当前位置:文档之家› 随机过程

随机过程

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

第三章_随机过程教案

第三章随机过程 本节首先介绍利用matlab现有的库函数根据实际需要直接产生均分分布和高斯分布随机变量的方法,然后重点讲解蒙特卡罗算法。 一、均匀分布的随机数 利用MATLAB库函数rand产生。rand函数产生(0,1)内均匀分布的随机数,使用方法如下: 1)x=rand(m);产生一个m×m的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 2)x=rand(m,n);产生一个m×n的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 3)x=rand;产生一个随机数。 举例:1、产生一个5×5服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5) 2、产生一个5×3服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5,3) 二、高斯分布的随机数 randn函数产生均值为0,方差为1的高斯分布的随机数,使用方法如下: 1)x=randn(m);产生一个m×m的矩阵,所含元素都是均值

为0,方差为1的高斯分布的随机数。 2)x=randn(m,n);产生一个m×n的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 3)x=randn;产生一个均值为0,方差为1的高斯分布的随机数。 举例:1、产生一个5×5的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5) 2、产生一个5×3的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5,3) 3、产生一个5×3的矩阵,所含元素都是均值为0,方差为4的高斯分布的随机数。 x=2×randn(5,3) 三、蒙特卡罗仿真 1、蒙特卡罗算法 蒙特卡罗估计是指通过随机实验估计系统参数值的过程。蒙特卡罗算法的基本思想:由概率论可知,随机实验中实验的结果是无法预测的,只能用统计的方法来描述。故需进行大量的随机实验,如果实验次数为N,以 N表示事件A发 A 生的次数。若将A发生的概率近似为相对频率,定义为 N N。 A 这样,在相对频率的意义下,事件A发生的概率可以通过重

通信原理教程+樊昌信+习题答案第二章

> 第二章习题 习题 设随机过程X (t )可以表示成: ()2cos(2), X t t t πθ=+-∞<<∞ 式中,θ是一个离散随机变量,它具有如下概率分布:P (θ=0)=,P (θ=π/2)= 试求E [X (t )]和X R (0,1)。 解:E [X (t )]=P (θ=0)2cos(2)t π+P (θ= /2)2cos(2)=cos(2)sin 22 t t t π πππ+ - cos t ω : 习题 设一个随机过程X (t )可以表示成: ()2cos(2), X t t t πθ=+-∞<<∞ 判断它是功率信号还是能量信号并求出其功率谱密度或能量谱密度。 解:为功率信号。 []/2 /2/2 /21()lim ()()1lim 2cos(2)*2cos 2()T X T T T T T R X t X t dt T t t dt T ττπθπτθ→∞-→∞ -=+=+++? ? 222cos(2)j t j t e e πππτ-==+ 2222()()()(1)(1) j f j t j t j f X P f R e d e e e d f f πτπππττττδδ∞-∞---∞-∞==+=-++?? @ 习题 设有一信号可表示为: 4exp() ,t 0 (){0, t<0 t X t -≥= 试问它是功率信号还是能量信号并求出其功率谱密度或能量谱密度。 解:它是能量信号。X (t )的傅立叶变换为: (1)004 ()()441j t t j t j t X x t e dt e e dt e dt j ωωωωω +∞-+∞--+∞-+-∞====+??? 则能量谱密度 G(f)=2 ()X f =2 22 416 114j f ωπ=++ 习题 X (t )=12cos 2sin 2x t x t ππ-,它是一个随机过程,其中1x 和2x 是相互统计独立的高斯随机变量,数学期望均为0,方差均为2σ。试求: ! (1)E [X (t )],E [2()X t ];(2)X (t ) 的概率分布密度;(3)12(,)X R t t

随机过程

《随机过程》课程教学大纲 课程编号:02200021 课程名称:随机过程 英文名称:Stochastic Processes 课程类别:选修课 总学时:72 讲课学时:68 习题课学时:4 学分: 4 适用对象:数学与应用数学、信息与计算科学专业 先修课程:数学分析、高等代数、概率论与数理统计 一、课程简介 随机过程是研究客观世界中随机演变过程规律性的学科,它的基本知识和方法不仅为数学、概率统计专业所必需,也为工程技术、生物信息及经济领域的应用和研究所需要。本课程介绍随 机过程研究领域的一些基础而重要的知识和技能。 二、课程性质、目的和任务 随机过程是概率论的后续课程,具有比概率理论更加实用的应用方面,处理问题也更加贴近实际情况。通过这门课程的学习,使学生了解随机过程的基本概念,掌握最常见而又有重要应用 价值的诸如Poisson过程、更新过程、Markov过程、Brown运动的基本性质,能够处理基本的随 机算法。提高学生利用概率理论数学模型解决随机问题的能力。通过本课程的学习,可以让数学 专业的学生很方便地转向在金融管理、电子通讯等应用领域的研究。 三、课程基本要求 通过本课程的学习,要求学生掌握随机过程的一般概念,知道常见的几类随机过程的定义、背景和性质;掌握泊松过程的定义与基本性质,了解它的实际背景,熟悉它的若干推广;掌握更 新过程的定义与基本性质、更新函数、更新方程,了解更新定理及其应用,知道更新过程的若干 推广;掌握离散时间的马尔可夫链的基本概念,熟练掌握转移概率、状态分类与性质,熟悉极限 分布、平稳分布与状态空间的分解,了解分枝过程;掌握连续时间的马尔可夫链的定义、柯尔莫 哥洛夫方程;掌握布朗运动的定义与基本性质,熟悉随机积分的定义与基本性质,了解扩散过程 与伊藤公式,会求解一些简单的随机微分方程。 四、教学内容及要求 第一章预备知识 §1.概率空间;§2.随机变量和分布函数;§3.数字特征、矩母函数和特征函数;§4. 条件概率、条件期望和独立性;§5.收敛性 教学要求:本章主要是对概率论课程的复习和巩固,为后续学习做准备。 第二章随机过程的基本概念和类型

第二章随机过程的基本概念

第二章随机过程的基本概念 §1随机过程及其概率分布 、随机过程概念: 一、随机过程概念: 初等概率论所研究的随机现象,基本上可以用随机变量或随机向量来描述.但在实际中有些随机现象要涉及(可列或非可列)无穷多个随机变量.

例1.某人扔一枚硬币,无限制的重复地扔下去,要表示无限多次扔的结果,我们不妨记正面为1,反面为0.第次扔的结果是一个,其分布,无限多次扔n n r vX ?{}{}1012n n P X P X ====,无限制的重复地扔,要表示无限多次扔的结果,我们不妨反面为其分布无限多次扔的结果是一个随机过程,可用一族相互独 立,,或表示.r v ?1X ,2X {},1n X n ≥

n n X 0n n 0 1 2 3 4 5 6 7 8 910 ……

例2.当固定时,电话交换站在时间内来到的呼叫次数是,记, ,其中是单位时间内平均来到的呼叫次数,而,若从变到,时刻来到的呼叫次数需用一族随机变量表 它为非降的阶,在有呼唤来到的时刻阶跃地增加,假定在任一呼唤来到的时刻不可能来到多)(0)t t ≥[0,] t r v ?()X t ()()X t P t λ λ0λ>t 0∞t {}(),[0,)X t t ∈∞()X t ,电话交换站在记,若时刻示, 是一个随机过程. 对电话交换站作一次观察可得到一条表示以前来到的呼唤曲线,它为非降的阶梯曲线,在有呼唤来到的时刻阶跃地增加,(假定在任一呼唤来到的时刻不可能来到多于一次呼唤). E t 1()x t

同理,第二次观察,得到另一条阶梯形曲线; 同理,第n 次观察,得到另一条阶梯形曲线. 2()x t ()n x t ,第二次观察,得到另一条阶梯形曲,第,得到另一条阶梯形曲 总之,一次试验得到阶梯形曲线形状具有随机性

应用随机过程教学大纲

《应用随机过程A》课程教学大纲 课程编号: L335001 课程类别:专业限选课适用专业:统计学专业 学分数:3学分学时数: 48学时 应修(先修)课程:数学分析、概率统计、微分方程、高等代数 一、本课程的地位和作用 应用随机过程是数学与应用数学专业的专业限选课程,是统计学专业的专业课程之一。随机过程是研究客观世界中随机演变过程规律性的学科,随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分。随着科学技术的发展,它已广泛地应用于通信、控制、生物、地质、经济、管理、能源、气象等许多领域,国内外许多高等工科院校在研究生中设此课程,大量工程技术人员对随机分析的方法也越来越重视。通过本课程的学习,使学生初步具备应用随机过程的理论和方法来分析问题和解决问题的能力。 二、本课程的教学目标 使学生掌握随机过程的基本知识,通过系统学习,学生的概率理论数学模型解决随机问题的能力得到更加进一步的提高,特别在经济应用上,通过本课程的学习,可以让数学专业的学生很方便地转向在金融管理、电子通讯等应用领域的研究。 三、课程内容和基本要求 ?”记号标记既(用“*”记号标记难点内容,用“?”记号标记重点内容,用“* 是重点又是难点的内容。) 第一章预备知识 1.教学基本要求 (1)掌握概率空间, 随机变量和分布函数, 矩母函数和特征函数的概念和相关性质。 (2)掌握条件概率, 条件期望和独立性的概念和相关性质。 (3)了解概率中收敛性的概念和相互关系。 2.教学内容 (1)概率空间 (2)▽随机变量和分布函数

(3)▽*数字特征、矩母函数和特征函数 (4)▽*条件概率、条件期望和独立性 (5)收敛性 第二章随机过程的基本概念和类型 1.教学基本要求 (1)掌握随机过程的定义。 (2)了解有限维分布族和Kolmogorov定理。 (3)掌握独立增量过程和独立平稳增量过程概念。 2.教学内容 (1)基本概念 (2)▽*有限维分布和Kolmogorov定理 (3)▽随机过程的基本类型 第三章 Poisson过程 1.教学基本要求 (1)了解计数过程的概念。 (2)掌握泊松过程两种定义的等价性。 (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布。(4)了解泊松过程的推广。 2.教学内容 (1)▽ Poisson过程 (2)▽* 与Poisson过程相联系的若干分布 (3)* Poisson过程推广 第四章更新过程 1.教学基本要求 (1)掌握更新过程的定义和基本性质。 (2)掌握更新函数、更新方程。 (3)了解更新定理及其应用,更新过程的若干推广。 (4)了解更新过程的若干推广。 2.教学内容

通信原理教程+樊昌信+习题答案第二章Word版

第二章习题 习题2.1 设随机过程X (t )可以表示成: ()2cos(2), X t t t πθ=+-∞<<∞ 式中,θ是一个离散随机变量,它具有如下概率分布:P (θ=0)=0.5,P (θ=π/2)=0.5 试求E [X (t )]和X R (0,1)。 解:E [X (t )]=P (θ=0)2cos(2)t π+P (θ=/2)2cos(2)=cos(2)sin 22 t t t π πππ+ - cos t ω 习题2.2 设一个随机过程X (t )可以表示成: ()2cos(2), X t t t πθ=+-∞<<∞ 判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。 解:为功率信号。 []/2 /2/2 /21()lim ()()1lim 2cos(2)*2cos 2()T X T T T T T R X t X t dt T t t dt T ττπθπτθ→∞-→∞ -=+=+++? ? 222cos(2)j t j t e e πππτ-==+ 2222()()()(1)(1) j f j t j t j f X P f R e d e e e d f f πτπππττττδδ∞-∞---∞-∞==+=-++?? 习题2.3 设有一信号可表示为: 4exp() ,t 0 (){0, t<0 t X t -≥= 试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。 解:它是能量信号。X (t )的傅立叶变换为: (1)004 ()()441j t t j t j t X x t e dt e e dt e dt j ωωωωω +∞-+∞--+∞-+-∞====+??? 则能量谱密度 G(f)=2 ()X f =2 22 416 114j f ωπ=++ 习题2.4 X (t )=12cos 2sin 2x t x t ππ-,它是一个随机过程,其中1x 和2x 是相互统计独立的高斯随机变量,数学期望均为0,方差均为2σ。试求: (1)E [X (t )],E [2()X t ];(2)X (t ) 的概率分布密度;(3)12(,)X R t t 解:(1)()[][]()[]02sin 2cos 2sin 2cos 2121=?-?=-=x E t x E t t x t x E t X E ππππ

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心, 即均值

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞ ∞ --=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或严平稳。

随机过程-方兆本-第三版-课后习题答案

习题4 以下如果没有指明变量t 的取值范围,一般视为R t ∈,平稳过程指宽平稳过程。 1. 设Ut t X sin )(=,这里U 为)2,0(π上的均匀分布. (a ) 若Λ,2,1=t ,证明},2,1),({Λ=t t X 是宽平稳但不是严平稳, (b ) 设),0[∞∈t ,证明}0),({≥t t X 既不是严平稳也不是宽平稳过程. 证明:(a )验证宽平稳的性质 Λ,2,1,0)cos (2121)sin()sin()(2020==-=? ==?t Ut t dU Ut Ut E t EX π π ππ ))cos()(cos(2 1 )sin (sin ))(),((U s t U s t E Us Ut E s X t X COV ---=?= t U s t s t U s t s t ππ π21}])[cos(1])[cos(1{212020? +++--= s t ≠=,0 2 1 Ut Esin ))(),((2= =t X t X COV (b) ,)),2cos(1(21 )(有关与t t t t EX ππ-= .)2sin(81 21DX(t)有关,不平稳,与t t t ππ-= 2. 设},2,1,{Λ=n X n 是平稳序列,定义Λ Λ,2,1},,2,1,{) (==i n X i n 为 Λ,,)1(1)1()2(1)1(---=-=n n n n n n X X X X X X ,证明:这些序列仍是平稳的. 证明:已知,)(),(,,2 t X X COV DX m EX t t n n n γσ===+ 2 121)1(1)1()1(2)(,0σγσ≡+=-==-=--n n n n n n X X D DX EX EX EX ) 1()1()(2),(),() ,(),(),(),(111111) 1()1(++--=+--=--=--+-+-++--+++t t t X X COV X X COV X X COV X X COV X X X X COV X X COV n t n n t n n t n n t n n n t n t n n t n γγγ显然,) 1(n X 为平稳过程. 同理可证,Λ,,) 3()2(n n X X 亦为平稳过程. 3.设 1 )n n k k k Z a n u σ==-∑这里k σ和k a 为正常数,k=1,....n; 1,...n u u 是(0,2π)

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时, = = 1.2 设离散型随机变量X 服从几何分布: 试求的特征函数,并以此求其期望与方差。 解: 所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀 分布,服从瑞利分布,其概率密度为 试证明为宽平稳过程。 解:(1)

与无关 (2) , 所以 (3) 只与时间间隔有关,所以为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少? 3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分

钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ---- 1 2 2 121 2 1 11221 11222100 12()exp() exp()(1)! (1)! N N t N N N N P T T dt t t t t dt N N λλλλ∞ --<=----??

第1章 随机过程的基本概念

第一章 随机过程的基本概念 1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。试求X (t )的一维概率分布 解:∵ 当0cos 0=t ω 即 πω)21(0+ =k t 即 πω)2 1 (10+=k t 时 {}10)(==t x p 若 0c o s 0≠t ω 即 πω)2 1 (1 0+≠ k t 时 当 0c o s 0>t ω时 ξπ ωωξd e t x X P t x F t x ? - = ??? ? ??≤=02cos 0 2 021cos ),( 此时 ()t e x t x F t x f t x 0c o s 2c o s 1 21,),(022ωπ ω? =??=- 若 0c o s 0

?? ?= ,2 ,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。试确定)(t X 的一维分布函数)2 1 ,(x F 和)1,(x F ,以及二维分布函数)1,2 1;,(21x x F 解:(1)先求)21,(x F 显然?? ?=?????=??? ??出现反面出现正面 出现反面出现正面10,2 1*2,2cos 21π X 随机变量?? ? ??21X 的可能取值只有0,1两种可能,于是 21 021= ??????=?? ? ??X P 2 1121=??????=??? ??X P 所以 再求F (x ,1) 显然?? ?-=?? ?=出现反面出现正面出现反面出现正面 2 1 2 cos (1)πX {}{}2 1 2)1(-1(1)====X p X p 所以 ???? ???≥<≤<=2 121- 2 1-1 0,1)(x x x x F (2) 计算)1,2 1 ;,(21x x F ?? ?-=?? ?=出现反面出现正面 出现反面出现正面 2 1)1(, 1 0)2 1( X X ?????≥<≤<=??? ?? 11 102 1 00 21,x x x x F

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

随机过程理论及应用(中英文0600006

随机过程理论及应用(中英文0600006) 一、课程代码:0600006 课内学时: 48 学分: 3 二、适用范围(学科、专业、层次等) 控制科学与工程、控制工程 三、先修课程 线性代数、微积分、概率论 四、教学目标 随机过程理论及应用是自动控制专业研究生所必修的一门基础课程,该课程覆盖了概率论和随机过程的基本知识,包括泊松过程、马尔可夫链、鞅和布朗运动等。在这门课程中,我们旨在讲授随机过程的一些基本理论,并扩展到其在控制、通信、经济和金融等领域的一些应用。通过学习这门课程可以让学生学会以概率的方式来思考问题、看待问题和解决问题。 五、考核与成绩评定: 成绩以百分制衡量。 成绩评定依据:课堂成绩10%,课后作业20%,考试70%。 六、教学方式 课堂讲授、课堂讨论、论文分析 七、教学大纲(大纲撰写人:闫莉萍) 1.预备知识 6学时 1.1概率的公理化定义 1.2随机变量与数字特征 1.3矩母函数与特征函数 1.4条件数学期望 1.5随机过程的基本概念 1.6随机过程的有限维分布和数字特征 1.7随机过程的分类 2.二阶矩过程与均分分析 6学时 2.1基本概念 2.2H空间与均方分析 2.3宽平稳过程的概念和基本性质 3.泊松过程 6学时 3.1定义 3.2与泊松过程相关的若干分布 3.3泊松过程的推广 3.4泊松过程的应用 4. 离散时间马尔可夫过程 8学时 4.1定义 4.2转移概率矩阵 4.3Chapman-Kolmogorov方程 4.4状态的分类与状态空间分解 4.5平稳分布

4.6离散参数马尔科夫链的随机模拟与蒙特卡罗方法 4.7应用 5. 连续时间马尔可夫过程 6学时 5.1定义与基本概念 5.2转移概率矩阵 5.3Kolmogorov微分方程 5.4强马尔可夫性与嵌入马尔可夫链 5.5连续马尔可夫过程的随机模拟 5.6应用 6. 鞅 6学时 6.1基本概念 6.2上(下)鞅及分解定理 6.3停时和停时定理 6.4鞅收敛定理 6.5连续参数鞅 7. 布朗运动 6学时 7.1定义 7.2布朗运动的性质 7.3最大值与首中时 7.4布朗运动的变形与推广 8. 伊藤过程 4学时 8.1伊藤积分 8.2伊藤公式 8.3伊藤微分 8.4应用实例

随机过程教学大纲

《随机过程》教学大纲 课程编码:1511104303 课程名称:随机过程 学时/学分:48/3 先修课程:《数学分析》、《概率论与数理统计》 适用专业:数学与应用数学 开课教研室:信息与计算科学教研室 一、课程性质与任务 1.课程性质:随机过程是概率论与数理统计的后继课程,是数学与应用数学专业的专业选修课。随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系,具有较强的理论性。该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用。随机过程论在理论与应用两方面都发展迅速,学习、了解这门学科对概率统计及数学其他分支如信息与计算科学、自然学科、工程技术乃至经济管理等方面的学者及科技工作者都是重要而且有益的。本课程开设在第6学期。 2.课程任务:通过本课程的学习,学生应能较好地理解随机数学的基本思想,掌握几个常用过程,如泊松过程、马尔可夫链、生灭过程、更新过程、鞅的基本概念,基本理论及分析方法。提高学生的数学素质,加强学生运用随机过程的思想方法开展科研工作和解决实际问题的能力。 二、课程教学基本要求 《随机过程》要求在熟练掌握概率论的基础上深刻理解随机过程的基本思想,理解随机过程是概率论的动态部分的含义;掌握随机过程的分类方法及常见的随机过程(如Poisson 过程、更新过程、Markov链和鞅等)的各种性质、推广形式及简单应用。 本课程的成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。成绩评定采用百分制,60分为及格。 三、课程教学内容 第一章 准备知识 1.教学基本要求 复习随机变量、分布函数、分布律和概率密度函数的概念,条件分布,函数的分布求法,常见的离散型与连续型分布,及多维随机变量的知识;复习随机变量的数学期望、方差、矩、协方差与协方差阵、相关系数的定义及计算;掌握条件数学期望的求法,全期望

随机过程在经济学中的应用

随机过程在经济学的应用 一、随机过程概述 随机过程是由一组无限多个随机变量组成的序列,是用来描绘一连串随机事件动态关系的序列。随机过程论语其他数学分支如位势论、微分方程、力学及复变函数论邓有密切的关系,是在自然科学、工程科学及社会科学各领域研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸多如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。随机过程的概念很广泛,其研究几乎包括概率论的全部。 在客观世界中有些随机现象表示的是事物随机变化的过程,不能用随机变量和速记矢量来描绘,需要用一族无限多个随见变量来描述,这就是随机过程。 定义:设(Ω,F,P)是一个概率空间,T是一个实数集。{X(t,w),t∈T,w∈Ω}即为定义在T和Ω上的二元函数,若此函数对任意固定的t∈T,X (w,t)是任意(Ω,F,P)上的随机变量,则称{X(t,w),t∈T,w∈Ω}是随机过程(Stochastic Process)。 在研究随机过程是人们透过表面的偶然性描述出必然的内在规律并以概率的形式来描述这些规律,从偶然中悟出必然正是这一学科的魅力所在。 二、随机过程发展简史 概率论的起源与博弈问题有关,而随机过程这一学科最早是起源于对物理学的研究,如布吉斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。气体分子运动是,由于相互碰撞等原因而迅速改变自己的位置与速度,其运动的过程是随机的。人们希望知道,运动的轨道有什么性质(能否连续、可微的等等);分子从一点出发能达到某区域的概率有多大;如果有两类分子同时运动,由于扩散而互相渗透,那么扩散是如何进行的,要经过多久其混合才会变得均匀......这些实际问题的数学抽象为随机过程论提供了研究的课题。 1900年,Bachelier首次将布朗运动用与股票价格的描述。随后公式化概率论首先使得随机过程的研究获得了新的起点,他是作为随机变化的偶然量的数学模型,是线代概率论研究的主要论题。 1907年前后,A.A.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链。这是一种无后效性随机过程,即在当前状态下,过程未来状态与其过去状态无关。 1923年,N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代,维纳还在时间序列和滤波理论的建立做出了贡献。

《随机过程》课程教学大纲

《随机过程》课程教学大纲 课程编号:100005 英文名称:Stochastic Processes 一、课程说明 1. 课程类别 理工科学位基础课程 2. 适应专业及课程性质 理、工、经、管类各专业,必修 文、法类各专业,选修 3.课程目的 随机过程是概率论的一个重要分支,研究的是依赖于一个变动参量的一族随机变量的性质和规律性,是理工科研究生的一门重要基础课。本课程的教学目的是: (1)使学生掌握随机过程的基本概念、基本理论和基本方法; (2)初步具有运用随机过程知识分析和解决实际问题的能力。 4. 学分与学时 学分2,学时40 5. 建议先修课程 微积分、线性代数、概率论与数理统计。 6. 推荐教材或参考书目 推荐教材: (1)《随机过程及其应用》(第三版). 刘次华主编. 高等教育出版社. 2004年 (2)《随机过程及其应用》(第一版). 陆大铨主编. 清华大学出版社. 1986年 参考书目: (1)《概率论与数理统计》(第三版). 盛骤,谢式千,潘承毅主编. 高等教育出版社. 2004年(2)《随机过程论》(第一版). 胡迪鹤著. 武汉大学出版社. 2000年 7. 教学方法与手段 (1)教学方法:启发式 (2)教学手段:多媒体演示、演讲与板书相结合 8. 考核及成绩评定 考核方式:考试 成绩评定:考试课(1)平时成绩占20%,形式有:考勤、课堂测验、作业完成情况 (2)考试成绩占80%,形式有:笔试(闭卷) 9. 课外自学要求 (1)课前预习; (2)课后复习; (3)完成教材上每章后的适量习题。 二、课程教学基本内容及要求 第一章预备知识 基本内容: (1)概率空间、随机变量及其分布; (2)随机变量的数字特征、特征函数和母函数; (3)n维正态分布; (4)条件期望。

随机过程简史

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:随机过程简史 院系:电气工程学院 班级: 11S0104 设计者:孙延博 学号: 11S001070 指导教师:田波平 设计时间: 2011-10-23 随机过程简史 摘要 本文简要地介绍了随机过程从20世纪初创立至今,100年的发展历程考察了导致随机过程产生的历史契机,以及早期数学家在这方面作出的杰出工作。并简要介绍了随机过程的概念,研究方法

和研究内容,在现代工程技术领域的应用。 关键词:随机过程平稳随机过程平稳随机序列 1.随机过程的概念研究方法及研究内容 随机过程是现代概率论研究的一个重要分支。数学上的随机过程是由实际随机过程概念引起的一种数学结构。人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。数学上的随机过程可以简单的定义为一组随机变量,即指定一参数集,对于其中每一参数点t指定一个随机变量x(t)。如果回忆起随机变量自身就是一个函数,以ω表示随机变量x(t)的定义域中的一点,并以x(t,ω)表示随机变量在ω的值,则随机过程就由刚才定义的点偶(t,ω)的函数以及概率的分配完全确定。如果固定t,这个二元函数就定义一个ω的函数,即以x(t)表示的随机变量。如果固定ω,这个二元函数就定义一个t的函数,这是过程的样本函数。由于物理学生物学,通讯和控制管理科学等学科的需要随机过程逐步发展起来的。马尔柯夫最早研究了随机过程。研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、停时和随机微分方程等;另一类是分析的方法,其中用到测度轮、微分方程、半群理论、函数堆和希尔伯特空间等。实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔可夫过程、概率与位势及各种特殊过程的专题讨论等。中国学者在平稳过程、马尔科夫过程、鞅论、极限定理、随机微分方程等方面做出了较好的工作。 2.随机过程的历史 1900年,Bachelier在分析股票市场波动时.发现了随机过程的一个重过程——独立增量过程的特恻。1905年,物理学家Einstein在研究Brown运动时,也遇到了相同的过程.1923年,Wiener 给出了Brown运动的数学描述- wiener过程。 Lunbderg在1903年研究一个保险公司所承担索赔累计数的变化规律时.导出了另一类型的随机过程——Lundberg过程。而众所周知、应用甚广的Poisson过程是当所有得付出的索赔总数中每一笔数目都相同时的Lundberg过程。 1909年,Erlang在研究电话业务时引入了Poisson过程,并被物理学家Rutherford和Geiger用于分析放射性蜕变。这些早期对随机过程的研究都是同实际问题紧密联系在一起的。虽然在数学上用了不太严密的方法,却表现出了直观处理这些概念和方法的绝妙能力。

教学大纲_随机过程

《随机过程》教学大纲 课程编号:121213A 课程类型:□通识教育必修课□通识教育选修课 □√专业必修课□专业选修课 □学科基础课 总学时:48 讲课学时:32实验(上机)学时:16 学分:3 适用对象:数学与应用数学(金融数学)、统计学 先修课程:数学分析、高等代数、概率论 毕业要求: 1.掌握数学、统计及计算机的基本理论和方法; 2.建立数学、统计等模型解决金融实际问题; 3.具备国际视野,并且能够与同行及社会公众进行有效沟通和交流。 一、教学目标 随机过程是对随时间和空间变化的随机现象进行建模和分析的学科,在物理、生物、工程、心理学、计算机科学、经济和管理等方面都有广泛的应用。本课程介绍随机过程的基本理论和几类重要随机过程模型与应用背景,通过本课程的学习,使学生获得随机过程的基本知识和基本运算技能,同时使学生在运用数学方法分析和解决问题的能力得到进一步的培养和训练,为学习有关专业课程提供必要的数学基础。 二、教学内容及其与毕业要求的对应关系 (一)教学内容 随机过程的基本概念(有限维分布、数字特征,复值随机过程,特征函数),

几种重要随机过程(独立过程,独立增量过程,伯努利过程,正态过程,维纳过程),泊松过程(定义(计数过程)与例子,泊松过程的叠加与分解,时间间隔与等待时间的分布,复合泊松过程,非齐次泊松过程),更新过程介绍,马尔科夫过程(离散时间的马尔科夫过程定义及转移概率,C-K方程,马氏链的分布,遍历性与平稳分布,状态分类与分解,马氏链的应用,连续时间的马尔可夫链的定义与基本性质,鞅论初步),平稳随机过程(平稳过程及相关函数,随机微积分,各态历经,谱密度)。 (二)教学方法和手段 教师课上讲授理论知识内容及相关基本例题,学生课下练习及教师答疑、辅导相结合。 (三)考核方式 实行过程考核和期末考试相结合的方式,期末闭卷考试为主(70%),平时过程考核为辅(30%)。学期期末闭卷考试一次,采用统一的考题和统一的评分标准。考试分数为百分制。期末总成绩为平时成绩的30%加上期末成绩的70%。 (四)学习要求 随机过程这门课要求学生必须具有微积分,概率论与数理统计的知识,课上听讲,并独立完成课后作业。 三、各教学环节学时分配 教学课时分配

相关主题
文本预览
相关文档 最新文档