当前位置:文档之家› 随机过程分析

随机过程分析

随机过程分析
随机过程分析

随机过程分析

摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关

键。

关键字通信系统随机过程噪声

通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。

一、随机过程的统计特性

1、数学期望:表示随机过程的n个样本函数曲线的摆动中心,

?∞

∞-==11);()]([)(dx t x xp t X E t a

2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。

{}?∞∞--=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数:

衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。

(1)自协方差函数定义

{}

)]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞

∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x

式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望;

用途:用协方差来判断同一随机过程的两个变量是否相关。

(2)自相关函数

??∞∞-∞

∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X

用途:a 用来判断广义平稳;

b 用来求解随机过程的功率谱密度及平均功率。

二、平稳随机过程

1、定义(广义与狭义):

则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或

广义平稳概念:若一个随机过程的数学期望及方差与时间无关,而其相关函数仅与τ有关,则称这个随机过程为广义平稳随机过程。

通信系统中的信号及噪声,大多数可视为平稳的随机过程。因此,研究平稳随机过程有很大的实际意义。

2、平稳随机过程的数字特征

1、均值:a t a =)(;

2、方差:22)(σσ=t ;

3、自相关函数:)(),(21τR t t R =

4、各态历经性

概念:对于一个平稳的随机过程,如果统计平均=时间平均,这个随机过程就叫做各态历经的平稳随机过程。

即: )()(2

2ττσσR R a

a ===

一般来说,在一个随机过程中,不同样本函数的时间平均值是不一定相同的,而集平均则是一定的。因此,一般的随机过程的时间平均≠集平均,只有平稳随机过程才有可能是各态历经的。即各态历经的随机过程一定是平稳的,而平稳的随机过程则需要满足一定的条件才是各态历经的。

3、平稳随机过程的频谱特性

(1)、自相关函数

我们已经知道,平稳随机过程的自相关函数和时间t 无关,而只与时间间隔τ有关,即))()(()(ττ+=t X t X E R

S t X E R ==)]([)0(2

R(0)为X(t )的均方值(平均功率)。

对偶性 R(τ)=R(-τ)

即自相关函数是τ的偶函数。

(2)、功率谱密度

对于任意的功率信号f(t)的功率谱为:

而对于一个随机过程来说,ξ(t)有许许多多次实现(即许许多多个样本函数,其中某一次实现也是功率信号,其功率谱密度可以用上式表示。 但它不能作为随机过程的功率谱密度。随机过程的功率谱密度可以看作是每一个样本函数的功率谱密度的统计平均(即数学期望)。 设ξ(t)一次实现的截断函数为ξT(t),ξT(t)的付氏变换为FT(ω),则该样本函数的功率谱为: ])([lim )(2T w X w P T T X ∞→=

这样,整个随机过程的平均功率谱为: T w X E T w X E w P E w P T T T T x X ]

)([lim ]])([lim [)]([)(22∞→∞→===

该随机过程的平均功率为: ωωπd P P X )(21?∞∞-=

且满足:)()(τωR P X ?

三、通信中如何应用随机过程

在通信系统中,编码过程分为信源编码和信道编码两种,信源编码是为了压缩信息之间的相关性,最大限度提高传信率,目的在于提高通信效率;而信道编码则相反,通过引入相关性,使信息具有一定的纠错和检错的能力从而提高传输信息的可靠性。

对于信道编码,由于信道中存在随机噪声,或者随机干扰,使得经过信道传输后所接收到的码元与发送码元之间存在差异,这种差异就是传输产生的差错。一般,信道噪声,干扰越大,码元产生差错的概率也就越大。

所以信道编码的任务就是构造出以最小冗余度代价换取最大抗

干扰性能的码字组合。从信道编码的构造方法看,其基本思路是根据一定的规律在待发送的信息码中加入一些人为多余的码字。这些码字的引入时信息之间具有相关性,虽然降低了信息所能携带的信息量,但是通过相关性可以克服由于随机噪声引入的误码情况。

四、随机过程在通信中的具体应用

1、马尔可夫过程的应用

马尔可夫随机过程的发展史说明了理论与实际之间的密切关系。许多研究方向的提出,归根到底是有其实际背景的。反过来,当这些方向被深入研究后,又可指导实践,进一步扩大和深化应用范围。下面简略介绍一下马尔可夫随机过程在通信方面的应用情况。

许多服务系统,如电话通信,船舶装卸,机器损修,病人候诊,红绿灯交换,存货控制,水库调度,购货排队,等等,都可用一类概率模型来描述。这类概率模型涉及的过程叫排队过程,它是点过程的

特例。当把顾客到达和服务所需时间的统计规律研究清楚后,就可以合理安排服务点。

在通信、雷达探测、地震探测等领域中,都有传递信号与接收信号的问题。传递信号时会受到噪声的干扰,为了准确地传递和接收信号,就要把干扰的性质分析清楚,然后采取办法消除干扰。这是信息论的主要目的。噪声本身是随机的,所以概率论是信息论研究中必不可少的工具。信息论中的滤波问题就是研究在接收信号时如何最大限度地消除噪声的干扰,而编码问题则是研究采取什么样的手段发射信号,能最大限度地抵抗干扰。在空间科学和工业生产的自动化技术中需要用到信息论和控制理论,而研究带随机干扰的控制问题,也要用到马尔可夫随机过程。

2、马尔科夫链在分析频谱占用情况时的应用

马尔可夫过程是一个具有无后效性的随机过程,无后效性是指随机过程在时刻t的状态已知的条件下,在时刻t+1所处状态仅与时刻t的状态有关,而与过程在时刻t以前的状态都无关。那些时间离散、状态离散的马尔可夫过程称为马尔可夫链,简称马氏链。

频谱在无线通信中是稀缺的资源。传统的频谱分配方式静态地分配频谱,频谱利用率很低,很多时候频谱并没有被完全利用,而近年来对无线服务的需求不断增大,因此频谱资源日益紧张。而以马尔科夫链为原理的认知无线电技术可以有效地解决频谱资源紧张问题。认知无线电是一种智能通信系统。具有认知功能的无线通信设备可以感知周围的环境,再利用已经分配给授权用户,但在某一特定的时刻和

环境下并没有被占用的频带,即动态再利用“频谱空穴”;并能够根

据输入激励的变化实时地调整其参数,在有限信号空间中以最优的方式有效地传送信息,以实现无论何时何地都能保证通信的高可靠性和无线频谱利用的高效性。

频段状态实时预测模型一般情况下CR将待查的频段分为以下3种不同的情况:(1)黑空:被主用户的原始分配业务大部分占据,存在高功率的干扰,不能被感知用户使用。(2)灰空:被授权用户的原始分配业务部分占用,存在一定程度的功率干扰,基本不被感知用户使用。

(3)白空:末被授权用户的原始分配业务占用,仅存在环境噪声,可以被感知用户非授权地使用。为了能更好地进行频谱共享,对待查频段这3种情况,有必要利用马氏链建模来实时估计和预测状态变化情况,为频谱共享和动态频谱接入提供参考。

假如,经过一段时间的检测并通过概率统计分析,得到状态转移图,其状态转移概率矩阵为

状态转移图为

根据马尔可夫原理,大多数情况下,随着时间的推进,马尔可夫过程都会演化到一个稳态概率分布。根据平稳分布的公式

黑空+灰空+白空=1

黑空×(1-a-b)+灰空×c+白空×f=黑空

黑空×b+灰空×d+白空×(1-f-e)=白空可分别求得黑空、灰空、白空,再根据检测周期T,可分别求得平均返回时间,这样就可以为CR优化动态频谱分配提供参考。

3、排队论在通信网中的运用

排队论又称随机服务系统,主要解决与随机到来、排队服务现象有关的应用问题。是研究系统由于随机因素的干扰而出现排队(或拥塞)现象的规律的一门学科,排队论的创始人Er la n g是为了解决电话交换机容量的设计问题而提出排队论。它适用于一切服务系统,包括通信系统、计算机系统等。随着电子计算机的不断发展和更新,通信网的建立和完善,信息科学及控制理论的蓬勃发展均涉及到最优设计与最佳服务问题,从而使排队论理论与应用得到发展。

顾客通过网络必须经过三个环节,即顾客到达、排队等候处理(服务)、离去。如图:

排队系统的组成包括三个部分:1.输入过程2.排队规则3.服务

机构。其中,在输入过程中,顾客的相继到达时间间隔可分为确定型和随机型,顾客到达系统的方式可以逐个或成批;顾客到达系统可以是独立的或相关的,输入过程可以是平稳、马氏、齐次的。排队规则可分为损失制,等待制和混合制。(1)损失制,顾客到达系统时,若系统中所有服务窗均被占用,则到达的顾客随即离去,比如打电话时碰

到占线,计算机限定的内存等均为此种情况;(2)等待制,顾客到达系统时,虽发现服务窗均忙着,但系统设有场地供顾客排队等待之用,于是到达系统的顾客按排队规则进行排队等候服务;(3)混合制,它是损失制与等待制混合组成的排队系统,此系统仅允许有限个顾客排队等候排队。服务机构系统可以一个窗口或多个窗口为顾客进行服务各窗口的服务时间可以是确定性或随机型,顾客在系统内逗留的时间均值Ws顾客排队等候服务的时间均值Wq服务时间的均值t显然

Ws=Wq+t。

我们可以讲通信网带入到上述理论中,与排队论中的术语相对应,信道数m相当于窗口数。单位时间内的平均呼叫数相当于顾客的到达率λ,每次呼叫占用线路的平均时间相当于平均服务时间。排队系统

模型,相当于电话网中一个具有转发功能节点上的业务情况。在通信

过程中,往往要经过通信路径上的转发节点,因此对通信用户间的整

个业务来说,构成了多个连接的排队模型。这个由多队列相互连接的

一类排队模型,构成排队网。

五、随机过程学习心得体会

经过这学期再次深入的学习随机过程,我真切的感受到自己收获良多。首先对于知识本身有了更为透彻的理解,像平稳随机过程、泊松过程、马尔科夫过程等,都有了更为深刻的认识,不再只是单纯的记公式,而是能应用到实际中去;学好随机过程为我今后进行更深入的研究打下良好的理论基础,让我能够利用随机过程去解决随机信号,

信道建模等一系列问题。

第3章 平稳随机过程的谱分析

第3章 平稳随机过程的谱分析 付里叶变换是处理确定性信号的有效工具,它信号的频域内分析处理信号,常常使分析工作大为简化。 对于随机信号,是否也可以应用频域分析方法?付里叶变换是否可引入随机信号中? 3.1 随机过程的谱分析 3.1.1 回顾:确定性信号的谱分析 )(t f 是非周期实函数, )(t f 的付里叶变换存在的充要条件是: 1.)(t f 在),(∞-∞上满足狄利赫利条件; 2.)(t f 绝对可积: +∞

3.1.2 随机过程的功率谱密度 一、样本函数的平均功率 问题1:由于付里叶变换是针对确定性函数进行的,在处理随机过程)(t X 时,取 )(t X 的一个样本函数)(t x (在曲线族中取某一曲线)来进行付里叶分 析。 问题2:随机过程)(t X 的样本函数)(t x 一般不满足付里叶变换的条件,它的总能 量是无限的,需考虑平均功率。 若随机过程)(t X 的样本函数)(t x 满足 +∞<=? -∞→T T T dt t x T W 2 )(21 lim W 称为样本函数)(t x 的平均功率。 对于平稳过程,其样本函数的平均功率是有限的。 二、截取函数 对于)(t X 的一个样本函数)(t x ,在)(t x 中截取长为T 2的一段,记为)(t x T , 它满足: ???? ?≥<=T t T t t x t x T 0 ) ()( 称)(t x T 为)(t x 的截取函数。 三、截取函数的付里叶变换 0>T ,取定后,)(t x T 的付里叶变换一定存在: ??--+∞ ∞--==T T t j t j T T dt e t x dt e t x X ωωω)()()( 其付里叶逆变换为: ? +∞ ∞ -= ωωπ ωd e X t x t j T T )(21 )( 其帕塞瓦(Parseval )等式为 ? ? ? +∞ ∞ --+∞ ∞ -= =ωωπ d X dt t x dt t x T T T T 2 2 2 )(21 )()(

第二章 平稳随机过程的谱分析

第二章平稳随机过程的谱分析 本章要解决的问题: ●随机信号是否也可以应用频域分析方法? ●傅里叶变换能否应用于随机信号? ●相关函数与功率谱的关系 ●功率谱的应用 ●采样定理 ●白噪声的定义 2.1 随机过程的谱分析 2.1.1 预备知识 1、付氏变换: 对于一个确定性时间信号x(t),设x(t)是时间t的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。即: 满足上述三个条件的x(t)的傅里叶变换为:

其反变换为: 2、帕赛瓦等式 由上面式子可以得到: ——称为非周期性时间函数的帕塞瓦(Parseval)等式。 物理意义:若x(t)表示的是电压(或电流),则上式左边代表x(t)在时间(-∞,∞)区间的总能量(单位阻抗)。因此,等式右边的被积函数 2 )(ωX X 表示了信号x(t)能量按频率分布的情况,故称2 )(ωX X 为 能量谱密度。 2.1.2、随机过程的功率谱密度 一个信号的付氏变换是否存在,需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏变换呢? 随机信号持续时间无限长,因此,对于非0的样本函数,它的能量

一般也是无限的,因此,其付氏变换不存在。 但是注意到它的平均功率是有限的,在特定的条件下,仍然可以利用博里叶变换这一工具。 为了将傅里叶变换方法应用于随机过程,必须对过程的样本函数做某些限制,最简单的一种方法是应用截取函数。 x(t): 截取函数T 图2.1 x(t)及其截取函数 x(t)满足绝对可积条件。因此,当x(t)为有限值时,裁取函数T x(t)的傅里叶变换存在,有 T x(t)也应满足帕塞瓦等式,即:(注意积分区间和表达很明显,T 式的变化)

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心, 即均值

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞ ∞ --=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或严平稳。

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:1302070131

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 2.1、随机过程的基本概念及定义 2.2、随机过程的数学描述 2.3、基于MATLAB的随机过程分析方法 三、马尔可夫过程 3.1马尔可夫过程的概念 3.2马尔可夫过程的数学描述 四、马尔可夫过程的应用 4.1马尔可夫模型在通信系统中的应用 4.2马尔可夫模型在语音处理的应用 4.3马尔可夫模型的其他应用 五、结论 参考文献

频谱分析与功率谱分析

频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱 频谱和功率谱有什么区别与联系? 谱是个很不严格的东西,常常指信号的Fourier变换, 是一个时间平均(time average)概念 功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别: 1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列) 2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 功率谱是个什么概念?它有单位吗? 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。 功率谱密度,从名字分解来看就是说,观察对象是功率,观察域是谱域,通常指频域,密度,就是指观察对象在观察域上的分布情况。一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周期分量并且均值为零,这样才能保证相关函数在时差趋向于无穷时衰减,所以lonelystar说的不全对,光靠相关函数解决不了许多问题,要求太严格了;对于第二种方式,虽然一个平稳随机过程在无限时间上不能进行傅立叶变换,但是对于有限区间,傅立叶变换总是存在的,可以先架构有限时间区间上的变换,在对时间区间取极限,这个定义方式就是当前快速傅立叶变换(FFT)估计谱密度的依据;第三种方式是根据维纳的广义谐和分析理论:Generalized harmonic analysis, Acta Math, 55(1930),117-258,利用傅立叶-斯蒂吉斯积分,对均方连续的零均值平稳随机过程进行重构,在依靠正交性来建立的。

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

2.9 严平稳随机过程

随机信号分析

目录 CONTENTS CONTENTS 严平稳随机过程平稳随机过程的基本概念

-2.5-2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 ()()x m t E X t =????随机过程的数学期望()1x m t ()4x m t () 5x m t 如果数学期望与时间无关,将简化分析和计算! ()x x m t m =

-2.5-2 -1.5-1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 随机过程的自相关函数????=?R t t E X t X t X ,1212)()()(R t t X ,23) (?=τt t 320R t t X ,56)(?=τt t 650如果自相关函数与观察起始时刻无关,只和观察的两个随机变量的时间差有关? ==?ττR t t R t t X X ,,1221)()(有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

严平稳随机过程 随机过程X t ,若它的n 维概率密度(或n 维分布函数) 不随时间起点选择的不同而改变 就是说,对任何n 和ε,随机过程X t 的n 维概率密度满足: +++=εεεf x x x t t f x x x t t X n n X n n ,,,;,,,t ,,,;,,,t 12121212)()(f x x x t t n n ,,,;,,,t 1212) (则称X t 为严(格)平稳过程,或称X t 为狭义平稳过程。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述 首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当 12,,n t h t h t h T +++∈…,时,n 维随机变量 (X(1t ),X(2t ),…,X(t n )) 和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。 在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。 但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。 定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即 〈X (t )〉=1lim ()2T T T X t dt T -→∞? 存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。 定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X t X t τ(+)也是连续平稳随机过程,〈()X t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即 ()X t X t τ(+)=1lim (+)()2T T T X t X t dt T τ-→∞? 若〈()X t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

随机分析论文

题目建筑热过程随机分析的背景、方法和应用 南京大学信息与控制学院,南京210044 摘要:本文分析了建筑热过程的随机特性的背景,提出一种研究室外随机气象条件和室内随机自由得热共同作用下的建筑热过程的随机分析的方法,并给出该方法在暖通空调中的几个应用领域,以及对该方法的理论和实测的验证过程。 关键词:建筑热过程;随机分析;供暖空调 Title Building thermal process background, the method of stochastic analysis and Applications Nanjing University, Nanjing 210044 Abstract:This paper analyses the stochastic characteristics of building thermal processes in the background, the method of stochastic analysis of a research on outdoor random weather conditions and indoor random free building heat under the interaction process, and gives the method in HV AC applications, as well as the method of theoretical and experimental verification process. keywords:building thermal process;random analysis;heating and air conditioning 1 引言 建筑热过程是研究建筑环境特性、分析评价节能建筑、设计建筑环境的控制系统(供热、通风、空调)的基础。建筑热过程是由于室外气象条件和室内各种热源(人、照明及设备)作用在建筑物上而造成的建筑室内环境的温湿度变化。因此它取决于室外气象状况、室内热源状况及建筑物结构的热性能参数。然而,由于室外气象参数与室内的各种热源均不是确定的过程,而是具有很大的不确定成分的随机过程,因此,这些随机因素作用于建筑物,使建筑内的热环境变化过程(理论变化过程)亦成为一随机过程。

随机过程读书笔记

随机过程读书笔记 《应用随机过程》读书笔记 早期的概率论和分析是两个截然不同的领域.1933年,Kolmogorov建立了概率论公理基础,这标志着概率论成为一个严密的分支.此后学者们更感兴趣于用概率方法来解决分析问题.于是上世纪40到50年代间,随机分析学迅速发展成为一门新的学科,被誉为“随机王国中的牛顿定律”.随机分析学的理论受到了众多领域专家、学者的研究和关注。它的发展是迅速的,也是巨大的,其应用领域越来越广泛,紧密联系着数学的各个分支,也是近代概率论中最活跃的分支之一。随着其内容的不断丰富,随机分析己被广泛应用于点过程、估计理论等理论分支。 在放假期间,我看了《应用随机过程》第六章---鞅的内容。鞅是一类特殊的随机过程,鞅的初始概念是源于公平竞争的思想,也就是在竞争中付出与所期望的收入相匹配。直观地讲,在公平竞争中我们无法凭空创造则富。鞅仅描述现在所拥有的价值,离散时间鞅仅仅是对过程有个大致的描述,而连续时间鞅则是对招个过程的一个综合把握,可以细致而紧凑地研究过程的走向。下面就简单介绍一下鞅的基本概念及其相关性质。 一定义1 随机过程Xn,n0称为关于Yn,n0的下鞅,如

果对 n0,Xn时(Y0,,Yn)的函数,EXn,并且E(Xn1|Y0,,Yn)Xn,这里 如果对Xnmax0,Xn。我们称过程Xn,n0为关于Yn,n0的上鞅,n0,Xn是(Y0,,Yn)的函数,EXn,并且E(Xn1|Y0,,Yn)Xn,这里 Xnmax0,Xn。若Xn,n0兼为关于Yn,n0的下鞅与上鞅,则称 之为关于Yn,n0的鞅。 根据鞅的定义,我们可以直接推出以下命题: 适应列Xn,Fn,n0是下鞅当且仅当Xn,Fn,n0是上鞅。如果Xn,Fn,Yn,Fn是两个下鞅,a,b是两个正常数,则aXnbYn,Fn是下鞅。 如果Xn,Fn,Yn,Fn是两个下鞅,则 。 max(Xn,Yn),Fn或min(Xn,Yn),Fn是下鞅 下面以一个例子加以说明:考虑一个公平博弈的问题,设X1,X2独立同分布,分布函数为PXi1PXi1,于是,可以将Xi(i1,2,)看做一个投硬币的游戏的结果:如果出现正面就赢1元。 12出现反面就输1元。假设我们按以下的规则来赌博,每次投掷硬币之前的赌注都比上一次翻一倍,直到赢了赌博即停。令Wn表示第n次赌博后所输的总钱数,W00,无论如

随机过程知识点汇总

第一章随机过程的基本概念与基本类型一.随机变量及其分布1.随机变量,分布函数离散型随机变量的概率分布用分布列分布函数连续型随机变量的概率分布用概率密度分布函数2.n 维随机变量其联合分布函数离散型联合分布列连续型联合概率密度 3 .随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4?特征函数离散连续 重要性质:,,, 5 ?常见随机变量的分布列或概率密度、期望、方差 0 — 1分布 二项分布泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增 量过程,马尔可夫过程,平稳过程等。 2 .随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。 (1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。 (5)互相关函数:,是两个二阶距过程,则下式称为它们的互协方差函数。 ,那么,称为互相关函数。若,则称两个随机过程不相关。 3 ?复随机过程 均值函数方差函数 协方差函数相关函数 4?常用的随机过程 (1)二阶距过程:实(或复)随机过程,若对每一个,都有(二阶距存在) ,则称该随机过程为二 阶距过程。 (2)正交增量过程:设是零均值的二阶距过程,对任意的,有 ,则称该随机过程为正交增量过程。

相关主题
文本预览
相关文档 最新文档