当前位置:文档之家› 应用弹塑性力学习题解答教材

应用弹塑性力学习题解答教材

应用弹塑性力学习题解答教材
应用弹塑性力学习题解答教材

应用弹塑性力学习题解答

目录

第二章习题答案 (2)

第三章习题答案 (6)

第四章习题答案 (9)

第五章习题答案 (26)

第六章习题答案 (37)

第七章习题答案 (49)

第八章习题答案 (54)

第九章习题答案 (57)

第十章习题答案 (59)

第十一章习题答案 (62)

第二章习题答案

2.6设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。

解该平面的法线方向的方向余弦为

而应力矢量的三个分量满足关系

而法向分量满足关系最后结果为

2.7利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。

解求出后,可求出及,再利用关系

可求得。

最终的结果为

2.8已知应力分量为,其特征方程为

三次多项式,求。如设法作变换,把该方程变为形式

,求以及与的关系。

解求主方向的应力特征方程为

式中:是三个应力不变量,并有公式

代入已知量得

为了使方程变为形式,可令代入,正好项被抵消,并可得关系

代入数据得,,

2.9已知应力分量中,求三个主应力。

解在时容易求得三个应力不变量为,

,特征方程变为

求出三个根,如记,则三个主应力为

2.10已知应力分量

,是材料的屈服极限,求及主应力。

解先求平均应力,再求应力偏张量,,

,,,。由此求得

然后求得,,解出

然后按大小次序排列得到

,,

2.11已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。

解特征方程为记,则其解为,

,。对应于的方向余弦,,应满足下列关系

(a)

(b)

(c)

由(a),(b)式,得,,代入(c)式,得

,由此求得

对,,代入得

对,,代入得

对,,代入得

2.12当时,证明成立。解

由,移项之得

证得

第三章习题答案

3.5取为弹性常数,,是用应变不变量

表示应力不变量。

解:由,可得,

由,得

3.6物体内部的位移场由坐标的函数给出,为,

,,求点处微单元的应变张量、转动张量和转动矢量。

解:首先求出点的位移梯度张量

将它分解成对称张量和反对称张量之和

转动矢量的分量为

,,

该点处微单元体的转动角度为

3.7电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用

它可以量测得到一点的平面应变状态。如图3.1所示,在一点的3个方向分

别粘贴应变片,若测得这3个应变片的相对伸长为,,

,,求该点的主应变和主方向。

解:根据式先求出剪应变。考察方向线元的线应变,将

,,,,,代入其中,可得

则主应变有

解得主应变,,。由最大主应变可得

上式只有1个方程式独立的,可解得与轴的夹角为

于是有,同理,可解得与轴的夹角为。

3.8物体内部一点的应变张量为

试求:在方向上的正应变。

根据式,则方向的正应变为

3.9已知某轴对称问题的应变分量具有的形式,又设材料是不可压

缩的,求应具有什么形式?

解:对轴对称情况应有,这时应变和位移之间的关系为

,,。应变协调方程简化为,由不可压缩条件,可得

可积分求得,是任意函数,再代回

,可得。

3.10已知应变分量有如下形式,,,

,,,由应变协调方程,试导出应满足什么方程。

解:由方程,得出必须满足双调和方程。

由,得出

由,得出

由此得,其它三个协调方程自动满足,故对没有限制。

第四章习题答案

4.3有一块宽为,高为的矩形薄板,其左边及下边受链杆支承,在右边及上边分别受均布压力和作用,见题图4.1,如不计体力,试求薄板的位移。

题图4-1

解:1.设置位移函数为

(1)

因为边界上没有不等于零的已知位移,所以式

中的、都取为零,显然,不论式(1)中

各系数取何值,它都满足左边及下边的位移边界条件,但不一定能满足应力边界条件,故只能采用瑞兹法求解。

2.计算形变势能。为简便起见,只取、两个系数。

(2)

(3)

3.确定系数和,求出位移解答。因为不计体力,且注意到,式4-14简化为

(4)

(5)

对式(4)右端积分时,在薄板的上下边和左边,不是,就是,故积分值为零。在右边界上有

(6)

同理,式(5)右端的积分只需在薄板的上边界进行,

(7)

将式(3)、式(6)、式(7)分别代入式(4)、式(5)可解出和:

,(8)

(9)

4.分析:把式(8)代入几何和物理方程可求出应力分量,不难验证这些应力分量可以满足平衡微分方程和应力边界条件,即式(8)所示位移为精确解答。在一般情况下(这是一个特殊情况),在位移表达式中只取少数几个待定系数,是不可能得到精确解答的。

4.4设四边固定的矩形薄板,受有平行于板面的体力作用(),坐标轴如题图4.2所示。求其应力分量。

题图4-2

解: 1.本题为平面应力问题,可用瑞兹法求解。由题意知位移分量在边

界上等于零,所以,所以式中的、都取为零,且将位移函数设置为如下形式:

(1)

把或代入上式,因为,或,所以,

位移边界条件是满足的。

2.把式(1)代入式(9-16),得薄板的变形势能为

(2)

3. 确定系数和。由于位移分量在边界上为零,所以,方程式4-14简化为

(3)

式(2)代入式(3),得

(4)

由于,从式(4)的第一式得,由第二式得

当和取偶数时,和都为零,当和取奇数时,

和都为2。因此,当取偶数时,。当取奇数时,

将和代入式(1)得位移分量为

4.利用几何方程和物理方程,可求出应力分量(和取奇数);

4.5有一矩形薄板,三边固定,一边上的位移给定为,见题图4.3,设位移分量为,

式中,为正整数,可以满足位移边界条件。使用瑞兹法求维持上述边界位移而要在处所施加的面力。

题图4-3

解:1.平面应力问题时的变形势能为式

其中

2.确定待定系数。按题意三边固定(),一边只存在而面力待求。所以,

(2)将式(1)代入式(2),得

当体力分量为零时,,得

当时,,,所以,此时有

,而

3.位移和应力解答为

4.求上边界施加的面力(设),在处

4.6用伽辽金法求解上例。

解:应用瑞兹法求解上例时,形变势能的计算工作量较大。由于此问题并没有应力边界条件,故可认为上例题意所给的位移函数不但满足位移边界条件,而

且也满足应力边界条件,因此,可以用伽辽金法计算。

对于本题,方程可以写成

将上题所给的表达式代入,积分后得

当体力不计时,,此时,而由下式确定:

当时,即,当时,上式成为

由此解出及位移分量如下:

求出的位移和应力分量,以及上边界的面力,都有上例用瑞兹法求得结果相同。

4.7铅直平面内的正方形薄板边上为,四边固定,见题图4.4,只受重力作用。设,试取位移表达式为

用瑞兹法求解(在的表达式中,布置了因子和,因为按照问题的对称条件,应该是和的奇函数)。

题图4-4

解:1位移表达式中仅取和项:

(1)

2由得变形势能为

(2)

其中

代入式(2),得

(3)3.确定系数和。因板四周边界上位移为零(,面力未知),板的体力分量为,所以得

将式(3)代入式(4),得

(5)

注意,有以下对称性:

式(5)积分后成为式(6),由此可求得、和位移、应力分量:

(6)

(7)

(8)

(9)

4.8用伽辽金法求解上题。

解:1位移表达式仍取上题式(1),其两阶偏导数为

(1)

2.确定和。因为,所以伽辽金方程简化为

(2)

将以及式(1)代入(2),得

弹塑性力学习题题库加答案汇编

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及 30106.768 6.77() 104sin 2cos 2sin 602cos 60 221 32 3.598 3.60() 22 x y xy MPa MPa σστατα= --=----+=?+=?-=-?-?=-- 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +2 3030( )cos 2sin 22 2 1041041cos 602sin 6073222226.768 6.77()104 sin 2cos 2sin 602cos 60 22132 3.598 3.60() 2 x y x y xy x y xy MPa MPa σσσσσατα σστατα+-= ++---+= ++=--?+?=----+=-?+=-?+=+?= 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: 题图 1-3

c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??= ==?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε= = ; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = =  ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =500300800300 03008003001100-???? +-?? ??--? ? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τn 。 题—图 16

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题 2002年 1什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 3两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 4虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题? 平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。 5应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量、、不是互相独立的,而是相关,否则导致位移不单值,不连续。 6什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。

卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。 中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。 7用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?协调方程和边界条件。 8薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小? 平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z方向的挤压应力最小,是更次要的应力。 9什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少? 在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。 剪切应力是最大剪应力。 10什么是随动强化?试用单轴加载的情况加以解释? 2004 1对于各项同性线弹性材料,应用广义胡克定律说明应力与应变主轴重合? ,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。 2应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3虚位移原理等价于哪两组方程?这说明了什么?

应用弹塑性力学李同林第四章

应用弹塑性力学李同林第四章 这是变形理论。这个理论首先由亨斯基提出,然后由前苏联的伊留申进一步完善。问题提出得更清楚了,并且给出了使用条件。因此,这个理论也被称为亨奇-伊柳辛理论。伊柳欣的变形理论应该满足几个条件: (1)外载荷(包括体力)成比例增加,变形体处于主动变形过程中(即应力强度无中间卸载); (2)材料所用体积不可压缩,采用泊松比μ = 1/2进行计算;(3)材料的应力-应变曲线具有幂强化形式,即 或者 ; 在变形过程中 (4)满足小弹塑性变形的各种条件,塑性变形和弹性变形大小相同。满足上述条件后,变形理论将给出正确的结果。如果负载没有成比例地增加,则外部负载成比例地增加是简单负载的必要条件。这样不仅不能保证物体内部的简单加载状态,而且物体表面也不能满足简单加载条件。体积不可压缩性和泊松比μ=1/2的假设不仅简化了具体计算,而且与实验结果基本一致,因此变形理论的物理关系主要表现为应力挠度和应变挠度之间的关系,这是令人满意的。 法律。 使用幂强化模型可以避免区分弹性区和塑性区,但实际上该模型对不同材料的限制很小,因为各种材料都可以通过选择公式中常数a的指

数m来拟合拉伸曲线。采用小变形条件是因为平衡方程和几何方程是在小变形条件下推导出来的,物理关系也是小变形条件下的关系。伊柳辛不仅明确规定了亨奇变形理论的适用条件,而且证明了简单加载定理。他提出,在小的弹塑性变形条件下,总应变与应力挠度成正比,即: 如果使用主应力,有 等效应变的表达式为: 从这里 因此,Hench-Ilyushin理论的应力-应变关系可以写成如下: 展开等式(4-84): 根据胡克定律(4-33),弹性应变为: 因为塑性应变是总应变和弹性应变之间的差,所以它由方程(4-85)和(1)获得: 公式(4-86)可以缩写为: 实施例4-3众所周知,具有封闭端的薄壁圆筒的平均半径为R,平均直径为D,壁厚为T,圆筒长度为L,并且承受内压P以产生塑性变形。材料是各向同性的。尝试找到: (1)如果忽略弹性应变,周向、轴向和径向应变之比在圆筒壁上的一点处增加; (2)如果材料是不可压缩的,即μ=1/2,圆柱壁上一点的周向、轴向和径向应变总量之比。 因为t/r1是解,所以可以近似地考虑圆柱壁中每个点的径向应力ζr=0。

应用弹塑性力学习题解答

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系

可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得 第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其 中,可得 则主应变有 解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 物体内部一点的应变张量为 试求:在方向上的正应变。

弹塑性力学习题及问题详解

实用标准文案 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

弹塑性力学试题及标准答案(2015、16级工程硕士)

工程硕士研究生弹塑性力学试题 一、简述题(每题5分,共20分) 1.简述弹性力学与塑性力学之间的主要差异。 固体力学是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正是固体力学中的两个重要分支。 弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。 大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。 塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。 2.简述弹性力学中圣维南原理的基本内容。 3.简述薄板弯曲的基本假定。

弹塑性力学博士生考题03答案

2003年结构工程博士研究生入学考试 弹塑性力学试卷答案 第一道题答案: 圣维南原理可以这样陈述:如果把作用在物体表面一小部分边界上的面力,被分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同)所代替,那么,近处的应力分布将有显著的改变,但远处所受的影响小得可以忽略不计。 圣维南原理也可以这样陈述:如果物体一小部分边界上的面力是一自相平衡的力系(主矢量及主矩都等于零),那么,这个面力就只会在靠近受力表面附近产生显著的应力,远处(与受力表面之尺寸相较)产生的应力可以忽略不计。 上面两种陈述是一致的,因为,静力等效的两组面力,它们的差异是一个平衡力系。 正确理解和运用圣经南原理的关键是弄清“一小部分”,“静力等效”,“近处与远处”的概念。 实践应用中,圣维南原理可提供: 1.我们知道,弹性力学问题在数学上被称为边值问题,其待求的未知量(应力、位移、应变)完全满足基本方程并不困难,但是,要求在全部边界上都逐点地满足边界条件,往往会发生很大困难。为了使问题得到简化或有解,在符合圣维市原理的那部分边界上,可以放弃严格的逐点边界条件,而改为满足另一组静力等效的以合力形式表示的整体边界条件。这对于离边界较远处的应力状态,并无显著的误差。这已经为理论分析和实验所证实。 2.当物体的一小部分边界,仅仅知道物体所受外力的合力,而不能确知其分布方式时,就不能逐点地写出面力的边界条件,因而难以求解或无法求解。根据圣维南原理,可以在这一小部分边界,直接写合力条件进行求解。 3.当物体一小部分边界上的位移边界条件不能精确满足时,有时也可以应用圣维南原理得到有用的解答。 4.在工程结构的受力分析中,根据圣维南原理,有时可近似地判断应力分布和应力集中的情况。 第三道题答案:

弹塑性力学习题及答案

1 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0 cos sin 0x xy yx y σβτβτβσβ+=??+=?……………………………… (a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=?? L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12× 103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()() 3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410x y Pa σσσ?++?=±=????=?=±?=? 则显然: 3312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612 sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ = = ==+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 题图 1-3

弹塑性力学试题

弹塑性力学试题Revised on November 25, 2020

考试科目:弹塑性力学试题 班号 研 班 姓名 成绩 一、 概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: 解上述方程组得: 则该问题的应力和位移分量的解分别为: 三、已知弹性半平面的o 量为: 这些力到所设原点的距离分别为y y

解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: 故由叠加原理,n 个集中力构成的力系在点(x ,y )处产生的应力为: 四、一端固定,另一端弹性支承的梁,其跨度为l ,抗弯刚度EI 为常数,弹簧系数为k ,承受分布荷载)(x q 作用。试用最小势能原理导出该梁以挠度形式表示的平衡微分方程和静力边界条件。 解:第一步:全梁总应变能为:dx dx w d EI wdv U l v 2 02221???? ? ???== 外力做功为:?=-=l l x kw qwdx T 02|2 1 总势能为:l x l l kw qwdx dx dx w d EI T U =??+-??????=-=∏|2 1 21202 022 第二步:由最小势能原理可知: 0=∏δ等价于平衡微分方程和静力边界条件。 l x l l w kw wdx q dx dx w d dx w d EI =??+-???? ????????=|0 22022δδδ (*) 其中=???? ?????????dx dx w d dx w d EI l 22022δdx dx dw dx d dx w d EI l ????????? ? ????????δ022 将其代入(*)式并整理可得: y

(完整版)弹性与塑性力学第2,3章习题答案

第二章 2.1(曾海斌)物体上某点的应力张量σij 为σij =?? ?? ??????1003100031001000000 (应力单位) 求出: (a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位; (c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。 解答: (a)利用式(2.26)计算应力矢量的分量n T i ,得 n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 n T 3=σ3j n j =157.31 所以,应力矢量n T 的大小为 =n T [(n T 1 )2 +(n T 2 )2 +(n T 3)2]1/2=314.62 (b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0 其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。 从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3 其中得,σ1=400、σ2=σ3=0 是特征方程的根。 将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, μ0.5,±0.866) n i (3)=(±1, 0,0) 注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。 (d )由式(2.96),可算 σotc =1/3(0+100+300)=133.3 τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56 (e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =200

应用弹塑性力学习题解答

应用弹塑性力学习题 解答 Revised on November 25, 2020

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。

解求出后,可求出及,再利用关系 可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,,

,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,, 已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得

第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。 解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,, ,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其中,可得 则主应变有

弹塑性力学试题

考试科目 :弹塑性力学试题 班号 研 班 姓名 成绩 一、概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: ,)11(2)11(10,2,222 2=?? ????--+-+--==+-=+= θθθμμμμμτσσu Cr r A E u C r A C r A r r r 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: ??? ? ???=?????--+-+--=-=+=0)11(2)11(122 2μμμμb C b A E u p C a A b r r 解上述方程组得: ()()()??? ? ???+-- =+---=]21[22121222 2222a b pa C a b b pa A μμμ 则该问题的应力和位移分量的解分别为:

()()()()()()??? ???? ? ? ??? ???=?? ???????? ??---+-???? ??-+-+--==+--+--=+--+---=??011)]21([11)]21([)21(10 21121212112121222222 222 22 222222 22 22222θθθμμμμμμμμτμμμσμμμσu b a pra b a r b pa E u a b pa r a b b pa a b pa r a b b pa r r r 三、已知弹性半平面的o 点受集中力 2 2222 222 2 223 )(2)(2)(2y x y x P y x xy P y x x P xy y x +- =+- =+- =πτπσπσ 利用上述解答求在弹性半平面上作用着n 个集中力i p 构成的力系, 这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。 解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: y y

工程弹塑性力学题库及答案

第一章弹塑性力学基础 1.1什么是偏应力状态?什么是静水压力状态?举例说明? 解:静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 1.2对照应力张量与偏应力张量,试问:两者之间的关系?两者主方向之间的关系? 解:两者主方向相同。。 1.3 简述应力和应变Lode参数定义及物理意义: 解:μσ的定义、物理意义:; 1) 表征S ij的形式;2) μσ相等,应力莫尔圆相似,S ij形式相同;3) 由μσ可确定S1:S2:S3。 1.4设某点应力张量的分量值已知,求作用在过此点平面上的应 力矢量,并求该应力矢量的法向分量。 解:该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为:

1.5利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解:求出后,可求出及,再利用关系 可求得。 最终的结果为, 1.6 已知应力分量为,其特征方程为 三次多项式,求。如设法作变换,把该方程变为形式 ,求以及与的关系。 解:求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系

代入数据得,, 1.7已知应力分量中,求三个主应力。 解:在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 1.8已知应力分量 ,是材料的屈服极限,求及主应力。 解:先求平均应力,再求应力偏张量,, ,,,。 由此求得: 然后求得:,,解出 然后按大小次序排列得到 ,, 1.9 已知应力分量中,求三个主应力,以及每个

弹塑性力学习题解答

塑性:

弹性:

2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q 试证q y x -==σσ 及0=xy τ能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。

证明: (1)将应力分量q y x -==σσ,0=xy τ和0==y x f f 分别代入平衡微分方程、相容方程 ????? ??=+??+??=+??+??00y x xy y y x y yx x x f f τ στσ (a ) 0)1())((22 22=??+??+-=+??+??)(y f x f y x y x y x μσσ (b ) 显然(a )、(b )是满足的 (2)对于微小的三角板dy dx A ,,都为正值,斜边上的方向余弦),cos(x n l =,),cos(y n m =,将q y x -==σσ,0=xy τ代入平面问题的应力边界条件的表达式 ???? ?=+=+) ()() ()(s f l m s f m l y s xy y x s yx x τστσ (c ) 则有),cos(),cos(x n q x n x -=σ ),c o s (),c o s ( y n q y n y -=σ 所以q x -=σ,q y -=σ。 对于单连体,上述条件就是确定应力的全部条件。 (3)对于多连体,应校核位移单值条件是否满足。 该题为平面应力的情况,首先,将应力分量q y x -==σσ及0=xy τ代入物理方程,得形变分量q E x )1(-= με,q E y ) 1(-=με,0=xy γ (d ) 然后,将(d )的变形分量代入几何方程,得 q E x u ) 1(-=??μ,q E y v )1(-=??μ,0=??+??y u x v (e )

同济大学弹塑性力学试卷及习题解答

弹塑性力学试卷及习题解答 弹塑性力学试卷 配套教材《弹性与塑性力学》陈惠发 1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)物体内某点应变为0值,则该点的位移也必为0值。 ( ) (2)可用矩阵描述的物理量,均可采用张量形式表述。 ( ) (3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。( ) (4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。 ( ) (5)对于常体力平面问题,若应力函数()y x ,?满足双调和方程02 2 =???,那么, 由()y x ,?确定的应力分量必然满足平衡微分方程。 ( ) (6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。 ( ) (7)Drucker 假设适合于任何性质的材料。 ( ) (8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。( ) (9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。 ( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。P107;226 ( ) 2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。)(每小题2分) (1)设()4322241,y a y x a x a y x ++=?,当321,,a a a 满足_______________________关系时 ()y x ,?能作为应力函数。 (2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。 (3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。 (4)π平面上的一点对应于应力的失量的______________________。P65 (5)随动强化后继屈服面的主要特征为:___________________________________________。 (6)主应力轴和主应变轴总是重合的材料为______________________。P107 (7)相对位移张量ij ε通常_____对称的,对于小变形问题由此引起的位移含______________ ________________________________。P75、76 (8)若() ()0=--κασk f ij ij ,请分别简述κα,,k ij 的真正含义及对应的强化描述: ___________________________________________________________________________ __________________________________________________________________________。 P236~238

塑性力学复习试题

塑性力学复习试题 一、填空题 1.塑性变形不仅与当前的应力状态有关,还和()有关。 2.对一般金属,体积应变完全是()的,静水压力不产生()。它对屈服极限的影响()。 3.下图是低碳钢作简单拉伸试验得到的应力—应变曲线。 (1)图中P点的纵坐标称为(),记作()。Q点的纵坐标称为(),记作()。对应于R点的应力称为(),对应于SA的应力称为()。一般把()称为屈服极限,以()表示。 σ阶段,服从()。 (2)在σ≤ s (3)σ—ε曲线的ABF段称为()。 (4)卸载时卸掉的应力σ'与恢复的应变ε'之间也应当服从()。 (5)经过一次塑性变形以后再重新加载的试件,其弹性段增大了,屈服极限提高了。这种现象称为()。 (6)σ—ε曲线至F点后开始下降,这是由于在F点处试件已开始出现()现象。 ε=(), 4.八面体面上的正应变为 8 γ()。 剪应变为= 8 σ=()。 5.用主应力表示的等效应力(或应力强度)为: i 用六个应力分量表示的等效应力(或应力强度)为: σ=()。 i 6.用主应力表示的等效剪应力(或剪应力强度)为:T = ()。 用六个应力分量表示的等效剪应力(或剪应力强度)为: T = ()。 μ=()。 7.应力状态的Lode参数为: σ ε=()。 8.用主应变表示的等效应变(或应变强度)为: i 用六个应变分量表示的等效应变(或应变强度)为: ε= ()。 i 9.用主应变表示的等效剪应变(或剪应变强度)为:Γ=()。 用六个应变分量表示的等效剪应变(或剪应变强度)为:

Γ=( )。 10.表示应变状态特征的Lode 参数为:εμ=( )。 11.第一应力不变量为:1I =( )=( )。 第二应力不变量为:2I =( )=( )。 第三应力不变量为:3I =( )=( )。 12.第一应变不变量为:1I '=( )=( )。 第二应变不变量为:2I '=( )=( )。 第三应变不变量为:='3I ( )=( )。 13.应力偏张量的第一不变量为:=1J ( )。 应力偏张量的第二不变量为:2J =( ) =( )。 应力偏张量的第三不变量为:3J =( )=( )。 14.应变偏张量的第一不变量为:='1J ( )。 应变偏张量的第二不变量为:='2 J ( ) =( )。 应变偏张量的第三不变量为:3J '=( )=( )。 15.在应力空间中,靠近坐标原点且包括原点在内,有一个弹性区(在这个区内的点所表示的应力状态处于弹性阶段),而在其外则为塑性区(其中各点所表示的应力状态已进入塑性阶段)。这两个区的分界叫做( )。 16.主应力按大小顺序排列时的Tresca 屈服条件为( )。 17.主应力不按大小顺序排列时的Tresca 屈服条件为 ( )。 18.用应力偏张量的第二,第三不变量表示的Tresca 屈服条件为: ( )。 19.Mises 屈服条件为( ) 或( )。 二、判断题(如果题中的说法正确,就在后面的括号里填“√”反之填“×”) 1.塑性应变和应力之间具有一一对应的关系。( ) 2.进入塑性状态后,应力与应变之间呈非线性关系。( )。 3.一个已知应力状态(σ1,σ2,σ3)对应π平面上唯一的点S 。反之,π平面上的一点S 也唯一地确定它所代表的原始应力状态。( ) 4.如果以单向拉伸得到的σ为基础,则Mises 屈服条件和Tresca 屈服条件在单向拉压应力状态下完全一致,( )在纯剪切时二者差异最大,约为15%。( ) 三、选择题(只能选一个答案) 1.如果规定σ1≥σ2≥σ3,则最大剪应力为( ): a .2 2 1m ax σστ-= ; b .2 3 1max σστ-= ; c .2 3 2m ax σστ-= 。 2.单向拉伸(0,0321==>σσσ)时应力状态的Lode 参数为( )。 a .σμ=-1; b .σμ=0; c .σμ=1。 3.纯剪切(312,0σσσ-==)时应力状态的Lode 参数为( )。 a .σμ=-1; b .σμ=0; c .σμ=1。 4.单向压缩(0,0321<==σσσ)时应力状态的Lode 参数为( )。

相关主题
文本预览
相关文档 最新文档