当前位置:文档之家› 灰铸铁件加工面麻点状小孔缺陷的分析及防止

灰铸铁件加工面麻点状小孔缺陷的分析及防止

灰铸铁件加工面麻点状小孔缺陷的分析及防止
灰铸铁件加工面麻点状小孔缺陷的分析及防止

灰铸铁件加工面麻点状小孔缺陷的分析及防止铸件加工面麻点状小孔缺陷的形貌、分布特征和产生原因进行了分析。认为:麻点是由许多尺寸在0.3 mm 以下的小孔组成,多产生在凝固过程中冷速较慢的厚壁部位,主要分布在石墨密集区域,特别是在石墨封闭或半封闭区域;铸件w(C)和w(Si)量偏高,凝固过程中局部冷速过慢,切削用量偏大都有可能引起这种缺陷。提出了预防这种缺陷的四条措施。

关键词:麻点状小孔缺陷;石墨剥落;预防措施

灰铸铁的切削加工表面时常出现麻点缺陷,肉眼观察为小黑点的缺陷,实际是形态各异的小孔,因而易被误认为是表面缩松或是非金属夹杂物。这种缺陷比较容易出现在HT300 以下的各种牌号铸件,产生部位多在凝固过程中冷速较慢的厚壁部位。

1 缺陷的形貌特征

1.1 宏观形貌

对切削加工后表面存在缺陷的铸件进行解剖,试样的材料牌号为FC300(相当于HT300),化学成分为w(C)2.72%,w(Si)2.05%,w(Mn)0.76%,w(P)0.056%,w(S)0.095%。对试样进行打磨抛光后观察,其宏观形貌如图1 所示,表面有大小不等的麻

点状小孔。

1.2 微观形貌

文献[1]把这种缺陷称为“麻点”,并认为是“切削加工面上存在大量的直径0.2 mm 左右的小孔”。对图1 试样金相观察,这种缺陷是尺寸小于0.3 mm 的小孔,且小孔形状各异,圆孔甚少,尚难以用直径表达;并且尺寸大于0.2 mm 的小

孔(图中左侧的小孔);图3(c)石墨呈近似n 形分布形成的小孔;图3(d)石墨呈△形(图左上)和V 形或Y 形(图右下)分布形成的小孔;图3(e)石墨呈竹叶状分布形成的小孔。图3 的共同特征是微区金属被一根或几根片状石墨所包围,成孤岛状或半岛状,在切削力作用下剥落形成小孔;当切削力较大时,切屑崩落,也会超越石墨边界。但相对而言,当微区金属被石墨包围成封闭或半封闭状态时,在切削力作用下,会优先于其他微区的金属剥落而形成小孔。实际情况中不仅存在以上几种小孔,因为灰铸铁在凝固和继续冷却过程中,情况复杂,有很大的随机性,石墨形状和分布也不尽相同。当石墨与所包围的金属呈封闭或半封闭状态时,在切削加工(车、铣、铇、磨)过程中,石墨及其所包围的金属容易剥落,形成相应的小孔,如图4 所示。孔也较多。麻点状小孔缺陷的分布特征如下。

(1)缺陷多发生在石墨密集分布的区域,如图2 所示。图2(a)是0.2~0.3 mm 的小孔;图2(b)是0.1~0.2 mm 的小孔;图2(c)是0.05~0.10mm 的小孔。图2(d)是≤0.05mm 的小孔;图2(e)是长宽比≥5 的小孔。这些小孔的共同特点是周围片状石墨密集分布,石墨面积率为10%~15%,孔的边缘隐约可见片状石墨的痕迹,孔内呈灰色或黑色,并非块状石墨或其他。

(2)当石墨呈封闭或半封闭状态时,在切削力作用下,容易形成“麻点”。如当石墨分布呈多角形、C 形、O 形、n 形、△形、□形、V 形、U 形、竹叶状等形状时都有可能形成与上述形状相吻合的小孔,如图3 所示。图3(a)石墨呈多角形分布形成的小孔;图3(b)石墨呈C 形分布形成的小石墨密布区要比非密布区割裂基体严重,在切削力作用下,容易使石墨及其所包围的金属剥落而形成小孔,如图5 所示。图5(a)为尚未形成小孔的初始态,中心部位有2 处(1 区和2 区)可能出现剥落形成小孔;图5(b)为经第1 次打磨抛光后,1 区石墨上部开始连通;图5(c)为经第2 次打磨抛

光后,局部石墨开始剥落;图5(d)为经再次打磨抛光后,1 区石墨连同它所包围的金属剥落,形成小孔。图4(a)石墨呈半封闭状态,石墨及其所包围的金属剥落后形成的小孔;图4(b)石墨呈封闭状,石墨及其所包围的金属剥落后形成;图4(c)是将图4(b)的照片抛光面再经5 次打磨抛光(至少磨去0.15 mm)后的形貌,周围的石墨已经发生了很大变化,但小孔依然存在。

2 麻点状小孔缺陷的形成过程

为了解这种缺陷的形成原因和找出预防对策,并正确认识亚共晶铸铁中的“块状石墨”,试验对可能出现这种缺陷的微区采用每次微量抛磨的方法,反复进行金相观察来得到麻点的形成过程。

2.1 试验方法

将图1 所示的试块依次用#600、#900 砂纸打磨,再用粒度2.5 μm 的金刚石研磨剂抛光,抛磨机的转速为600 r/min,磨盘直径200 mm,观察试样的金相组织。选择石墨密布区和具有封闭、半封闭状态特征的微区进行观察,记录5~6个微区;然后再次打磨、抛光,观察各特征点变化,记录石墨所包围的金属的剥落情况。这样就可以观察到石墨及其所包围的微区金属的剥落过程,也就是小孔的形成过程。

2.2 试验结果

2.2.1 石墨密布区剥落过程

基体金属被片状石墨所包围,在切削力作用下,最易剥落形成小孔。图6 显示了受石墨包围的金属的剥落过程。图6(a)为几根石墨呈枣核状分布,石墨内侧稍有剥落,包围着1 区和2 区,尚未形成小孔的初始态;图6(b)为经第1 次打磨抛光后,1 区金属剥落,2区又出现一根石墨,而使2 区金属形成孤岛;图6(c)为经第2 次打磨抛

光后,2区金属剥落与1 区金属连成一片,但石墨依然存在;图6(d)、图6(e)为再经2 次打磨抛光后,石墨逐渐剥落,形成一个钝三角形小孔。

2.2.3 处于应力集中区金属的剥落过程基体金属未被片状石墨包围,但经打磨抛光仍可能剥落,原因是局部金属处于应力集中区。图7 显示了处于应力集中区的局部金属剥落形成小孔的过程。图7(a)为尚未形成小孔的初始态,照片上有2 个区,1 区和2 区都有可能出现金属剥落,1 区是缺口型,2 区有3 根小石墨露头;图7(b)为经1 次打磨抛光后,2 区金属剥落;图7(c)再次打磨抛光后,小孔面积变小,孔内填充了污物———细微切屑、石墨微粉、金刚石微粉和抛织物的混合物。图7 说明小孔的形成过程与该部位的应力集中有关,但也不排除3 根小石墨在抛光面下有一定深度。2.3 常见石墨分布形状的剥落过程常见石墨分布形状有△、、Ο、V 或近似V、月牙形等。

2.3.1 石墨呈△形分布的剥落过程图8 为石墨呈△形分布的剥落过程。图8(a)为未形成小孔的初始态;图8(b)为经1 次打磨抛光后,△形包围的金属剥落;图8(c)为经再次打磨抛光后,△形变小,孔内有污物。笔者曾对石墨近似四方形分布形状做过试验,结果同上,出现了近似四方形小孔。

2.3.2 石墨形分布的剥落过程石墨呈形或近似Ο形、C 形、б形、δ形等分布形状都可能在切削力作用下形成小孔,如图9 所示。图9(a)为未形成小孔的初始态,石墨呈形分布;图9(b)为经1 次打磨抛光后,石墨连同它所包围的金属剥落,形成一个孔,但仍残留少量金属;图9(c)为进一步打磨抛光后小孔形体变小,但仍残留一小块金属。

2.3.3 石墨V 形或近似V 形分布剥落过程石墨呈V 形或近似V 形所包围的金属处于半岛状,在切削力作用下,易于同母体分离。图10(a)为尚未剥落的初始态,图中有3 个

呈V 形或近似V 形分布的石墨区;图10(b)为经1 次打磨抛光后,近似V 形的3 区金属剥落;图10(c)为再次打磨抛光后,小孔内充满了污物1 区和2区未分离。

2.3.4 石墨呈月牙形(或盘状)分布剥落过程图11(a)为未剥落成小孔的初始态,中部石墨很像大C 形,实际上它是由2 根石墨组成的,下部是月牙形;图11(b)为经打磨抛光后,形成一个盘形小孔,另1 根石墨清晰可见。其实石墨呈U 形或抛物线状分布的小孔形成过程也与此相似。图12 为石墨呈U 形或抛物线状分布,在切削力作用下,它所包围的金属即将剥落(已变色),抛物线外局部金属出现了剥落。

3 麻点状小孔形成原因分析

这种缺陷产生的原因包括内因和外因两方面。内因主要是w(C)和w(Si)量偏高和铸件冷速过慢;外因主要是切削用量偏大、刀具磨损及机床振动等因素。

3.1 w(C)和w(Si)量偏高w(C)和w(Si)量偏高,导致石墨粗大,容易出现这种麻点状小孔。日本有些企业把限制这种“麻点”缺陷列为铸件验收依据。某企业的检查规格书中对FC350、FC300、FC250、FC200(FC 相当于中国HT)4 个牌号的“麻点”照片进行排列比较,材料牌号由高到低,“麻点”数量由少到多,面积由小到大。3.2 铸件冷却速度缓慢铸件冷却速度缓慢也是形成这种缺陷的一个重要原因。试验中选用的试样w(C)2.72%、w(Si)2.05%,应当比较适中或是偏低。通过对试样进行分析可知,试样局部石墨粗大且密集分布,珠光体片间距>1~2 mm,表明冷速缓慢,如图13~16 所示。图13 金相抛光面上的粗大石墨,3

级;图14 局部A 型石墨密集分布,是一种石墨魏氏组织[1];图15 为试样的珠光体基体,在放大100 倍下观察可看到局部珠光体的层片状。图16为放大400 倍的显微照片,珠光体片间距>1~2mm,属中等片状。

3.3 切削用量偏高切削用量包括切削速度、进刀量、切削深度三要素。这三要素关系到切削过程中切削力的大小。切削速度高、进刀量大、切削深度深,都会使切削力加大,容易使石墨及其所包围的金属剥

落。灰铸铁的切屑属粒状切屑和崩碎切屑,当切削用量超出正常规范时,冲击力加大,并伴有振动现象,易形成崩碎切屑,更易出现麻点,甚至连片状石墨边界都可能崩落。文献[1]在推测麻点原因时认为是切削速度太快、刀具状态不良等原因。刀具如果过度磨损,将改变刀具的几何形状和角度,不仅使切削力加大,摩擦力剧增,并引起振动,恶化加工表面。

4 麻点状小孔的预防措施

4.1 降低w(C)和w(Si)量C 和Si 都是强石墨化形成元素。降低w(C)和w(Si)量的目的是为了细化石墨。对于同一种牌号的灰铸铁铸件,不同铸件,选择w(C)和w (Si)量应按铸件的大小和不同壁厚分档,这是众所周知的道理。但在实践中有些工厂为了简化操作,执行不到位,所有铸件不分大小和壁厚,用同

一炉或同一包铁液浇注,这就很难保证铸件质量,很难确保大件壁厚部位没有麻点状小孔缺陷。

4.2 加强孕育处理对一般企业而言,生产HT200 以上牌号的铸件都进行孕育处理,多用FeSi75,但该孕育剂的缺点是抗衰退能力差,1.5 min 内孕育效果达到峰值,8~10 min 后衰退到原来状态。为了预防衰退

应及时浇注,或改用抗衰退能力更强的硅钡孕育剂,孕育效果可维持20 min,如果有条件最好采用随流孕育。

4.3 厚大部位放置冷铁用冷铁强化冷却,可有效地细化共晶团和石墨,使组织更加致密,预防麻点状小孔出现。

4.4 制订合理的切削加工工艺一般金属切削加工根据铸件加工余量的大小,细分为粗加工、半精加工和精加工,以达到平整的加工表面。为减少或消除麻点状小孔,粗加工、半精加工的切削用量可以大一点,但精加工最后一刀必须谨慎,切削用量要小,刀具状态要好,通过精加工把半精加工产生的微观不平度和

麻点去除,并尽可能少地产生新的小孔。如有条件,应把粗加工和精加工的机床分开。

[1]给出的预防措施有:使用高精度机床;降低加工的进给速度;采用孕育处理和设置冷铁等措施,细化石墨;减少C 和Si 的含量;防止碳化物的生成。笔者认为,前4 条都符合生产实际。而第5 条目前尚未发现因碳化物引起的麻

点,待以后观察分析。

常见铸件缺陷分析

常见铸件缺陷分析缺陷种类,缺陷名称生产原因 多肉类飞翅(飞边) 1.砂型表面不光洁,分型面不增整 2.合理操作xx准确 3.砂箱未固紧 4.未放压铁,或过早除去压铁 5.芯头与芯座间有空隙 6.压射前机器调整、操作不正确 7.模具镶块、活块已磨损或损坏,锁紧元件失效8.模具强度不够,发生变形 9.铸件投影面积过大,锁模力不够 10.型壳内层有裂隙,涂料层太薄 毛刺 1.合型操作不准确 2.砂箱未固紧 3.芯头与芯座间有空隙 4.分型面加工精度不够 5.参考飞翅内容 抬箱 1.砂箱未固紧

2.压铁质量不够,或过早除去压铁 胀砂 1.砂型紧实度低: 壳型强度低 2.砂型表面硬度低 3.金属液压头过高 冲砂 1.砂型紧实度不够,型壳强度不够 2.浇注系统设计不合理 3.金属流速过快,充型不稳定 4.压射压力过高,压射速度过快 5.金属液头过高 掉砂 1.合型操作不正确 2.型砂紧实度不够 3.型壳强度不够,发生破裂 铸件缺陷分析 缺陷种类缺陷名称产生原因 多肉类外渗物(外渗豆)内渗物(内渗豆) 1.铸型、型号、型芯发气最大,透气性低,排气不畅2.合金液有偏析倾向

3.凝固温度范围宽或凝固速度过慢 xx类气孔、针孔 1.铸件结构设计不正确,热节过多、过大 2.铸型、型壳、型芯、涂料等发气量大,透气性低,排气不畅 3.凝固温度范围宽,凝固速度数低 4.合金液含气量高,氧化夹杂物多 5.凝固时外压低 6.冷铁表面未清理干净,未挂涂料或涂料烘透 7.铜合金脱氧不彻底 8.浇注温度过高,浇注速度过快 缩孔 1.铸件结构设计不合理,壁厚悬殊,过渡外圆角太小: 热节过多、过大 2.浇注系统、冷铁、冒口安放不合理,不利于定向凝固 3.冒口补缩效率低 4.浇注温度过高 5.压射建压时间长,增压不起作用撮终补压压力不足,或压室的充满度不合理 6.比压太小,余料饼术薄,补压不起作用 7.内浇道厚度过小,溢流槽容量不够 8.熔模的模组分布不合理,造成局部散热困难

船板表面麻坑缺陷成因及应对措施

船板表面麻坑缺陷成因及应对措施 齐慧滨钱余海刘福何国军鲁岩 (宝山钢铁股份有限公司,上海宝山,201900) 摘要:船板表面麻坑缺陷严重损害船板的表面质量,是影响船板外观和后序生产过程的重要表面缺陷 类别之一,长期以来一直困挠着钢厂和用户。本文通过对船板生产、用户的储存和使用进行跟踪走访, 总结了麻坑缺陷的特征;根据船板储存和锈蚀状态,结合实验室分析和模拟实验结果,确定了船板表 面麻坑缺陷系钢板堆垛存贮中板缝间长期存水遭受缝隙腐蚀所致;结合船板生产、储运和应用提出了 减轻缺陷形成的应对措施。 关键词:船板;表面缺陷;麻坑;缝隙腐蚀;应对措施 1、前言 船板是宽厚板的重要品种之一。2008年4季度以来,由于全球金融危机对世界经济发生的影响,钢铁及下游产业受到较大的冲击,主要表现为基础设施投资减少,钢铁需求量大幅下降,钢铁产品订单骤减。由此,船厂普遍遇到船东要求推迟交货,生产节奏放缓,船板库存量大幅增加和库存周期延长。2009年年初开始,用户对船板表面缺陷质量异议的数量激增,其中比例最大的为表面麻坑缺陷。由于该缺陷在钢板表面明显且分布广泛,造成表面状态不合,需手工打磨或者补焊后才能使用,甚至局部常出现深度较深的麻坑,打磨后尺寸不合,无法继续使用,从而造成整张钢板报废。此外,船东对造船原料的质量要求也日益提高,轻微的麻坑也不愿意接受。这些因素使得许多重要船板用户陆续就此类缺陷提出质量异议,以该缺陷系产品表面质量问题为由纷纷提出索赔或退货,使钢厂蒙受了较大的经济损失,承担了很大的产品质量压力。 由于缺乏对麻坑缺陷的本质及产生原因的深入认识,这类缺陷也是困挠生产单元的重要问题。因此,找出船板表面麻坑缺陷产生的原因,理清其与一般热轧氧化皮缺陷之间的关系,构成了解决此类问题的关键。 本文将通过对船板生产、用户储存和使用进行跟踪走访,结合实验室对缺陷的分析和模拟实验结果,确定船板表面麻坑缺陷的特征和形成机理,并进而提出应对措施。 2、麻坑缺陷的基本特征 船板表面麻坑缺陷主要出现于船板用户的抛丸除鳞除锈预处理后,肉眼明显可见,典型 198

灰铸铁件加工面麻点状小孔缺陷的分析及防止

灰铸铁件加工面麻点状小孔缺陷的分析及防止铸件加工面麻点状小孔缺陷的形貌、分布特征和产生原因进行了分析。认为:麻点是由许多尺寸在0.3 mm 以下的小孔组成,多产生在凝固过程中冷速较慢的厚壁部位,主要分布在石墨密集区域,特别是在石墨封闭或半封闭区域;铸件w(C)和w(Si)量偏高,凝固过程中局部冷速过慢,切削用量偏大都有可能引起这种缺陷。提出了预防这种缺陷的四条措施。 关键词:麻点状小孔缺陷;石墨剥落;预防措施 灰铸铁的切削加工表面时常出现麻点缺陷,肉眼观察为小黑点的缺陷,实际是形态各异的小孔,因而易被误认为是表面缩松或是非金属夹杂物。这种缺陷比较容易出现在HT300 以下的各种牌号铸件,产生部位多在凝固过程中冷速较慢的厚壁部位。 1 缺陷的形貌特征 1.1 宏观形貌 对切削加工后表面存在缺陷的铸件进行解剖,试样的材料牌号为FC300(相当于HT300),化学成分为w(C)2.72%,w(Si)2.05%,w(Mn)0.76%,w(P)0.056%,w(S)0.095%。对试样进行打磨抛光后观察,其宏观形貌如图1 所示,表面有大小不等的麻 点状小孔。 1.2 微观形貌 文献[1]把这种缺陷称为“麻点”,并认为是“切削加工面上存在大量的直径0.2 mm 左右的小孔”。对图1 试样金相观察,这种缺陷是尺寸小于0.3 mm 的小孔,且小孔形状各异,圆孔甚少,尚难以用直径表达;并且尺寸大于0.2 mm 的小

孔(图中左侧的小孔);图3(c)石墨呈近似n 形分布形成的小孔;图3(d)石墨呈△形(图左上)和V 形或Y 形(图右下)分布形成的小孔;图3(e)石墨呈竹叶状分布形成的小孔。图3 的共同特征是微区金属被一根或几根片状石墨所包围,成孤岛状或半岛状,在切削力作用下剥落形成小孔;当切削力较大时,切屑崩落,也会超越石墨边界。但相对而言,当微区金属被石墨包围成封闭或半封闭状态时,在切削力作用下,会优先于其他微区的金属剥落而形成小孔。实际情况中不仅存在以上几种小孔,因为灰铸铁在凝固和继续冷却过程中,情况复杂,有很大的随机性,石墨形状和分布也不尽相同。当石墨与所包围的金属呈封闭或半封闭状态时,在切削加工(车、铣、铇、磨)过程中,石墨及其所包围的金属容易剥落,形成相应的小孔,如图4 所示。孔也较多。麻点状小孔缺陷的分布特征如下。 (1)缺陷多发生在石墨密集分布的区域,如图2 所示。图2(a)是0.2~0.3 mm 的小孔;图2(b)是0.1~0.2 mm 的小孔;图2(c)是0.05~0.10mm 的小孔。图2(d)是≤0.05mm 的小孔;图2(e)是长宽比≥5 的小孔。这些小孔的共同特点是周围片状石墨密集分布,石墨面积率为10%~15%,孔的边缘隐约可见片状石墨的痕迹,孔内呈灰色或黑色,并非块状石墨或其他。 (2)当石墨呈封闭或半封闭状态时,在切削力作用下,容易形成“麻点”。如当石墨分布呈多角形、C 形、O 形、n 形、△形、□形、V 形、U 形、竹叶状等形状时都有可能形成与上述形状相吻合的小孔,如图3 所示。图3(a)石墨呈多角形分布形成的小孔;图3(b)石墨呈C 形分布形成的小石墨密布区要比非密布区割裂基体严重,在切削力作用下,容易使石墨及其所包围的金属剥落而形成小孔,如图5 所示。图5(a)为尚未形成小孔的初始态,中心部位有2 处(1 区和2 区)可能出现剥落形成小孔;图5(b)为经第1 次打磨抛光后,1 区石墨上部开始连通;图5(c)为经第2 次打磨抛

铸造缺陷分析

发动机铸件汽缸体(汽缸盖)缺陷分析 概述 改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发运机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸造产量还是铸件技术要求及铸件质量,都有基本上满足了现代汽车发动机日益提高的要求。 以中小型乘用发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都有采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铁件。许多厂家为满足高强度薄壁铸铁件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机,高压造型线,高度自动化的制芯中心,强力抛丸设备,大多采用整体浸涂,烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测,热分析法铁水质量检测与判断装置,真空直读光谱议快速检测。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模式拟技术。可以毫不夸张地说,就硬件配件而言,我国发动机铸造水平丝毫不亚于当今世界上工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生产条件为现代生产条件。)

然而应该承认,在发动机铸造企业的经济效益与产品质量以及铸件所能达到的技术要求方面,我们与世界发达国家还有较大的差距。 提高生产质量,减少废品损失,是缩小与发达国家差距,发挥引进设备效能,提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。 1气孔 气孔通常是汽缸体铸件最常见缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一个永久的课题。 汽缸体的气孔多见于上型面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部。以及缸筒加工后的内表面。严重时由于型芯的发气量大而又未能充分排气,使上型面产生呛火现象,导致大面积孔洞与无规律的砂眼。在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵入性气孔。现对侵入性气孔分析出如下: 1.1原因 1.1.1 型腔排气不充分,排气系统总载面积偏小。 1.1.2浇注温度较低。 1.1.3浇注速度太慢;,铁液充型不平稳,有气体卷入。 1.1.4型砂水份偏高;砂型内灰分含量高,砂型透气性差。 1.1.5对于干式气缸套结构的发动机,水套砂芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻入排气通

混凝土质量缺陷蜂窝麻面处理专项方案

********建筑工程有限公司 编制日期:2019年5月3日 混 凝 土 质 量缺 陷整 改专项方案

一、质量情况 我司承建的“**************”工程,经质监检查发现质量问题如下:H栋二层梁板B-E/SB-1轴,KL96(1)梁,H栋五层B-5/B-D 柱,五层B-K/B-8轴LL30梁底,H栋五层B1-1/B1-4梁侧面,B1-C/B1-1梁侧面,H栋六层B-8/B-H剪力墙,H栋七层B-M/B-17飘板,H 栋七层B-K/B-18卫生间梁侧面,七-八楼梯步级,九层楼梯起步(板底),H栋七层B-D/B-1轴KL45梁侧H栋七层B-D/B-5柱脚,H栋九层B-H/B-9柱角,H栋九层B-K/B-7柱角, H栋十层B1-F/B1-5柱角,H栋八层B-M/B-18柱脚,H栋八层B-H/B-18柱脚,等局部混凝土构件有麻面、蜂窝、漏浆、尺寸有偏差、胀模、H栋12层梁箍筋间距过大梁第二排钢筋与第一排间距过大、伸入柱部分绑扎不牢固等问题,经五方主体开会对成因分析并制定了的修补及预防措施,加强在日后的施工中各工序的质量保证,以及加强对施工班组质量管理意识教育。 二、编制依据 《混凝土质量控制标准》GB50164-2011 《混凝土结构工程施工质量验收规范》GB50204-2011 《混凝土泵送施工技术规程》JGJ/T 10-2011 《混凝土裂缝修补灌浆材料技术条件》JG/T 333-2011 《混凝土结构工程施工规范》GB50666-2011 工程涉及的主要国家或行业规范、标准、规程、图集、地方标准、法规图集 三、补强措施及施工方法 (一)麻面 检查发现麻面是在H栋五层B-5/B-D柱,H栋五层B1-1/B1-4梁

压铸件的缺陷分析及检验要点

压铸件的缺陷分析及检验 一、流痕 ( 条纹 )( 抛光法去除 )A. 、模温低于 180( 铝合金 )b 、填充速度太高 c 、涂料过量 D 。金属流不同步。对 a 采取措施:调整内浇口面积 二、冷接: A 料温低或模温低, B ,合金成份不符,流动性差。 C ,浇口不合理,流程太长 D 。填充速度低 E 。排气不良。 F 、比压偏低。 三、。擦伤(扣模、粘模、拉痕、拉伤): A 型芯铸造斜度太小。 B ,型芯型壁有压伤痕。 C ,合金粘附模具。 D ,铸件顶出偏斜,或型芯轴线偏斜。 E ,型壁表面粗糙。 F ,脱模水不够。 G ,铝合金含铁量低于 0 。 6 %。措施:修模,增加含铁量。 四、凹陷(缩凹,缩陷,憋气,塌边) A .铸件设计不合理,有局部厚实现象,产生节热。 B ,合金收缩量大。 C ,内浇口面积太小。 D ,比压低。 E ,模温高 五、,气泡(皮下): A ,模温高。 B ,填充速度高。 C ,脱模水发气量大。 D ,排气不畅。 E ,开模过早。 F ,料温高。 六、气孔: A ,浇口位置和导流形状不当。 B ,浇道形状设计不良。 C ,压室充满度不够。 D ,内浇口速度太高,产生湍流。 E ,排气不畅。 F ,模具型腔位置太深。 G ,脱模水过多。 H ,料不纯。 七、缩孔: A ,料温高。 B ,铸件结构不均匀。 C ,比压太低。 D ,溢口太薄。 E ,局部模温偏高 八、花纹: A ,填充速度快。 B ,脱模水量太多。 C ,模具温度低。 九、裂纹: A ,铸件结构不合理,铸造圆角小等。 B ,抽芯及顶出装置在工作中受力不均匀,偏斜。 C ,模温低。 D ,开模时间长。 E ,合金成份不符。(铅锡镉铁偏高:锌合金,铝合金:锌铜铁高,镁合金:铝硅铁高 十、欠铸 A ,合金流动不良引起。 B ,浇注系统不良 C ,排气条件不良 十一、印痕(镶块或活动块及顶针痕等) 十二、网状毛刺: A ,模具龟裂。 B ,料温高。 C ,模温低。 D ,模腔表面不光滑。 E ,模具材料不当或热处理工艺不当。 F ,注射速度太高。

表面缺陷类型

表面缺陷的类型 一、凹缺陷recession 向内的缺陷 1.沟槽groove 具有一定长度的,底部圆弧形的或平的凹缺陷。 2.擦痕scratch 形状不规则和没有确定方向的凹缺陷 3.破裂crack 由于表面和基体完整性的破损造成具有尖锐底部的条状缺陷

4.毛孔pore 尺寸很小,斜壁很陡的孔穴,通常带锐边,孔穴的上边缘不高过基准面的切平面 5.砂眼blowhole 由于杂粒失落、侵蚀或气体影响形成的以单个凹缺陷形式出现的表面缺陷 6.缩孔shrinkage hole 铸件、焊缝等在凝固时,由于不均匀收缩所引起的凹缺陷

7.裂缝、缝隙、裂隙fissure,chink, crevice 条状凹缺陷,呈尖角形,有很浅的不规则开口 8.缺损wane 在工件两个表面的相交处呈圆弧状的缺陷 9.(凹面)瓢曲(concave)buckle 板材表面由于局部弯曲形成的凹缺陷

10.窝陷Dent 无隆起的凹坑,通常由于压印或打击产生塑形变形而引起的凹缺陷 二、凸缺陷raising 向外的缺陷 1.树瘤wart 小尺寸和有限高度的脊状或丘状凸起 2.疱疤blister 由于表面下层含有气体或液体所形成的局部凸起

3.(凸面)瓢曲(convex)buckle 板材表面由于局部弯曲所形成的拱起 4.氧化皮scale 和基体材料成分不同的表皮层剥落形成局部脱离的小厚度鳞片状凸起 5.夹杂物inclusion 嵌入工件材料里的杂物

6.飞边Burr 表面周边上尖锐的凸起,通常在对应的一边出现缺损 7.缝脊Flash 工件材料的脊状凸起,是由于铸模或锻模等成形加工时材料从模子缝隙挤出,或在电阻焊接两表面(电阻对焊,熔化对焊)时,在受压面的垂直方向形成 8.附着物deposits 堆积在工件上的杂物或另一工件的材料 三、混合表面缺陷combined surface imperfection 部分向外和部分向内的表面缺陷

▲铸钢件缺陷原因分析

铸钢件缺陷产生的原因分析 铸钢阀门由于其成本的经济性和设计的灵活性,因而得到广泛的运用。由于阀门铸件的基本结构属于中空结构,形状比较复杂,铸造工艺受到铸件尺寸、壁厚、气候、原材料和施工操作的种种制约,因此,铸钢件常常会出现砂眼、气孔、裂纹、缩松、缩孔和夹杂物等各种铸造缺陷, 生产控制有一定难度,尤以砂型铸造的合金钢铸件为多。因为钢中合金元素越多钢液的流动性越差,铸造缺陷就更容易产生。 一、铸钢的铸造工艺特点 铸钢的熔点较高,钢液易氧化、钢水的流动性差、收缩性大,其体收缩率为10~14%,线收缩为1.8~2.5%。为防止铸钢件产生浇不足、冷隔、缩孔和缩松、裂纹及粘砂等缺陷,必须采取较为复杂的工艺措施: 1、由于钢液的流动性差,为防止铸钢件产生冷隔和浇不足,铸钢件的壁厚不能小于8mm;浇注系统的结构力求简单;采用干铸型或热铸型;适当提高浇注温度,一般为1520°~1600℃,因为浇注温度高,钢水的过热度大、保持液态的时间长,流动性可得到改善。但是浇温过高,会引起晶粒粗大、热裂、气孔和粘砂等缺陷。因此一般小型、薄壁及形状复杂的铸件,其浇注温度约为钢的熔点温度+150℃;大型、厚壁铸件的浇注温度比其熔点高出100℃左右。 2、由于铸钢的收缩量较大,为防止铸件出现缩孔、缩松缺陷,在铸造工艺上大都采用冒口、冷铁和补贴等措施,以实现顺序凝固。

3、为防止铸钢件产生缩孔、缩松、气孔和裂纹缺陷,应使其壁厚均匀、避免尖角和直角结构、在铸型用型砂中加锯末、在型芯中加焦炭、以及采用空心型芯和油砂芯等来改善砂型或型芯的退让性和透气性。 4、铸钢的熔点高,相应的其浇注温度也高。高温下钢水与铸型材料相互作用,极易产生粘砂缺陷。因此,应采用耐火度较高的人造石英砂做铸型,并在铸型表面刷由石英粉或锆砂粉制得的涂料。为减少气体来源、提高钢水流动性及铸型强度,大多铸钢件用干型或快干型来铸造,如采用CO2硬化的水玻璃石英砂型。 二、铸钢件常见的铸造缺陷 铸钢件在生产过程中经常会发生各种不同的铸造缺陷,常见的缺陷形式有:砂眼、粘砂、气孔、缩孔、缩松、夹砂、结疤、裂纹等。 A )砂眼缺陷 砂眼是由于金属液从砂型型腔表面冲下来的砂粒(块),或者在造型、合箱操作中落入型腔中的砂粒(块)来不及浮入浇冒系统,留在铸件内部或表面而造成的。砂眼缺陷处内部或表面有充塞着型(芯)砂的小孔,是一种常见的铸造缺陷。 B)粘砂缺陷 在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙,难于清理。粘砂多发生在型、芯表面受热作用强烈的部位,分机械粘砂和化学粘砂两种。机械粘砂是由金属液渗入铸型表面的微孔中形成的,当渗入深度小于砂粒半径时,铸件不形成粘砂,只是表面粗糙,当渗入深度

产品常见缺陷及原因

一、产品常见缺陷及原因 1、铁水常见质量缺陷 成分不合格,主要是S出格。 标准要求,炼钢生铁S≤0.070%,Si≤1.25%,;铸造生铁S≤0.050% ,Si>1.25%。 炼钢生铁牌号:L04、L08、L10。 铸造生铁牌号:Z14、Z18、Z22、Z26、Z30、Z34。 S出格的主要原因:入炉原料及熔剂质量波动造成炉渣碱度低;炉缸物理热不足;炉渣MgO、Al2O3含量高,炉渣流动性差;炉况不顺,座料、塌料多。 2、连铸坯常见质量缺陷 表面缺陷:纵裂纹、横裂纹、角部裂纹、夹杂、重接、飜皮、结疤、凹坑、划痕、压痕、气孔、凸块、缩孔。 内部缺陷:中间裂纹、三角区裂纹、中心疏松、中心偏析、内部夹杂、皮下气泡 形状缺陷:鼓肚、对角线长度差(脱方)、切斜、不平度(板坯)、镰刀弯(板坯)、弯曲、边长超差、长度超差

2、中板、连轧钢带常见缺陷

3、棒材、高线、中型材常见缺陷

二、质量事故分类及管理 1、炼钢一整炉废品:小转炉按出钢量42吨、大转炉按出钢量120吨计算;若出钢钢包(大包)为准时,当废品重量大于或等于出钢量的75%时为一整炉。 2、炼铁一整炉废品:小于或等于400m3高炉每次出铁量大于或等于30吨为一整炉,大于400m3高炉每次出铁量大于或等于50吨为一整炉。 3、《冶金工业部钢铁产品质量事故管理制度》规定:钢铁产品质量事故分为三级,其中一级质量事故为重大质量事故。结合本公司生产实际,我公司质量事故级别分类按附录《质量事故分类表》进行。

4、质量事故发生后,责任单位对事故分析要做到“三不放过”,即不查明事故原因不放过,不分清责任不放过,不订出纠正和预防措施不放过。 5、发生一、二级质量事故,质量部开具《不合格报告》,责任单位填写纠正措施,质量部对纠正措施进行跟踪验证。发生三级质量事故,责任单位在《柳钢质量事故报告单》上填写纠正措施自行跟踪验证。

铸造铸件常见缺陷分析报告文案

铸造铸件常见缺陷分析 铸造工艺过程复杂,影响铸件质量的因素很多,常见的铸件缺陷名称、特征和产生的原因,见表。 常见铸件缺陷及产生原因 .学习帮手.

缺陷名称特征产生的主要原因 气孔 在铸件部或表 面有大小不等 的光滑孔洞①炉料不干或含氧化物、杂质多;②浇注工具或炉前添加剂未烘干;③型砂含水过多或起模和修型时刷水过多;④型芯烘干不充分或型芯通气孔被堵塞;⑤春砂过紧,型砂透气性差;⑥浇注温度过低或浇注速度太快等 缩孔与缩松缩孔多分布在 铸件厚断面 处,形状不规 则,孔粗糙①铸件结构设计不合理,如壁厚相差过大,厚壁处未放冒口或冷铁;②浇注系统和冒口的位置不对; ③浇注温度太高;④合金化学成分不合格,收缩率过大,冒口太小或太少 砂眼在铸件部或表 面有型砂充塞 的孔眼①型砂强度太低或砂型和型芯的紧实度不够,故型砂被金属液冲入型腔;②合箱时砂型局部损坏;③浇注系统不合理,浇口方向不对,金属液冲坏了砂 .学习帮手.

型;④合箱时型腔或浇口散砂未清理干净 粘砂铸件表面粗 糙,粘有一层 砂粒①原砂耐火度低或颗粒度太大;②型砂含泥量过高,耐火度下降;③浇注温度太高;④湿型铸造时型砂中煤粉含量太少;⑤干型铸造时铸型未刷涂斜或涂料太薄 夹砂铸件表面产生 的金属片状突 起物,在金属 片状突起物与 铸件之间夹有 一层型砂①型砂热湿拉强度低,型腔表面受热烘烤而膨胀开裂;②砂型局部紧实度过高,水分过多,水分烘干后型腔表面开裂;③浇注位置选择不当,型腔表面长时间受高温铁水烘烤而膨胀开裂;④浇注温度过高,浇注速度太慢 错型铸件沿分型面 有相对位置错①模样的上半模和下半模未对准;②合箱时,上下砂箱错位;③上下砂箱未夹紧或上箱未加足够压 .学习帮手.

冷轧常见缺陷

冷轧缺陷 冷轧常见缺陷 冷轧带钢得质量指标中,带钢得尺寸偏差、板形以及表面粗糙度等要求就是很主要得项目,消除产品在这些方面得缺陷就是冷轧生产中质量提高得关键之一。 一、表面缺陷 大多就是由于热轧带钢坯质量不高,酸洗不良或冷轧轧辊表面有缺陷,冷轧时得工作环境不佳以及操作上得不注意等原因造成得。鉴于表面缺陷所导致得废品比重很大,特别就是要求高得产品,表面缺陷必需严加控制。常见得表面缺陷有: (1) 结疤带钢表面呈“舌状”或“鳞状”得金属薄片,外形近似一个闭合得曲线。结疤一般有两种,一就是嵌在表面上不易脱落,另一就是粘合到表面上易脱落。 产生原因就是:由于轧制过程中带钢内部靠近表面层分布得细气泡及夹杂层在轧制中破裂变成结疤,钢锭由于浇注条件不同而产生得结疤;重皮也就是轧制带钢表面产生结疤得主要原因,此外在剧烈磨损了得轧辊或有缺陷(如砂眼)得轧辊上热轧,均能使带钢出现结疤;如果所轧带钢得表面上形成局部凸点等,则在轧制时由于受辗压而产生结疤状得细小凸瘤。 (2) 气泡带钢表面上分布有无规则且大小不同得圆形凸包。沿凸包切断后,在大多数情况下均成分层状露出。 产生原因:钢锭凝固时气体析出形成气泡,或酸洗时带钢内部孔隙进入氢原子形成气泡。

(3) 分层带钢截面上有局部得,明显得金属结构分离层。 产生原因:钢质不良,带钢中存在非金属夹杂,主要就是三氧化二铅与二氧化矽,另外,坯料有缩孔残余或严重得疏松等也能形成分层,从而使酸洗得带钢在有分层得地方形成突起与气泡出露。 (4)裂纹带钢表面完整性比较严重得破裂,它就是以纵向、横向或一定角度得形式出现得裂缝。 产生原因:轧制前带钢不均匀加热或过热,轧制时带钢不均匀延伸,或带钢表面有缺陷清除不彻底,以及带钢上有非金属夹杂及皮下气泡,另外,冷轧时不正确地调整轧辊与不正确得设计辊型,同样会产生裂纹,再有,用落槽得轧辊轧制带钢,张力太大,化学成分不合适等也可能会出现裂纹。 (4) 表面夹杂带钢表面上具有轧制方向上伸长得红棕色,淡黄色,灰白色得点状,条状与块状得非金属夹杂物。 产生原因:热轧时坯料在加热过程中,炉渣或耐火材料碎块粒附在坯料上,以及冶炼时造渣不好或盛钢桶不净所致。 (1) 麻点带钢表面缺陷中较常见得一种缺陷,其表面存在细小凹坑群与局部得粗糙面。一般其形状不规则,面积也小,但数量多。 产生原因:热轧时压入了氧化铁皮,酸洗未净,又经冷轧造成,或冷轧时粘在轧辊上得氧化铁皮压入带钢表面。轧辊磨损严重同样可造成带钢得麻面。冷轧时,带钢表面不干净及粘有杂质或杂质压入带钢表面后脱落,也会造成带钢得麻点。除此以外,带钢得严重锈蚀及酸洗过度都可成形麻点。 (2) 凹坑带钢表面存在得凹面,一般数量少,面积大。 产生原因;轧制时辊面上缺陷或异物(硬杂质)与氧化铁皮被轧入带钢表面脱

GT炉玻璃麻点缺陷分析

内部资料注意保密第1页共5页 主题:GT炉玻璃麻点缺陷分析 报告人:郑明生、龚国峰、杨贤珠 日期:2011年1月5日 报告内容: 一、综述 钢化玻璃出现麻点是个普遍现象,炉子温度越高麻点越严重。不同类型的钢化炉因结构和成型方式不同,产生麻点的原因也不尽相同。钢化玻璃上出现麻点的原因很多,就GT钢化炉来说,主要有四个方面的原因:GT炉设备问题、前处理传输辊道问题、玻璃磨边质量问题、玻璃洗涤质量问题。 1、GT炉设备问题 上片传输橡胶辊、炉体传输陶瓷辊、炉子内壁和压缩空气是GT炉造成玻璃麻点的主要原因。 ①上片传输橡胶辊 分析:上片台传输辊上积尘或粘有其它颗粒物(如玻璃小碎片等),或因橡胶辊硫化质量差而脱胶,造成部分颗粒物粘到玻璃的下表面并带入炉内加热。这些颗粒物小部分被直接压入热 玻璃表面,形成麻点;其余部分被粘到陶瓷辊上,成为陶瓷辊形成麻点的原因。 措施:保持上片台传输辊面清洁。 建议:当玻璃在上片台破碎时,需要及时清理橡胶辊面;当更换上片台橡胶辊时,需要确认传输辊的质量(劣质的橡胶辊可能有硫化物析出)。 ②炉体传输陶瓷辊 分析:除陶瓷辊面被粘上颗粒物外,陶瓷辊的本身质量问题也可能造成陶瓷辊面的颗粒状凸起或凹点。这些颗粒物或凹凸点将会给在热玻璃表面留下麻点。 措施:定期清洗陶瓷辊。 建议:用废玻璃洗炉时,需要确保玻璃下表面的干净;最好每个月冷炉清洗陶瓷辊一次(先用细砂纸均匀砂磨,再用湿纱布擦洗);尽量不要选用劣质陶瓷辊(一旦发生质量事故将得不 偿失)。 ③炉子内壁 分析:上炉体升降时,炉体端部分陶瓷隔板(影子墙)相互磨擦,造成陶瓷粉末掉落在陶瓷辊面上(新快速DB4炉子已经将前面6节炉体整合成两组升降,并在升降最为频繁的弯曲区炉 体端部增加了金属隔板设计,相对于旧炉来说,新炉因这种情况造成玻璃麻点的概率已经 是很低了);平衡气流、热吹起和真空射流等将在炉内形成空气流动,如果炉壁卫生状态 较差或炉壁陶瓷块间隙太大,壁上的污垢和保温棉絮将会被吹落到陶瓷辊面上;这些落在 陶瓷辊面上的粉末、污垢和棉絮将成为陶瓷辊形成麻点的原因。 措施:保持炉子内壁清洁,必要时适当陶瓷块间隙(如果保温棉在炉内可见,说明保温棉或陶瓷块间隙有问题)。

熔模铸造的铸件缺陷分析与防止

熔模铸造的铸件缺陷分析与防止 时间:2009-10-12 07:22来源:未知 作者:吴光来 点击: 60次 熔模铸造的铸件缺陷分析与防止 内容提要 1 铸件尺寸超差 1) 模料及制模工艺对铸件尺寸的影响 2) 制壳材料及工艺对铸件尺寸的影响 3) 浇注条件对铸件尺寸的影响 2 铸件表面粗糙1) 影响熔模表面粗糙度的因素 2) 影响型壳表面粗糙度的因素 3) 影响金属液精确复 熔模铸造的铸件缺陷分析与防止 内容提要 § 1 铸件尺寸超差 1)模料及制模工艺对铸件尺寸的影响 2)制壳材料及工艺对铸件尺寸的影响 3)浇注条件对铸件尺寸的影响 § 2 铸件表面粗糙 1)影响熔模表面粗糙度的因素 2)影响型壳表面粗糙度的因素 3)影响金属液精确复型的因素 4)其它影响表面粗糙度的因素 § 3 铸件表面缺陷 1)粘砂 2)夹砂、鼠尾和凹陷 3)斑纹 4)麻点 5)金属刺(毛刺) 6)金属珠(铁豆) § 4 孔洞类缺陷 1)气孔(集中气孔) 2)弥散型气孔 3)缩孔、缩松 4)缩陷

§ 5 裂纹和变形 1)热裂、冷裂 2)铸件脆动和变形 § 6 其它缺陷 1)砂眼 2)渣孔 3)冷隔、浇不到 4)跑火 熔模铸件缺陷的主要因素有: 易熔模质量、型壳质量和金属液质量等 § 1、铸件质量超差 1、模料及制模工艺对铸件尺寸的影响 熔模尺寸偏差主要由于制模工艺不稳定而造成的,如合型力大小、压蜡温度(压蜡温度越高,熔模线收缩率越大)、压注压力(压注压力越大,熔模线收缩率越小)、保压时间(保压时间越长其收缩越小)、压型温度(压型温度越高,线收缩也越大)、开型时间、冷却方式、室温等因素波动而造成熔模尺寸偏差。 2、制壳材料及工艺对铸件尺寸的影响 型壳热膨胀影响着铸件尺寸。而型壳热膨胀又和制壳材料及工艺有关。 3、浇注条件对铸件尺寸的影响 浇注时型壳温度、金属液浇注温度、铸件在型壳中的位置等均会影响铸件尺寸 为防止铸件尺寸超差,应对影响铸件尺寸精度的众多因素都加以重视,严格控制原材料质量及工艺,以稳定铸件尺寸。 § 2、铸件表面粗糙 1、影响熔模表面粗糙度的因素: 熔模表面粗糙度与所有压型表面粗糙度、压制方式(糊状模料压制或液态模料压制)和压制工艺参数选择有关。 糊状模料压制液态模料压制

小孔腐蚀论述

案例论述小孔腐蚀的特征机理与防腐蚀方法孔蚀又叫坑蚀,俗称点蚀、小孔腐蚀,它只发生在金属表面的局部地区。粗糙表面往往不容易形成连续而完整的保护膜,在膜缺陷处,更易产生孔蚀;加工过程中的锤击坑或表面机械擦伤部位将优先发生和发展孔蚀。一旦形成了孔蚀,如果存在力学因素的作用,就会诱发应力腐蚀或疲劳腐蚀裂纹。除此之外,孔蚀的发生不一定需要表面初始状态存在机械伤痕或缺陷,尤其对于孔蚀敏感的材料,即使表面非常光滑同样也会发生。孔蚀时,虽然金属失重不大,但是由于腐蚀集中在某些点、坑上,阳极面积很小,因而有很高的腐蚀速度,加上检查蚀孔比较困难,因为多数蚀孔很小,通常又被腐蚀产物所遮盖,直至设备腐蚀穿孔后才被发现,所以孔蚀是隐患性很大的腐蚀形态之一。 下面是一则案例事故,案情介绍:1990年12月9日,上海自来水公司某水厂,一只1000公斤的液氯瓶在近瓶体中部处突然穿了一个6-8毫米的小孔,从瓶内喷出大量酱油状液体和氯气。幸亏及时发现,消防队和有关工厂的专门技术人员赶到现场采取了有效的封堵和消毒措施,受损的液氯瓶立即被送往某化工厂,在处理池内加入10吨烧碱吸收氯气,从而避免了一起重大事故。那么这场事故有事如何酿成的呢?首先,要了解下孔蚀的机理。易钝化的金属在含有活性阴离子(最常见的是Cl-)的介质中,最容易发生孔蚀。孔蚀的过程大体上有蚀孔的形成与成长两个阶段,例如不锈钢在充气的NaCl溶液中的腐蚀过程。 第一种叫做孔蚀核。不锈钢是钝化能力比较强的金属,在无活性阴离子介质中,其钝化膜的溶解和修复(再钝化)处于动态平衡状态中。而在NaCl溶液中,由于存在Cl-将使平衡受到破坏,因为氯离子能在某些活性点上由于氧原子吸附在金属表面,冰河金属离子结合成可溶性氯化物,形成孔径很小(约为

铝铸件常见缺陷及分析

. 铝铸件常见缺陷及分析 -------------------------------------------------------------------------------- 氧化夹渣一 缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。断口多呈灰白色 光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现或黄色,经x 产生原因:.炉料不清洁,回炉料使用量过多1 浇注系统设计不良2. 3.合金液中的熔渣未清除干净4.浇注操作不当,带入夹渣5.精炼变质处理后静置时间不够防止方法:1.炉料应经过吹砂,回炉料的使用量适当降低2.改进浇注系统设计,提高其挡渣能力3.采用适当的熔剂去渣4.浇注时应当平稳并应注意挡渣.精炼后浇注前合金液应静置一定时间5 气泡二气孔一般是发亮的氧化皮,具有光滑的表面,缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,光透视或机械加X有时呈油黄色。表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过光底片上呈黑色气泡在X工发现气孔产生原因:.浇注合金不平稳,卷入气体1) 马粪等如煤屑、草根芯)砂中混入有机杂质(.型2( 3.铸型和砂芯通气不良4.冷铁表面有缩孔5.浇注系统设计不良:防止方法1.正确掌握浇注速度,避免卷入气体。砂中不得混入有机杂质以减少造型材料的发气量(芯)2.型砂的排气能力芯)3.改善( 4.正确选用及处理冷铁5.改进浇注系统设计缩松三缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具 光底x在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在有大平面的薄壁处。断口等检查方法发现片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍产生原因:1.冒口补缩作用差2.炉料含气量太多. . .内浇道附近过热3 .砂型水分过多,砂芯未烘干4 5.合金晶粒粗大6.铸件在铸型中的位置不当7.浇注温度过高,浇注速度太快 防止方法: 1.从冒口补浇金属液,改进冒口设计 2.炉料应清洁无腐蚀 3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用 4.控制型砂水分,和砂芯干燥 5.采取细化品粒的措施 6.改进铸件在铸型中的位置降低浇注温度和浇注速度 四裂纹 缺陷特征: 1.铸造裂纹。沿晶界发展,常伴有偏析,是一种在较高温度下形成的裂纹在体积收缩较大的合金和形状较复杂的铸件容易出现 2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。常在产生应力和热膨张系数较大的合金冷却过剧。或存在其他冶金缺陷时产生 产生原因:1.铸件结构设计不合理,有尖角,壁的厚薄变化过于悬殊 2.砂型(芯)退让性不良 3.铸型局部过热

冷轧板常见表面缺陷及成因

冷轧板常见表面缺陷及成因 冷轧板常见表面缺陷及成因 冷轧板常见表面缺陷有麻点缺陷、冷硬板中部穿裂、冷硬板边裂、带状翘皮、不连续点线状缺陷、黑(灰)线(带)缺陷等。 1麻点缺陷。单个麻点呈不规则分布,整体呈现带状分布。麻点在微观上由许多微小的凹坑组成,凹坑内部看到很多细小的颗粒。凹坑部分杂质元素与结晶器保护渣成分基本一致,说明这些夹杂主要来自结晶器保护渣。 2冷硬板中部穿裂。中部穿裂部位悬挂着许多鳞状碎片,大块的鳞状碎片边沿包含许多细小的小颗粒,断口为脆性形貌。细小颗粒与结晶器保护渣成分相似,确定这些夹杂主要来自结晶器保护渣。 3冷硬板边裂。边裂处呈锯齿状,裂口部位包含大量大小不一的颗粒,颗粒与基体之间无明显间隙,部分颗粒沿平行于裂口方向呈线状分布,同样这些颗粒来自结晶器保护渣。 4带状翘皮。带状翘皮在板材近表层有一明显薄层与基体发生分离或半分离状态,翘皮部位皮下含有大量粉状物质,能谱分析,这些物质主要来源于变性后的结晶器保护渣。 5不连续点线状缺陷。板材厚度薄于1mm,该缺陷易发生。线状缺陷多成簇出现,缺陷底部残留了硅酸盐复合夹杂物。主要是CSP铸坯中坯壳及皮下、中心部位富集的夹杂物,在热轧过程中,随着厚度变薄,逐渐呈现。 6黑(灰)线(带)缺陷。酸洗后的宏观形貌有条状、长条状、块状或多点状,轮廓特别分明。由于 1)轧辊质量不佳,主要是氧化膜剥落、老化粗糙、剥落、异物粘附等。 2)除鳞不干净,主要由于喷嘴堵塞、喷嘴压力低等因素。 3)工艺因素,机架间冷却水控制不规范等。 4)连铸至F7前输送辊道划伤,主要由于炉辊结瘤、异物粘结、死辊等。 以上因素导致氧化铁皮压入,从而在冷硬板上形成黑(灰)线(带)缺陷。 冷轧产品质量缺陷及改正措施 一、冷轧与镀锌产品外在质量 冷轧薄板之所以说是精品,一个主要的原因就是冷轧薄板对表面质量的严格要求。可以说,在整个冶金行业中,冷轧薄板对表面质量是要求最高最严的,尤其是宽而薄的冷轧钢带产品和对冲压成型性能有严格要求的产品。这也是下游工序如涂漆、涂镀、冲压成型的要求,如宝钢经多轮攻关并成功开发O3板、O5板,就是为了向汽车制造厂家供应高级表面质量要求的冷轧产品。一般而言,冷轧产品的表面质量按表面缺陷情况分为普通表面质量、较高级表面质量和高级表面质量三个级别,具体的定义在相关的标准中有规定。下表列出冷轧产品可能出现的表面缺陷的种类及可能产生的工序及原因,当然,所列缺陷不一定完全,产生原因及工序也不一定完全正确,这有待于在今后的实际生产中逐渐补充完善。 冷轧以及热镀锌钢板与钢带表面缺陷表 序号缺陷名称产生缺陷的可能工序可能的产生原因 冷轧钢板与钢带表面缺陷 一、表面缺陷 (一)、钢板与钢带不允许存在的缺陷 1气泡炼钢炼钢时产生气泡,在热轧时又未焊合,酸洗冷轧后暴露在外 2裂纹炼钢、热轧与冷轧及各加工工序由于炼钢热应力、轧制形变或加工致应力集中造成3结疤或结瘤酸洗与冷轧酸洗未洗尽氧化皮,轧制时镶嵌于表面形成结疤 4拉裂冷轧、镀锌与平整张力过大、张力波动过大以及张力不稳定等原因造成 5夹杂炼钢炼钢原因

常见铸造缺陷产生的原因及防止方法

常见铸造缺陷产生的原因及防止方法 铸件缺陷种类繁多,产生缺陷的原因也十分复杂。它不仅与铸型工艺有关,而且还与铸造合金的性制、合金的熔炼、造型材料的性能等一系列因素有关。因此,分析铸件缺陷产生的原因时,要从具体情况出发,根据缺陷的特征、位置、采用的工艺和所用型砂等因素,进行综合分析,然后采取相应的技术措施,防止和消除缺陷。 一、浇不到 1、特征 铸件局部有残缺、常出现在薄壁部位、离浇道最远部位或铸件上部。残缺的边角圆滑光亮不粘砂。 2、产生原因 (1)浇注温度低、浇注速度太慢或断续浇注; (2)横浇道、内浇道截面积小; (3)铁水成分中碳、硅含量过低; (4)型砂中水分、煤粉含量过多,发气量大,或含泥量太高,透气性不良;] (5)上砂型高度不够,铁水压力不足。 3、防止方法 (1)提高浇注温度、加快浇注速度,防止断续浇注; (2)加大横浇道和内浇道的截面积; (3)调整炉后配料,适当提高碳、硅含量; (4)铸型中加强排气,减少型砂中的煤粉,有机物加入量; (5)增加上砂箱高度。 二、未浇满 1、特征 铸件上部残缺,直浇道中铁水的水平面与铸件的铁水水平面相平,边部略呈圆形。 2、产生原因 (1)浇包中铁水量不够; (2)浇道狭小,浇注速度又过快,当铁水从浇口杯外溢时,操作者误认为铸型已经充满,停浇过早。

3、防止方法 (1)正确估计浇包中的铁水量; (2)对浇道狭小的铸型,适当放慢浇注速度,保证铸型充满。 三、损伤 1、特征 铸件损伤断缺。 2、产生原因 (1)铸件落砂过于剧烈,或在搬运过程中铸件受到冲撞而损坏; (2)滚筒清理时,铸件装料不当,铸件的薄弱部分在翻滚时被碰断; (3)冒口、冒口颈截面尺寸过大;冒口颈没有做出敲断面(凹槽)。或敲除浇冒口的方法不正确,使铸件本体损伤缺肉。 3、防止方法 (1)铸件在落砂清理和搬运时,注意避免各种形式的过度冲撞、振击,避免不合理的丢放; (2)滚筒清理时严格按工艺规程和要求进行操作; (3)修改冒口和冒口颈尺寸,做出冒口颈敲断面,正确掌握打浇冒口的方向。 四、粘砂和表面粗糙 1、特征 粘砂是一种铸件表面缺陷,表现为铸件表面粘附着难以清除的砂粒;如铸件经清除砂粒后出现凹凸不平的不光滑表面,称表面粗糙。 2、产生原因 (1)砂粒太粗、砂型紧实度不够; (2)型砂中水分太高,使型砂不易紧实; (3)浇注速度太快、压力过大、温度过高; (4)型砂中煤粉太少; (5)模板烘温过高,导致表面型砂干枯;或模板烘温过低,型砂粘附在模板上。 3、防止方法 (1)在透气性足够的情况下,使用较细原砂,并适当提高型砂紧实度;

铸造铸件常见缺陷分析

铸造铸件常见缺陷分析 工艺过程复杂,影响铸件质量的因素很多,常见的铸件缺陷名称、特征和产生的原因,见表。 1

常见铸件缺陷及产生原因 缺陷名称特征产生的主要原因 气孔 在内部或表面 有大小不等的 光滑孔洞①炉料不干或含氧化物、杂质多;②浇注工具或炉前添加剂未烘干;③型砂含水过多或起模和修型时刷水过多;④型芯烘干不充分或型芯通气孔被堵塞;⑤春砂过紧,型砂透气性差;⑥浇注温度过低或浇注速度太快等 缩孔与缩松缩孔多分布在 铸件厚断面 处,形状不规 则,孔内粗糙①铸件结构设计不合理,如壁厚相差过大,厚壁处未放冒口或冷铁;②浇注系统和冒口的位置不对; ③浇注温度太高;④合金化学成分不合格,收缩率过大,冒口太小或太少 2

砂眼 在铸件内部或 表面有型砂充 塞的孔眼①型砂强度太低或砂型和型芯的紧实度不够,故型砂被金属液冲入型腔;②合箱时砂型局部损坏;③浇注系统不合理,内浇口方向不对,金属液冲坏了砂型;④合箱时型腔或浇口内散砂未清理干净 粘砂铸件表面粗 糙,粘有一层 砂粒①原砂耐火度低或颗粒度太大;②型砂含泥量过高,耐火度下降;③浇注温度太高;④湿型铸造时型砂中煤粉含量太少;⑤干型铸造时铸型未刷涂斜或涂料太薄 夹砂铸件表面产生 的金属片状突 起物,在金属 片状突起物与 铸件之间夹有①型砂热湿拉强度低,型腔表面受热烘烤而膨胀开裂;②砂型局部紧实度过高,水分过多,水分烘干后型腔表面开裂;③浇注位置选择不当,型腔表面长时间受高温铁水烘烤而膨胀开裂;④浇注温度过高,浇注速度太慢 3

一层型砂 错型铸件沿分型面 有相对位置错 移①模样的上半模和下半模未对准;②合箱时,上下砂箱错位;③上下砂箱未夹紧或上箱未加足够压铁,浇注时产生错箱 冷隔铸件上有未完 全融合的缝隙或洼坑,其交接处是圆滑的①浇注温度太低,合金流动性差;②浇注速度太慢或浇注中有断流;③浇注系统位置开设不当或内浇道横截面积太小;④铸件壁太薄;⑤直浇道(含浇口杯)高度不够;⑥浇注时金属量不够,型腔未充满 浇不足 铸件未被浇满 裂纹铸件开裂,开 裂处金属表面①铸件结构设计不合理,壁厚相差太大,冷却不均匀;②砂型和型芯的退让性差,或春砂过紧;③落 4

混凝土表面裂缝及蜂窝麻面等缺陷的形成原因和预防措施

混凝土表面裂缝及蜂窝麻面等缺陷的形成原因和预防措施 随着现代施工水平的不断提高,建筑工程对混凝土的各种性能要求越来越高,不仅要求混凝土工作性能好、强度指标高、耐久性长等,而且还要求混凝土有较高的观感质量和平整度,在后期装饰工程施工时,可省掉常规的混合砂浆找平层施工工序,在混凝土构件表面直接批腻子找平,从而节约大量的人工、材料和工期。 但是在混凝土工程实际施工过程中,不论现场条件和管理水平如何,混凝土都不可能在非常理想的条件下进行,往往会由于种种原因,在混凝土的浇筑过程中或刚刚施工完不久产生表面裂缝、孔洞、蜂窝、麻面、露筋等表面缺陷。不管是哪一种表面缺陷,都会对混凝土的外观质量带来不利影响。因此,分析混凝土表面缺陷的形成原因,并在施工中有针对性的采取预防措施,是减少表面缺陷、提高混凝土外观质量的重要途径。在混凝土常见表面质量缺陷中,孔洞、露筋等的形成原因比较直观且相对容易控制,本文不再进行赘述,下面对表面裂缝和蜂窝麻面的形成原因和预防措施作重点分析与阐述。 一、混凝土土表面裂缝的形成原因及预防措施 混凝土表面的裂缝大都是因为混凝土的收缩引起的,混凝土的收缩主要分为两类情况,一类是刚刚浇筑完成的混凝土因表面水分蒸发引起的混凝土干缩,另一类是因为水泥水化热使混凝土内外产生温度差而引起的表面收缩。 刚刚浇筑完成的混凝土,表面因失水蒸发而收缩,因受到内部混凝土的约束而产生收缩应力,当收缩应力大于表层混凝土抗拉强度时就会产生裂缝。这类裂缝通常不连续,且很少发展到边缘,一般呈对角斜线状,长度不超过30cm,较严重时裂缝之间也会相互贯通。对这类裂缝最有效的预防措施是在混凝土浇筑时保护好混凝土浇筑面,避免风吹日晒,混凝土浇筑完毕后要立即将表面加以覆盖,并及时洒水养护。另外,在混凝土中掺加适量的引气剂也有助于减少收缩裂缝。 混凝土在硬化过程中,会释放大量的水化热,使混凝土内部温度不断上升,在大体积混凝土中,水化热使温度上升更加明显,在混凝土表面与内部之间形成很高的温度差和相对变形。表层混凝土收缩时受到阻碍,混凝土受到拉应力作用,一旦超过混凝土的抗拉强度即产生裂缝。为了尽可能减少收缩约束以使混凝土能有足够强度抵抗所引起的应力,就必须有效控制混凝土内部升温速率。相应的预防措施有:采用低水化热水泥,降低水泥用量,在混凝土中掺加适量的矿粉煤灰,能使水化热释放速度减缓;控制原材料的温度,在混凝土结构内部采用冷却管通以循环水也能及时释放水化热能。 二、混凝土表面蜂窝麻面的形成原因及预防措施 (一)内部原因

相关主题
文本预览
相关文档 最新文档