、应变理论基础的同时,关注物体的弹性力学模型的建立、分析和应用,并兼顾塑性理论的建立。在深度和广度上力求体现学科专业发展的前沿,有利于研究生掌握弹性理论专门知识,了解塑性理论的思想和方法,并着重在基础理论和实践应用两方面进行科研能力的培养。其基本要求为:使学生掌握弹性理论的建立、分析、应用,初步掌握塑性力学理论,使其具有从事弹性力学分析的知识和初步能力。 (1)弹塑性力学的研究对象和内容、弹塑性力学的分析方法和体系、弹塑性力学的基本假定 应力矢量、应力张量、Cauchy公式、平衡微分方程、力边界条件、应力分量的坐标变换、主应力、应力张量不变量、最大切应力、Mohr应力圆、偏应力张量及其不变量、八面体上的应力和等效应力、主应力空间与π平面 (2)位移分量和应变分量、两者的关系、物体内无限邻近两点位置的变化、转动分量、转轴时应变分量的变换、应变张量、主应变应变张量不变量、应变协调方程、应力和应变的关系、应力率和应变增量 (3)弹性力学的基本方程及其边值问题、位移解法(以位移表示的平衡微分方程)、应力解法(以应力表示的应变协调方程)、解的唯一性定理、局部性原理、逆解法和半逆解法、几个简单问题的求解 (4)平面应变问题、平面应力问题、应力解法(把平面问题归结为双调和方程的边值问题)、用多项式解平面问题、悬臂梁一端受集中力作用、简支梁受均匀分布荷载作用(5)平面问题的极坐标方程、轴对称应力问题和对应的位移、圆筒受均匀压力作用、曲梁的纯弯曲、具有小圆孔的平板的均匀拉伸 (6)薄板弯曲的基本概念及基本假设、弹性曲面的基本公式、薄板横截面上的内力、边界条件、圆形薄板弯曲问题 (7)塑性力学的基本概念、材料在简单拉压时的实验结果、应力-应变关系的简化模型、轴向拉伸时的塑性失稳、塑性本构关系的主要内容和研究方法 (8)应变张量和应力张量、屈服条件、几个常用的屈服条件、屈服条件的实验验证、加载条件 (9)塑性应变增量、加卸载判别准则、Drucker公设和Ilyushin公设、加载面外凸性和正交流动法则、塑性势理论、简单弹塑性问题

弹塑性力学试题答案完整版

弹塑性力学2008、2009级试题 一、简述题 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量(P25) 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -?? =-????-? ?,其中()13 m x y z σσσσ=++ 4)描述连续介质运动的拉格朗日法和欧拉法 拉格朗日描述也被称为物质描述,同一物质点在运动过程中的坐标值不变,物质体变形表现为坐标轴变形、基矢量的随体变化。 采用拉格朗日描述时,在变形过程中网格节点和积分点始终与物质点一致,便于精确描述材料特性、边界条件、应力和应变率; 欧拉描述也被称为空间描述。在欧拉描述中,当前构形被离散化,初始构形(参考构形)是未知的。由于采用了物质对固定网格的相对运动,它具有以下优点: 欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ??????????? ????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即

弹塑性力学理论与其在工程上的应用

弹塑性力学理论及其在工程上的应用 摘要:弹塑性力学理论在工程中应用十分的广泛,是工程中分析问题的一个重要 手段,本文首先是对弹塑性力学理论进行了阐述,然后讨论了它在工程上面的应 用。 关键词:弹塑性力学;工程;应用 第一章 弹塑性力学的基本理论 (一)应力理论 1、 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生 变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描 述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力 矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作 用的物体用一平面A 分成A 和B 两部分(图1.1)。如 将B 部分移去,则B 对A 的作用应代之以B 部分对 A 部分的作用力。这种力在 B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面 上点P 处取出一包括P 点在内的微小面积元素S ?, 而S ?上的内力矢量为F ?,则内力的平均集度为F ?/S ?,如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于 一定的极限σo ,即 σ=??→?S F S 0lim 2、二维应力状态与平面问题的平衡微分方程式 上节中讨论应力概念时,是从三维受力物体出发的,其中点P 是从一个三维 空间中取出来约点。为简单起见,首先讨论平面问题。掌提了平面问题以后.再 讨论空间问题就比较容易了。

当受载物体所受的面力和体力以及其应力都与某—个坐标轴(例如z 轴)无 关。平面问题又分为平面应力问题与平面应变问题。 (1) 平面应力问题 如果考虑如图所示物体是一个很薄的 平板,荷载只作用在板边,且平行于板面,即 xy 平面,z 方向的体力分量Z 及面力分量z F 均 为零,则板面上(2/δ±=z 处)应力分量为 0) (2=±=δσz z 0)()(22==±=±=δ δ ττz zy z zx 图2.2平面应力问题 因板的厚度很小,外荷载又沿厚度均匀分布, 所以可以近似地认为应力沿厚度均匀分布。由此, 在垂直于z 轴的任一微小面积上均有 0=z σ, 0==zy zx ττ 根据切应力互等定理,即应力张量的对称性,必然有0==xz yx ττ。因而对 于平面应力状态的应力张量为 ???? ??????=00000y yx xy x ij σττσσ 如果z 方向的尺寸为有限量,仍假设0=z σ,0==zy zx ττ,且认为x σ,y σ和xy τ(yx τ)为沿厚度的平均值,则这类问题称为广义平面应力问题。 (2)平面应变问题 如果物体纵轴方向(oz 坐标方向)的尺寸很长,外荷载及体力为沿z 轴均匀分 布地作用在垂直于oz 方向,如图1.4所示的水坝是这类问题的典型例子。忽略 端部效应,则因外载沿z 轴方向为一常数,因而可以认为,沿纵轴方向各点的位

弹塑性力学试题

弹塑性力学试题Revised on November 25, 2020

考试科目:弹塑性力学试题 班号 研 班 姓名 成绩 一、 概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: 解上述方程组得: 则该问题的应力和位移分量的解分别为: 三、已知弹性半平面的o 量为: 这些力到所设原点的距离分别为y y

解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: 故由叠加原理,n 个集中力构成的力系在点(x ,y )处产生的应力为: 四、一端固定,另一端弹性支承的梁,其跨度为l ,抗弯刚度EI 为常数,弹簧系数为k ,承受分布荷载)(x q 作用。试用最小势能原理导出该梁以挠度形式表示的平衡微分方程和静力边界条件。 解:第一步:全梁总应变能为:dx dx w d EI wdv U l v 2 02221???? ? ???== 外力做功为:?=-=l l x kw qwdx T 02|2 1 总势能为:l x l l kw qwdx dx dx w d EI T U =??+-??????=-=∏|2 1 21202 022 第二步:由最小势能原理可知: 0=∏δ等价于平衡微分方程和静力边界条件。 l x l l w kw wdx q dx dx w d dx w d EI =??+-???? ????????=|0 22022δδδ (*) 其中=???? ?????????dx dx w d dx w d EI l 22022δdx dx dw dx d dx w d EI l ????????? ? ????????δ022 将其代入(*)式并整理可得: y

弹塑性力学试卷

一、问答题:(简要回答,必要时可配合图件答题。每小题5分,共10分。) 1、简述固体材料弹性变形的主要特点。 2、试列出弹塑性力学中的理想弹塑性力学模型(又称弹性完全塑性模型)的应力与应变表达式,并绘出应力应变曲线。 二、填空题:(每空2分,共8分) 1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz直角坐标系)。 2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。 三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。) 1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。 A、沿圆柱纵向(轴向) B、沿圆柱横向(环向) C、与纵向呈45°角 D、与纵向呈30°角 2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。 A、2 B、3 C、4 D、5 3、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。 A、一定不为零 B、一定为零 C、可能为零 D、不能确定 4、以下________表示一个二阶张量。 A、B、C、D、 四、试根据下标记号法和求和约定展开下列各式:(共8分) 1、;(i ,j = 1,2,3 ); 2、;

五、计算题(共计64分。) 1、试说明下列应变状态是否可能存在: ;() 上式中c为已知常数,且。 2、已知一受力物体中某点的应力状态为: 式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量 之和。为平均应力。并说明这样分解的物理意义。 3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。若选取=ay2做应力函数。试求该物体的应力解、应变解和位移解。 (提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。) 题五、3图

(完整版)弹性与塑性力学第2,3章习题答案

第二章 2.1(曾海斌)物体上某点的应力张量σij 为σij =?? ?? ??????1003100031001000000 (应力单位) 求出: (a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位; (c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。 解答: (a)利用式(2.26)计算应力矢量的分量n T i ,得 n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 n T 3=σ3j n j =157.31 所以,应力矢量n T 的大小为 =n T [(n T 1 )2 +(n T 2 )2 +(n T 3)2]1/2=314.62 (b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0 其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。 从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3 其中得,σ1=400、σ2=σ3=0 是特征方程的根。 将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, μ0.5,±0.866) n i (3)=(±1, 0,0) 注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。 (d )由式(2.96),可算 σotc =1/3(0+100+300)=133.3 τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56 (e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =200

弹塑性力学题目

弹塑性力学试题 考试时间:2小时 考试形式:笔试,开卷 一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。每小 题3分,共21分) 1.应力状态不变量与坐标系的选取有关。() 2.若受力物体中取出的微元体处于平衡状态,则整个物体也处于平衡状态。() 3.在与三个应力主轴成相同角度的斜面上,正应力3/)(321σσσσ++=N 。( )4.弹性力学物理方程利用了连续性、线弹性、各向同性三个假设条件。( ) 5.塑性力学假设屈服准则与静水压力无关。( )6.平面问题中应力函数?的量纲为[FL]。()7.Ritz 法和Galerkin 法解薄板小挠度弯曲问题时,都设∑=m m m w C w ,但Ritz 法中m w 必 须满足全部边界条件,Galerkin 法中m w 只需满足几何边界条件。( )二﹑填空及简答题(填空每小题3分,共24分) 1.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是( )。2.空间问题物理方程:e G y y λεσ+=2,式中λ称为( ),其值为(),e 称为(),其值为()。3.图示弹性体(平面问题)边界12 在极坐标系中的应力边界条件为()。4.简述求解薄板小挠度弯曲问题的思路。(5分) 5.简述弹性力学中逆解法和半逆解法成立所依据的原理。(5分) 6.弹性力学空间问题,物体内任一点有6个应力、6个应变、3个位移共15个未知函数,弹性力学从哪些方面来建立这些未知函数之间的关系?(5分) 1o 301q 2q x y 243

三﹑计算题(共55分) 1.试求平面应变问题的Tresca 屈服条件的表达式。(8分) 2.一圆环内半径为a ,外半径为b 。在极坐标系中设函数2 21ln r C r C +=?,式中C 1,C 2均为常数。1)?是否可作为应力函数?2)写出应力分量表达式。3)内外边界上对应着怎样的边界条件?(10分) 3.图示矩形薄板,边长分别为a ,b ,取挠度222222)4/()4/(b y a x C w --=,(C 为常数), 试求: (1)板面上的荷载),(y x q ; (2)板内的最大弯矩()()max max y x M M 、; (3)矩形薄板所应满足的边界条件。(12分) 4.圆形薄板,半径为a ,边界简支,在上板面中心受集中荷载P 作用,下板面中心有一刚度为k 的弹簧弹性支承,求挠度w 及内力r M 、θM 。(10分) 5.一均质空心厚壁圆筒内外半径分别为a 和b ,受内压q 作用,该圆筒由不可压缩的理想材料制成,处于平面应变状态,q 增加时满足简单加载定理,本构方程为3εσA =(A 为常数),求应力分布θσσ,r 。(15分)

相关主题
文本预览
相关文档 最新文档