当前位置:文档之家› 知识点总结-随机过程理论

知识点总结-随机过程理论

知识点总结-随机过程理论
知识点总结-随机过程理论

随机信号分析期末总复习提纲重点知识点归

第 一 章 1.1不考 条件部分不考 △雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义 相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况) △随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58) △ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61 ( )()() () ( ) ()()2 2 1 () 2112 2 22 11 ,,exp 2 2exp ,,exp 22T T x m X X X X X n n X T T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E e jM U σπσμ---?? --??= = -????? ? ?? ?? ?? ??=-==- ?? ??? ????? ?? C C C u u r u u r u u r u u r u u r u u r L u r u r u u r u r L 另外一些性质: []()20XY XY X Y X C R m m D X E X m ??=-=-≥??

第二章 随机过程的时域分析 1、随机过程的定义 从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ?→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系? 3、随机过程的概率密度P7 4、特征函数P81。(连续、离散) 一维概率密度、一维特征函数 二元函数 4、随机过程的期望、方差、自相关函数。(连续、离散) 5、严平稳、宽平稳的定义 P83 6、平稳随机过程自相关函数的性质: 0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88 2 2 2() ()()()()(0)()X X X X X X X X X X C R m R R R R τττρτσ σ--∞= = -∞= 非周期 相关时间用此定义(00()d τρττ∞ =?) 8、两个随机过程之间的“正交”、“不相关”、“独立”。 (P92 同一时刻、不同时刻) 9、两个随机过程联合平稳的要求、性质。P92

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X,分布函数F(x)P(X x) 离散型随机变量X的概率分布用分布列p k P(X x)分布函数F(x)p k k 连续型随机变量X的概率分布用概率密度f(x)分布函数 x F(x)f(t)dt 2.n维随机变量X(X1,X2,,X n) 其联合分布函数()(1,x,,x n)P(X x,X x,,X n x n,) F x F x 21122 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X E X x k p连续型随机变量X EX xf(x)dx k 方差:2() 2 2 DX E(X EX)EX EX反映随机变量取值的离散程度 协方差(两个随机变量X,Y):B XY E[(X EX)(Y EY)]E(XY)EX EY 相关系数(两个随机变量X,Y): B XY XY若0,则称X,Y不相关。 DX DY 独立不相关0 itX 4.特征函数g(t)E(e)离散g(t)e连续g(t)e f x dx itx p itx() k k 重要性质:g(0)1,g(t)1,g(t)g(t),k i k EX g(0) k 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布P(X1)p,P(X0)q EX p DX pq 二项分布k k n k P(X k)C n p q EX np DX n p q k 泊松分布P(X k)e EX DX均匀分布略 k!

2正态分布N(a,) 2 (x a) 1 2 f(x)e EX a 2 2 D X2

指数分布f(x) e 0, x1 ,x0 EX x0 DX 1 2 6.N维正态随机变量(X1,X,,X n) X的联合概率密度X~N(a,B) 2 f( 11 T1 x1,x,,x)exp{(x a)B(x a)} 2n n1 2 22 (2)|B| a(a1,a2,,a n),x(x1,x2,,x n),B(b ij)n n正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设 (,P)是概率空间,T是给定的参数集,若对每个t T,都有一个随机变量X与之对应, 则称随机变量族X(t,e),t T是(,P)上的随机过程。简记为X(t),t T。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规 律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当 t固定时,X(t,e)是随机变量。当e固定时,X(t,e)时普通函数,称为随机过程的一个样本 函数或轨道。 分类:根据参数集T和状态空间I是否可列,分四类。也可以根据X(t)之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳 过程等 。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程X(t),t T的一维分布,二维分布,?,n维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征 的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些 统计特征 来取代。 (1)均值函数 m X(t)EX(t)表示随机过程X(t),t T在时刻t的平均值。 (2)方差函数2 D X(t)E[X(t)m X(t)]表示随机过程在时刻t对均值的偏离程度。 (3)协方差函数B X (s,t)E[(X( E[X s) (s) m ( s ) ) (t) (s) m X m X (t) (t))] 且有 B(t,t)D(t) X X

随机过程知识点汇总

第一章 随机过程得基本概念与基本类型 一.随机变量及其分布 1.随机变量, 分布函数 离散型随机变量得概率分布用分布列 分布函数 连续型随机变量得概率分布用概率密度 分布函数 2.n 维随机变量 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量得数字特征 数学期望:离散型随机变量 连续型随机变量 方差: 反映随机变量取值得离散程度 协方差(两个随机变量): 相关系数(两个随机变量): 若,则称不相关。 独立不相关 4.特征函数 离散 连续 重要性质:,,, 5.常见随机变量得分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布 均匀分布略 正态分布 指数分布 6.N维正态随机变量得联合概率密度 )}()(2 1ex p{||)2(1 ),,,(121221a x B a x B x x x f T n n ---=-π ,,正定协方差阵 二.随机过程得基本概念 1.随机过程得一般定义 设就是概率空间,就是给定得参数集,若对每个,都有一个随机变量与之对应,则称随机变量族就是上得随机过程。简记为。 含义:随机过程就是随机现象得变化过程,用一族随机变量才能刻画出这种随机现象得全部统计规律性。另一方面,它就是某种随机实验得结果,而实验出现得样本函数就是随机得。 当固定时,就是随机变量。当固定时,时普通函数,称为随机过程得一个样本函数或轨道。 分类:根据参数集与状态空间就是否可列,分四类。 也可以根据之间得概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程得分布律与数字特征 用有限维分布函数族来刻划随机过程得统计规律性。随机过程得一维分布,二维分布,…,维分布得全体称为有限维分布函数族。随机过程得有限维分布函数族就是随机过程概率特征得完整描述。在实际中,要知道随机过程得全部有限维分布函数族就是不可能得,因此用某些统计特征来取代。 (1)均值函数 表示随机过程在时刻得平均值。

《汽车理论》知识点最新全总结

《汽车理论》知识点全总结 第一部分:填空题 第一章.汽车的动力性 1.从获得尽可能高的平均行驶速度的观点出发,汽车的动力性指标主要是:(1)汽车的最高车速Umax(2)汽车的加速时间t(3)汽车的最大爬坡度imax。 2.常用原地起步加速时间和超车加速时间来表明汽车的加速性能。 3.汽车在良好路面的行驶阻力有:滚动阻力,空气阻力,坡道阻力,加速阻力。 4.汽车的驱动力系数是驱动力与径向载荷之比。 5.汽车动力因数D=Ψ+δdu/g dt。 6.汽车行驶的总阻力可表示为:∑F=Ff+Fw+Fj+Fi 。其中,主要由轮胎变形所产生的阻力称:滚动阻力。 7.汽车加速时产生的惯性阻力是由:平移质量和旋转质量对应的惯性力组成。 8.附着率是指:汽车直线行驶状况下,充分发挥驱动力作用时要求的最低地面附着系数。 9.汽车行驶时,地面对驱动轮的切向反作用力不应小于滚动阻力、加速阻力与坡道阻力之和,同时也不可能大于驱动轮法向反作用力与附着系数的乘积。 10.车速达到某一临界车速时,滚动阻力迅速增长,此时轮胎发生驻波现象。 第二章.汽车的燃油经济性 1.国际上常用的燃油经济性评价方法主要有两种:即以欧洲为代表的百公里燃油消耗量和以美国为代表的每加仑燃油所行驶的距离。 2.评价汽车燃油经济性的循环工况一般包括:等速行驶,加速、减速和怠速停车多种情况。 3.货车采用拖挂运输可以降低燃油消耗量,主要原因有两个:(1)带挂车后阻力增加,发动机的负荷率增加,使燃油消耗率b下降(2)汽车列车的质量利用系数(即装载质量与整车整备质量之比)较大。 4.从结构方面提高汽车的燃油经济性的措施有:缩减轿车尺寸和减轻质量、提高发动机经济性、适当增加传动系传动比和改善汽车外形与轮胎。 5.发动机的燃油消耗率,一方面取决于发动机的种类、设计制造水品;另一方面又与汽车行驶时发动机的负荷率有关。 6.等速百公里油耗正比于等速行驶时的行驶阻力与燃油消耗率,反比于传动效率。 第三章.汽车动力装置参数的选定 1.汽车动力装置参数系指:发动机的功率和传动系的传动比;它们对汽车的动力性和燃油经济性有很大影响。2.确定最大传动比时,要考虑三方面的问题:最大爬坡度、附着率及汽车最低稳定车速。 3.确定最小传动比时,要考虑的问题:保证发动机输出功率的充分发挥、足够的后备功率储备、受驾驶性能限制和综合考虑动力性和燃油经济性。 4.某厂生产的货车有两种主传动比供用户选择,对山区使用的汽车,应选择传动比大的主传动比,为的是增大车轮转矩,使爬坡能力有所提高。但在空载行驶时,由于后备功率大,故其燃油经济性较差。 5.在同一道路条件与车速下,虽然发动机发出的功率相同,但变速器使用的档位越低,后备功率越大,发动机的负荷率越低,燃油消耗率越高。 6.单位汽车总质量具有的发动机功率称为比功率,发动机提供的行驶功率与需要的行驶功率之差称为后备功率。7.变速器各相邻档位速比理论上应按等比分配,为的是充分利用发动机提供的功率,提高汽车的动力性。 8.增加挡位数会改善汽车的动力性和燃油经济性,这是因为:就动力性而言,挡位数多,增加了发动机发挥最大功率附近高功率的机会,提高了汽车的加速和爬坡能力。就燃油经济性而言,挡位数多,增加了发动机在低燃油消耗率区工作的可能性,降低了油耗。 9.对汽车动力性和燃油经济性有重要影响的动力装置参数有两个,即最小传动比和传动系挡位数。 第四章.汽车的制动性 1.汽车制动性的评价指标是:(1)制动效能,即制动距离与制动减速度(2)制动效能的恒定性,即抗热衰退性能(3)制动时汽车的方向稳定性。

通信原理知识点归纳

1.2.1 通信系统的一般模型 1.2.3 数字通信的特点 (1) 抗干扰能力强,且噪声不积累 (2) 传输差错可控 (3) 便于处理、变换、存储,将来自不同信源的信号综合到一起传输 (4) 易于集成,使通信设备微型化,重量轻 (5) 易于加密处理,且保密性好 1.3.1 通信系统的分类 按调制方式分类:基带传输系统和带通(调制)传输系统 。调制传输系统又分为多种 调制,详见书中表1-1。 按信号特征分类:模拟通信系统和数字通信系统 按传输媒介分类:有线通信系统和无线通信系统 3.1.2 随机过程的数字特征 均值(数学期望): 方差: 相关函数 3.2.1 平稳随机过程的定义 (1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔τ 有关。 把同时满足(1)和(2)的过程定义为广义平稳随机过程。 3.2.2 各态历经性 如果平稳过程使下式成立 则称该平稳过程具有各态历经性。 3.2.4 平稳过程的功率谱密度 非周期的功率型确知信号的自相关函数与其功率谱密度是一对傅里叶变换。这种关系对平稳随机过程同样成立,即有 []∫∞∞?=dx t x xf t E ),()(1ξ} {2)]()([)]([t a t E t D ?=ξξ2121212212121),;,()] ()([),(dx dx t t x x f x x t t E t t R ∫∫ ∞∞?∞∞?==ξξ???==)()(τR R a a ∫∫ ∞ ∞?∞∞??==ω ωπτττωωτξωτξd e P R d e R P j j )(21)()()(

3.3.2 重要性质 广义平稳的高斯过程也是严平稳的。 高斯过程经过线性变换后生成的过程仍是高斯过程。 3.3.3 高斯随机变量 (1)f (x )对称于直线 x = a ,即 (2) 3.4 平稳随机过程通过线性系统 输出过程ξo (t )的均值: 输出过程ξo (t )的自相关函数: 输出过程ξo (t )的功率谱密度: 若线性系统的输入是平稳的,则输出也是平稳的。 如果线性系统的输入过程是高斯型的,则系统的输出过程也是高斯型的。 3.5 窄带随机过程 若随机过程ξ(t )的谱密度集中在中心频率f c 附近相对窄的频带范围Δf 内,即满足Δf << f c 的条件,且 f c 远离零频率,则称该ξ(t )为窄带随机过程。 3.7 高斯白噪声和带限白噪声 白噪声n (t ) 定义:功率谱密度在所有频率上均为常数的噪声 - 双边功率谱密度 - 单边功率谱密度 4.1 无线信道 电磁波的分类: 地波:频率 < 2 MHz ;距离:数百或数千千米 天波:频率:2 ~ 30 MHz ;一次反射距离:< 4000 km 视线传播:频率 > 30 MHz ;距离: 4.3.2 编码信道模型 P(0 / 0)和P(1 / 1) - 正确转移概率,P(1/ 0)和P(0 / 1) - 错误转移概率 P (0 / 0) = 1 – P (1 / 0) P (1 / 1) = 1 – P (0 / 1) 2)(0 n f P n =)(+∞<

随机过程知识点

第一章:预备知识 §1、1 概率空间 随机试验,样本空间记为Ω。 定义1、1 设Ω就是一个集合,F 就是Ω的某些子集组成的集合族。如果 (1)∈ΩF; (2)∈A 若F ,∈Ω=A A \则F; (3)若∈n A F , ,,21=n ,则 ∞=∈1n n A F; 则称F 为-σ代数(Borel 域)。(Ω,F )称为可测空间,F 中的元素称为事件。 由定义易知: . 216\,,)5)4(111F A A A i F A F B A F B A F i i n i i n i i i ∈=∈∈∈∈?∞ === ,,则,,,)若(; 则若(; 定义1、2 设(Ω,F )就是可测空间,P(·)就是定义在F 上的实值函数。如果 ()()()()∑∞ =∞==???? ???=?≠=Ω≤≤∈1121,,,31210,)1(i i i i j i A P A P A A j i A A P A P F A 有 时,当)对两两互不相容事件(; )(; 任意 则称P 就是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。 定义1、3 设(P F ,,Ω)就是概率空间,F G ?,如果对任意 G A A A n ∈,,,21 , ,2,1=n 有: (),1 1∏===???? ??n i i n i i A P A P 则称G 为独立事件族。 §1、2 随机变量及其分布 随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函 数,{}T t X t ∈,就是独立的。 §1、3随机变量的数字特征 定义1、7 设随机变量X 的分布函数为)(x F ,若?∞ ∞-∞<)(||x dF x ,则称 )(X E =?∞ ∞-)(x xdF 为X 的数学期望或均值。上式右边的积分称为Lebesgue-Stieltjes 积分。 方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 DY DX B XY XY = ρ 为X 、Y 的相关系数。若,0=XY ρ则称X 、Y 不相关。 (Schwarz 不等式)若,,22∞<∞

随机过程知识点汇总

随机过程知识点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 ) (k k x X P p == 分 布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞ -=x dt t f x F )()( 2.n 维随机变量) ,,,(2 1 n X X X X Λ= 其联合分布函数) ,,,,(),,,()(2211 2 1 n n n x X x X x X P x x x F x F ≤≤≤==ΛΛ 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随 机变量X ?∞ ∞-=dx x xf EX )( 方差:2 22 )() (EX EX EX X E DX -=-= 反映随机变量取值的 离散程度 协方差(两个随机变量Y X ,): EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,): DY DX B XY XY ?= ρ 若 0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ

4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ =EX λ =DX 均匀分布 略 正态分布),(2 σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2 σ=DX 指数分布 ?? ?<≥=-0, 00,)(x x e x f x λλ λ 1 = EX 2 1 λ = DX 6.N维正态随机变量) ,,,(2 1 n X X X X Λ=的联合概率密度 ),(~B a N X )} ()(2 1 ex p{| |)2(1),,,(12 12 21a x B a x B x x x f T n n ---= -πΛ ) ,,,(21n a a a a Λ=,),,,(2 1 n x x x x Λ=,n n ij b B ?=)(正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设) , (P Ω是概率空间,T 是给定的参数集,若对每 个T t ∈,都有一个随机变量X 与之对应,则称随机变量

汽车理论超级总结(考研笔记)

备注:各课次内容中:用红色字标记的是重点,加粗且斜体标记的是难点,既用红色标记又加粗斜体标记的既是重点也是难点。 课次1: 内容: 第一章、汽车的动力性 §1-1 汽车的动力性指标 §1-2 汽车的驱动力与行驶阻力 一、汽车驱的驱动力:发动机的外特性,传动系的机械效率,车轮半径,汽车的驱动力图。 课次2: 二、汽车的行驶阻力:滚动阻力及滚动阻力系数,空气阻力及空气阻力系数,上坡阻力,加速阻力。 课次3: 三、汽车的行驶方程式 §1-3 汽车行驶的驱动与附着条件,附着力与附着利用率 课次4: §1-4 汽车的驱动力——行驶阻力平衡:驱动力—行驶阻力平衡图,利用驱动力—行驶阻力平衡图分析汽车的动力性指标。 §1-5 汽车的动力因数与动力特性图:利用动力特性图分析汽车的动力性指标。 课次5: §1-6 汽车的功率平衡:利用功率平衡图分析汽车的动力性指标。 课后习题:汽车动力性习题 试验1:汽车动力性路上试验 课次6: 第二章汽车的燃油经济性 §2-1 汽车燃油经济性的评价指标 §2-2 汽车的燃油经济性计算:汽车发动机的负荷特性与万有特性,汽车稳定行驶时燃油经济性的计算 课次7: §2-2 汽车的燃油经济性计算:汽车的加速、减速与停车怠速的耗油量计算。§2-3 影响汽车燃没油经济性的因素:影响汽车燃油经济性的使用因素,影响汽车燃油经济性的结构因素,提高汽车燃油经济性的途径。 试验2:汽车燃油经济性实验 课次8:

第三章汽车发动机功率与传动系传动比的选择 §3-1 发动机功率的选择 §3-2 传动系最小传动比的确定 课次9: §3-3 传动系最大传动比的确定 §3-4 传动系档数与各档传动比的确定 课后习题:汽车燃油经济性及传动系统参数选择习题 课次10: 第四章汽车的制动性 §4-1 制动性的评价指标 §4-2 制动时车轮的受力:地面制动力、制动器制动力与附着力的关系,滑动率与附着系数的关系。 课次11: §4-3 汽车的制动效能:汽车的制动减速度,制动距离, 汽车制动效能的恒定性 §4-4 制动时汽车的方向稳定性:制动跑偏,制动侧滑。 课次12: §4-5 前后制动器制动力的比例关系: 一、地面对前、后车轮的法向反作用力,前、后制动器制动力的理想分配曲线, 二、具有固定比值的前、后制动器制动力实际分配线,同步附着系数及其选择,制动过程分析 课次13: 三、在附着系数不同的道路上的制动过程分析、利用附着系数与附着效率。 §4-6 制动力调节:制动力调节原理,制动系限压阀、比例阀,防抱制动系统。 课次14: 第七章汽车的通过性 §7-1 汽车通过性概述 §7-2 汽车间隙失效、通过性的几何参数 §7-3 汽车越过台阶、壕沟的能力 课后习题:汽车制动性和通过性习题 课次15: 第五章汽车的操纵稳定性 §5-1概述:操纵稳定性概念,车辆坐标系,刚体运动微分方程。 §5-2轮胎的侧偏特性:轮胎坐标系,轮胎侧偏现象与侧偏特性,

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布 X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x) p k f (t)dt 分布函数 k x X 的概率分布用概率密度 f (x) F(x) 分布函数 连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,) 其联合分布函数 1 2 n 1 1 2 离散型 联合分布列 连续型联合概率密度 3.随机变量 的数字特征 数学期望:离散型随机变量 X EX x p k k X EX xf (x)dx 连续型随机变量 2 DX E(X EX) 2 EX (EX) 2 方差: 反映随机变量取值 的离散程度 协方差(两个随机变量 X ,Y ): B E[( X EX)(Y EY)] E(XY) EX EY XY B XY 相关系数(两个随机变量 X,Y ): 0,则称 X ,Y 不相关。 若 XY DX DY 独立 不相关 itX g(t) E(e ) itx e p k 连续 g(t) k e itx f (x)dx 4.特征函数 离散 g(t) 重要性质: g(0) 1, g(t) 1 g( t) g(t) , , g (0) i EX k k k 5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布 P( X 1) p,P( X 0) q EX p DX pq P(X k) C p q n k k k EX np DX n p q n k 泊松分布 P( X k) e k! EX DX 均匀分布略 ( x a)2 1 2 N(a, ) f (x) 2 2 2 EX a 正态分布 e DX 2

车辆工程 汽车理论 余志生 重要总结

一、名词解释 1.汽车的动力性:汽车的动力性系指汽车在良好的路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。 3.汽车的燃油经济性:在保证动力性的条件下,汽车以尽量少的燃油消耗量经济行驶的能力,称作汽车的燃油经济性。 4. 汽车百公里燃油消耗量:在一定运行工况下汽车每行驶一百公里所消耗燃油的升数Qs(L/100km)。 5. 汽车的制动性:汽车行驶时能在短距离内停车且维持行驶方向稳定性和在下 长坡时能维持一定车速的能力,成为汽车的制动性。(还包括对已停驶的汽车,特别是在坡道上已停驶的汽车,特别是在坡道上已停驶的汽车,可使其可靠地驻留原地不动的驻车制动性能)。 6.汽车曲线行驶的时域响应:汽车曲线行驶的时域响应系指汽车在转向盘输入或外界侧向干扰输入下的侧向运动响应。 7.地面制动力:汽车制动时受到与行驶方向相反、由地面提供的外力,称为地面制动力。 8. 轮胎的侧偏现象:有侧向弹性的车轮,在侧偏力的作用下滚动时,即使侧偏 力没有达到附着极限,车轮行驶方向亦将偏离车轮平面,这就是弹性轮胎的测偏现象。 9.转向盘力特性:转向盘力随汽车运动状况而变化的规律称为转向盘力特性。 10. 汽车曲线运动引起的侧翻:指汽车在道路(包括侧向坡道)上行驶时,由 于汽车的侧向加速度超过一定限值,使得汽车内侧车轮的垂直反力为零而引起的侧翻。 11.车辆的挂钩牵引力:车辆的土壤推力Fx与土壤阻力Fr之差,称为挂钩牵引力,是表征汽车通过性的主要参数。 12.汽车通过性的几何参数:与间隙失效有关的汽车整车几何尺寸,称为汽车通过性的几何参数。这些参数包括最小离地间隙、纵向通过角、接近角、离去角、最小转弯直径等。 13.汽车侧翻:汽车侧翻是指汽车在行驶过程中绕其纵轴线转动90度或更大的 角度,以至车身与地面相接触的一种极其危险的侧向运动。 9.汽车的通过性(越野性):汽车的通过性(越野性)是指它能以足够高的平均车速通过各种坏路和无路地带(如松软地面、凹凸不平地面等)及各种障碍(如陡坡、侧坡、壕沟、台阶、灌木丛、水障等)的能力。 10.土壤推力:在驱动力作用下,由地面剪切变形而产生的反力作用在车轮上,称为土壤推力。 1.汽车的后备功率:汽车在良好水平路面上以某一速度等速行驶时,发动机能发出的最大功率与汽车的阻力功率之差,成为汽车在该车速时的后备功率。 3.无级变速器的调节特性:在同一Ψ的道路上,不同车速时,无级变速器应有的ⅰ值连成曲线便得无级变速器的调节特性。 4. 汽车多工况百公里燃油消耗量:(1)循环行驶试验工况,模拟实际汽车运行 状况的试验工况,它规定了车速-时间行驶规范。(2)多工况百公里燃油消耗量,在规定的循环行驶试验工况下,测得的汽车百公里燃油消耗量。 23.线性二自由度汽车模型:是一个两轮摩托车模型。由前后两个有侧向弹性的轮胎支撑于地面、具有侧向及横摆运动二自由度。 24.转向灵敏度:(稳态横摆角速度增益)稳态的横摆角速度与前轮转角之比,

随机过程知识点总结

第一章: 考试范围1.3,1.4 1、计算指数分布的矩母函数. 2、计算标准正态分布)1,0(~N X 的矩母函数. 3、计算标准正态分布)1,0(~N X 的特征函数. 第二章: 1. 随机过程的均值函数、协方差函数与自相关函数 2. 宽平稳过程、均值遍历性的定义及定理 3. 独立增量过程、平稳增量过程,独立增量是平稳增量的充要条件 1、设随机过程()Z t X Yt =+,t -∞<<∞.若已知二维随机变量(,)X Y 的协方差矩阵为2122σρρσ?????? ,求()Z t 的协方差函数. 2、设有随机过程{(),}X t t T ∈和常数a ,()()()Y t X t a X t =+-,t T ∈,计算()Y t 的自相关函数(用(,)X R s t 表示). 3、设12()cos sin X t Z t Z t λλ=+,其中212,~(0,)Z Z N σ是独立同分布的随机变量,λ为实数,证明()X t 是宽平稳过程. 4、设有随机过程()sin cos Z t X t Y t =+,其中X 和Y 是相互独立的随机变量,它们都分别以0.5和0.5的概率取值-1和1,证明()Z t 是宽平稳过程. 第三章: 1. 泊松过程的定义(定义3.1.2)及相关概率计算 2. 与泊松过程相联系的若干分布及其概率计算 3. 复合泊松过程和条件泊松过程的定义 1、设{(),0}N t t ≥是参数3λ=的Poisson 过程,计算: (1). {(1)3}P N ≤; (2). {(1)1,(3)3}P N N ==; (3). {(1)2(1)1}P N N ≥≥. 2、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数. 假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟3人的泊松过程. (1).试求到某时刻t 时到达商场的总人数的分布;

随机过程简史

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:随机过程简史 院系:电气工程学院 班级: 11S0104 设计者:孙延博 学号: 11S001070 指导教师:田波平 设计时间: 2011-10-23 随机过程简史 摘要 本文简要地介绍了随机过程从20世纪初创立至今,100年的发展历程考察了导致随机过程产生的历史契机,以及早期数学家在这方面作出的杰出工作。并简要介绍了随机过程的概念,研究方法

和研究内容,在现代工程技术领域的应用。 关键词:随机过程平稳随机过程平稳随机序列 1.随机过程的概念研究方法及研究内容 随机过程是现代概率论研究的一个重要分支。数学上的随机过程是由实际随机过程概念引起的一种数学结构。人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。数学上的随机过程可以简单的定义为一组随机变量,即指定一参数集,对于其中每一参数点t指定一个随机变量x(t)。如果回忆起随机变量自身就是一个函数,以ω表示随机变量x(t)的定义域中的一点,并以x(t,ω)表示随机变量在ω的值,则随机过程就由刚才定义的点偶(t,ω)的函数以及概率的分配完全确定。如果固定t,这个二元函数就定义一个ω的函数,即以x(t)表示的随机变量。如果固定ω,这个二元函数就定义一个t的函数,这是过程的样本函数。由于物理学生物学,通讯和控制管理科学等学科的需要随机过程逐步发展起来的。马尔柯夫最早研究了随机过程。研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、停时和随机微分方程等;另一类是分析的方法,其中用到测度轮、微分方程、半群理论、函数堆和希尔伯特空间等。实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔可夫过程、概率与位势及各种特殊过程的专题讨论等。中国学者在平稳过程、马尔科夫过程、鞅论、极限定理、随机微分方程等方面做出了较好的工作。 2.随机过程的历史 1900年,Bachelier在分析股票市场波动时.发现了随机过程的一个重过程——独立增量过程的特恻。1905年,物理学家Einstein在研究Brown运动时,也遇到了相同的过程.1923年,Wiener 给出了Brown运动的数学描述- wiener过程。 Lunbderg在1903年研究一个保险公司所承担索赔累计数的变化规律时.导出了另一类型的随机过程——Lundberg过程。而众所周知、应用甚广的Poisson过程是当所有得付出的索赔总数中每一笔数目都相同时的Lundberg过程。 1909年,Erlang在研究电话业务时引入了Poisson过程,并被物理学家Rutherford和Geiger用于分析放射性蜕变。这些早期对随机过程的研究都是同实际问题紧密联系在一起的。虽然在数学上用了不太严密的方法,却表现出了直观处理这些概念和方法的绝妙能力。

随机过程知识点汇总

随机过程知识点汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 !)(k e k X P k λλ-== λ=EX λ=DX 均匀分布略

汽车理论作业汇总(复习资料)

汽车理论 Editor by D_san 第一章汽车动力性 一名词解释: 1、发动机的使用外特性曲线: 带上全部附件设备,将发动机节气门全开(或高压油泵在最大供油位置),测试发动机转矩,油耗率b和转速n之间的关系。 2、滚动阻力系数:是车轮在一定条件下滚动时所需推力与车轮负荷之比。 3、附着率:驱动轮所受的地面切向力Fx与地面法向反作用力Fz的比值Cφ,它是指汽车直线行驶工况下,充分发挥驱动力所需求的最低的附着系数。 4、动力因数:D=Ft-Fw/G 5、汽车的功率平衡图:若以纵坐标表示功率,横坐标表示车速,将发动机功率Pe,汽车经常遇到的阻力功率对车速的关系曲线绘在坐标图上。 二填空题: 1、地面对轮胎切向反作用力的极限值,称为附着力。 2、驱动力系数为驱动力与径向载荷之比。 3、汽车的加速时间表示汽车的加速能力,它对平均行驶车速有着很大影响。常用原地起步加速时间和超车加速时间来表明汽车的加速能力。 4、汽车的驱动力是驱动汽车的外力,即地面对驱动轮的纵向反作用力。 5、车速达到某一临界车速时,滚动阻力迅速增长,此时轮胎发生驻波现象。 6、汽车直线行驶时受到的空气阻力分为压力阻力与摩擦阻力两部分。压力阻力分为:形状阻力,干扰阻力,内循环阻力和诱导阻力四部分。形状阻力占压力阻力的大部分。 7、汽车的动力性能不只受驱动力的制约,它还受到轮胎与地面间附着条件的限制。 三问答题: 1.如何用弹性轮胎的弹性迟滞现象,分析弹性轮胎在硬路上滚动时,滚动阻力偶矩产生的机理? P8,一二段,图1-9,1-10. 2.影响汽车动力性的因素有哪些?

发动机发出的扭矩F tq ,变速器的传动比ig ,主减速器传动比i 0,传动系的传动效率ηT ,空气阻力系数C D ,迎风面积A ,活动阻力系数f ,汽车总质量G 等。 四 计算题: 1、后轴驱动的双轴汽车在滚动阻力系数f=0.03的道路上能克服道路的上升坡度角为20度。汽车数据:轴距L=4.2m ,重心至前轴距离a=3.2m ,重心高度hg=1.1m ,车轮滚动半径r=0.46m 。问:此时路面的附着系数值最小应为多少? 解:Fz 1=G (b/Lcos α-h g /Lsin α)-G ·rf/L`cos α Fz 2= G (a/Lcos α-h g /Lsin α)+G ·rf/L`cos α φ min =C φ2=Fx 2/Fz 2=F f1+Fw+Fi+Fj/Fz 2=(F z1·f+G ·sin α+m ·du/dt )/Fz 2=(Fz 1·f+G ·sin α)/Fz 2 2、汽车用某一挡位在f =0.03的道路上能克服的最大坡度Imax =20%,若用同一挡位在f =0.02的水平道路上行驶,求此时汽车可能达到的加速度的最大值是多少?(δ=1.15 且忽略空气阻力) 解:α=artan0.2, 汽车能产生的最大驱动力:Ft max =G ·f 1·cos α1+G ·sin α1=G ·f 2+δ·G/g ·du/dt max 上式移项: (du/dt )max = (f1?cos α1+ ?sin α1-f2)·g/δ= 第三章 汽车动力装置参数的选定 1.汽车比功率:是单位汽车总质量所具有的发动机功率。 2.确定最大传动比时,要考虑最大爬坡度、附着率及汽车最低稳定车速三方面的问题。 3.汽车的燃油经济性常用一定运行工况下汽车行驶百公里的燃油消耗量或一定燃油量能使汽车行驶的里程来衡量。等速行驶工况没有全面反映汽车的实际运行情况,各国都制定了一些典型的循环行驶试验工况来模拟实际汽车运行状况。 4.试分析主传动比i0的大小对汽车后备功率及燃油经济性能的影响? 根据公式u a =0.377·r n /i o i g 知不同i o 时的汽车功率平衡图中的3条线,i o1

随机过程知识点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数? ∞ -=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑= k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:2 2 2 )()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1(p EX =pq DX = 二项分布 k n k k n q p C k X P -==)(np EX =npq DX = 泊松分布 ! )(k e k X P k λλ -==λ=EX λ=DX 均匀分布略

汽车理论超级总结(考研笔记)

汽车理论超级总结(考研笔记) 汽车的驱动力与行驶阻力 一、汽车驱的驱动力:发动机的外特性,传动系的机械效率,车轮半径,汽车的驱动力图。课次2: 二、汽车的行驶阻力:滚动阻力及滚动阻力系数,空气阻力及空气阻力系数,上坡阻力,加速阻力。课次3: 三、汽车的行驶方程式1-3 汽车行驶的驱动与附着条件,附着力与附着利用率课次4:1-4 汽车的驱动力行驶阻力平衡:驱动力行驶阻力平衡图分析汽车的动力性指标。1-5 汽车的动力因数与动力特性图:利用动力特性图分析汽车的动力性指标。课次5:1-6 汽车的功率平衡:利用功率平衡图分析汽车的动力性指标。课后习题:汽车动力性习题试验1:汽车动力性路上试验课次6:第二章汽车的燃油经济性2-1 汽车燃油经济性的评价指标2-2 汽车的燃油经济性计算:汽车发动机的负荷特性与万有特性,汽车稳定行驶时燃油经济性的计算课次7:2-2 汽车的燃油经济性计算:汽车的加速、减速与停车怠速的耗油量计算。 2-3 影响汽车燃没油经济性的因素:影响汽车燃油经济性的使用因素,影响汽车燃油经济性的结构因素,提高汽车燃油经济性的途径。试验2:汽车燃油经济性实验课次8:第三章汽车发动机功率与传动系传动比的选择3-1 发动机功率的选择3-2 传动系最小传动比的确定课次9:3-3 传动系最大传动比的确定3-4

传动系档数与各档传动比的确定课后习题:汽车燃油经济性及传动系统参数选择习题课次10:第四章汽车的制动性4-1 制动性的评价指标4-2 制动时车轮的受力:地面制动力、制动器制动力与附着力的关系,滑动率与附着系数的关系。课次11:4-3 汽车的制动效能:汽车的制动减速度,制动距离,汽车制动效能的恒定性4-4 制动时汽车的方向稳定性:制动跑偏,制动侧滑。课次12:4-5 前后制动器制动力的比例关系: 一、地面对前、后车轮的法向反作用力,前、后制动器制动力的理想分配曲线, 二、具有固定比值的前、后制动器制动力实际分配线,同步附着系数及其选择,制动过程分析课次13: 三、在附着系数不同的道路上的制动过程分析、利用附着系数与附着效率。4-6 制动力调节:制动力调节原理,制动系限压阀、比例阀,防抱制动系统。课次14:第七章汽车的通过性7-1 汽车通过性概述7-2 汽车间隙失效、通过性的几何参数7-3 汽车越过台阶、壕沟的能力课后习题:汽车制动性和通过性习题课次15:第五章汽车的操纵稳定性5-1概述:操纵稳定性概念,车辆坐标系,刚体运动微分方程。5-2轮胎的侧偏特性:轮胎坐标系,轮胎侧偏现象与侧偏特性,课次16:5-2轮胎的侧偏特性:影响侧偏特性的诸因素,有外倾角时轮胎的滚动。5-3线性二自由度汽车模型对前轮角输入的响应:汽车操纵系统的简化模型对前轮角输入的响应:二自由度汽车的运动微分方程式课次17:5-3线性

相关主题
文本预览
相关文档 最新文档