当前位置:文档之家› 江苏大数学分析-第十二章 数项级数习题课

江苏大数学分析-第十二章 数项级数习题课

江苏大数学分析-第十二章 数项级数习题课
江苏大数学分析-第十二章 数项级数习题课

高等数学基本公式整理(级数部分)

常数项级数: 是发散的调和级数:等差数列:等比数列:n n n n q q q q q n n 1312112 )1(3211111 2+++++=++++--=++++- 级数审敛法: 散。存在,则收敛;否则发、定义法: 时,不确定时,级数发散时,级数收敛,则设:、比值审敛法: 时,不确定时,级数发散时,级数收敛,则设:别法): —根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=?? ???=><=?? ???=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理: —的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数; 肯定收敛,且称为绝对收敛,则如果为任意实数; ,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n 幂级数:

0010)3(lim )3(1111111221032=+∞=+∞=== ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρρρ 函数展开成幂级数: +++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00lim )(,)()! 1()()(! )()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: )()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

第十二章无穷级数练习题含答案知识分享

第十二章 无穷级数练习 1.判别下列级数的敛散性: 21 2 1 1 1 1 11 ! 21sin ;ln(1);;( )32 n n n n n n n n n n n n ∞ ∞ ∞ ∞ +====++-∑∑∑∑ 2.判别下列级数是绝对收敛,条件收敛,还是发散? 211 (1)[3n n n n ∞ -=-+ ∑; 21 cos 3n n n n ∞ =∑; 1 (1)n n ∞ -=-∑。 3. 求幂级数0 n n ∞ =的收敛区间。 4.证明级数1 !n n n n x n ∞ =∑当||x e <时绝对收敛,当||x e ≥时发散。 注:数列n n n x )11(+=单调增加,且e x n n =∞→lim 。 5.在区间(1,1)-内求幂级数 1 1 n n x n +∞ =∑ 的和函数。 6.求级数∑∞ =-2 22)1(1 n n n 的和。 。

7.设1111 2,()2n n n a a a a +== + (1,2,n =L )证明 1)lim n n a →∞ 存在; 2)级数 1 1 ( 1)n n n a a ∞ =+-∑收敛。 8.设40tan n n a xdx π = ? , 1) 求211 ()n n n a a n ∞ +=+∑的值; 2) 试证:对任意的常数0λ>,级数1 n n a n λ∞ =∑收敛。 9.设正项数列}{n a 单调减少,且∑∞ =-1)1(n n n a 发散,试问∑∞ =??? ? ??+111n n n a 是否收敛?并说明理 由。 10.已知222111358π+++=L [参见教材246页],计算1 011ln 1x dx x x +-???。 。

微积分习题之无穷级数共21页文档

[填空题] 1.数项级数∑ ∞ =+-1) 12)(12(1n n n 的和为 21 。 2.数项级数∑∞ =-0 )!2()1(n n n 的和为 1cos 。 注:求数项级数的和常用的有两种方法,一种是用和的定义,求部分 和极限;另一种是将数项级数看成是一个函数项级数在某点取值时的情况,求函数项级数的和函数在此点的值。 3.设1))1((lim ,1,01 =->>∞ →n n p n n a e n p a 且,若级数∑∞ =1 n n a 收敛,则p 的取值范 围是),2(+∞。 分析:因为在∞→n 时,)1(1-n e 与 n 1 是等价无穷小量,所以由1))1((lim 1=-∞ →n n p n a e n 可知,当∞→n 时,n a 与 1 1-p n 是等价无穷小量。由因为 级数∑∞=1 n n a 收敛,故∑ ∞ =-11 1 n p n 收敛,因此2>p 。 4.幂级数∑∞ =-0 2)1(n n n x a 在处2=x 条件收敛,则其收敛域为 ]2,0[。 分析:根据收敛半径的定义,2=x 是收敛区间的端点,所以收敛半径 为1。由因为在0=x 时,级数∑∑∞ =∞ ==-0 2) 1(n n n n n a x a 条件收敛,因此应填]2,0[。 5.幂级数∑∞ =-+12) 3(2n n n n x n 的收敛半径为 3。 分析:因为幂级数缺奇次方项,不能直接用收敛半径的计算公式。因 为

22)1(21131)3(2)3(21lim x nx x n n n n n n n n =-+-+++++∞→, 所以,根据比值判敛法,当3x 时,原级数发散。由收敛半径的定义,应填3。 6.幂级数n n n x n n ∑∞ =??? ??+221ln 1 的收敛域为 )1,1[-。 分析:根据收敛半径的计算公式,幂级数n n x n n ∑ ∞ =2 ln 1收敛半径为1,收敛域为)1,1[-;幂级数n n n x ∑ ∞ =22 1收敛域为)2,2(-。因此原级数在)1,1[-收敛,在),)21[1,2(Y --一定发散。有根据阿贝尔定理,原级数在),2[]2,(+∞--∞Y 也一定发散。故应填)1,1[-。 7.已知),(,)(0+∞-∞∈=∑∞ =x x a x f n n n ,且对任意x ,)()(x f x F =',则)(x F 在 原点的幂级数展开式为 ),(,)0(11+∞-∞∈+∑∞ =-x x n a F n n n 。 分析:根据幂级数的逐项积分性质,及),(,)(0 +∞-∞∈=∑∞ =x x a x f n n n ,得 ∑?∑? ∞ =+∞=+=?? ? ??==-010 00 1)()0()(n n n x n n n x x n a dt t a dt t f F x F , 故应填),(,)0(1 1+∞-∞∈+∑∞ =-x x n a F n n n 。 8.函数 x xe x f =)(在1=x 处的幂级数展开式为 ?? ????-???? ??+-+∑∞=1)1(!1)!1(11n n x n n e 。 分析:已知∑ ∞ ==0! 1n n x x n e )),((+∞-∞∈x ,所以

同济第六版《高等数学》教案WORD版-第11章 无穷级数

第十一章 无穷级数 教学目的: 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。 2.掌握几何级数与P 级数的收敛与发散的条件。 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。 4.掌握交错级数的莱布尼茨判别法。 5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。 6.了解函数项级数的收敛域及和函数的概念。 7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。 8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。 9.了解函数展开为泰勒级数的充分必要条件。 10.掌握,sin ,cos x e x x ,ln(1)x +和(1)a α +的麦克劳林展开式,会用它们将一些简单函 数间接展开成幂级数。 11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l ,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。 教学重点 : 1、级数的基本性质及收敛的必要条件。 2、正项级数收敛性的比较判别法、比值判别法和根值判别; 3、交错级数的莱布尼茨判别法; 4、幂级数的收敛半径、收敛区间及收敛域; 5、,sin ,cos x e x x ,ln(1)x +和(1)a α +的麦克劳林展开式; 6、傅里叶级数。 教学难点: 1、比较判别法的极限形式; 2、莱布尼茨判别法; 3、任意项级数的绝对收敛与条件收敛; 4、函数项级数的收敛域及和函数;

无穷级数练习题word版

无穷级数习题 一、填空题 1、设幂级数 n n n a x ∞ =∑的收敛半径为3,则幂级数 1 1 (1) n n n na x ∞ +=-∑的收敛区间为 。 2、幂级数 0(21)n n n x ∞ =+∑的收敛域为 。 3、幂级数 21 1(3) 2 n n n n n x ∞ -=-+∑的收敛半径R = 。 4 、幂级数 n n ∞ =的收敛域是 。 5、级数21 (2)4n n n x n ∞ =-∑的收敛域为 。 6、级数0 (ln 3)2n n n ∞ =∑的和为 。 7、 1 1 1()2n n n ∞ -==∑ 。 8、设函数2 ()f x x x π=+ ()x ππ-<<的傅里叶级数展开式为 01 (cos sin )2 n n n a a nx b nx ∞ =++∑,则其系数3b 的值为 。 9、设函数2 1, ()1,f x x -?=?+? 0,0, x x ππ-<≤<≤ 则其以2π为周期的傅里叶级数在点x π=处的敛于 。 10、级数 1 1 (1)(2)n n n n ∞ =++∑的和 。 11、级数21 (2)4n n n x n ∞ =-?∑的收敛域为 。 参考答案:1、(2,4)- 2、(1,1)- 3 、R = 4、[1,1)- 5、(0,4) 6、 22ln 3- 7、4 8、23π 9、212π 10、1 4 11、(0,4)

二、选择题 1、设常数0λ>,而级数 21 n n a ∞=∑ 收敛,则级数1 (1)n n ∞ =-∑是( )。 (A )发散 (B )条件收敛 (C )绝对收敛 (D )收敛与λ有关 2、设2n n n a a p += ,2 n n n a a q -=, 1.2n =,则下列命题中正确的是( )。 (A )若 1n n a ∞ =∑条件收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑都收敛。 (B )若 1n n a ∞ =∑绝对收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑都收敛。 (C )若 1n n a ∞ =∑条件收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑的敛散性都不一定。 (D )若 1 n n a ∞ =∑绝对收敛,则 1 n n p ∞ =∑与 1n n q ∞ =∑的敛散性都不定。 3、设0,1,2 n a n >=,若 1n n a ∞ =∑发散, 1 1 (1) n n n a ∞ -=-∑收敛,则下列结论正确的是( )。 (A ) 21 1n N a ∞ -=∑收敛, 21 n n a ∞ =∑发散. (B ) 21n n a ∞ =∑收敛, 21 1 n n a ∞ -=∑发散. (C ) 21 21 ()n n n a a ∞ -=+∑收敛. (D )2121 ()n n n a a ∞ -=-∑收敛. 4、设α 为常数,则级数 21 sin()( n n n α∞ =∑是( ) (A )绝对收敛. (B )条件收敛. (C )发散. (D )收敛性与α取值有关. 5、级数 1 (1)(1cos )n n n α ∞ =--∑(常数0α)是( ) (A )发散. (B )条件收敛. (C ) 绝对收敛. (D )收敛性与α有关. 6 、设(1)ln(1)n n u =-+ ,则级数 (A ) 1 n n u ∞ =∑与 21 n n u ∞ =∑都收敛. (B ) 1 n n u ∞ =∑与 21 n n u ∞ =∑都发散.

高数第七章无穷级数知识点

高数第七章无穷级数知识 点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第七章 无穷级数 一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性): 1、形如∑∞ =-11 n n aq 的几何级数(等比级数):当1p 时收敛,当1≤p 时发散。 3、? ≠∞ →0lim n n U 级数发散; 级数收敛 lim =?∞ →n n U 4、比值判别法(适用于多个因式相乘除):若正项级数 ∑∞ =1 n n U ,满 足条件l U U n n n =+∞→1 lim : 当1l 时,级数发散(或+∞=l ); 当1=l 时,无法判断。 5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞ =1n n U ,满 足条件λ =∞→n n n U lim : 当1<λ时,级数收敛; 当1>λ时,级数发散(或+∞=λ); 当1=λ时,无法判断。 注:当1,1==λl 时,方法失灵。

6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。(通过不等式的放缩) 推论:若∑∞ =1n n U 与∑∞ =1 n n V 均为正项级数,且 l V U n n n =∞→lim (n V 是已知敛散 性的级数) 若+∞<

高等数学(级数)期末试卷

《高等数学》--级数期末考试试卷 班级 学号 姓名 一、填空:本大题共8小题,每题2分,共16分。 1、写出几何级数 ,通项为 。 2、写出调和级数 ,通项为 。 3、写出p 级数 ,第100项为 。 4、设级数1 n n u ∞ =∑收敛于s ,a 为不等于零的常数,则级数1 n n au ∞ ==∑ 。 5、已知级数1 2!n n n ∞ =∑收敛,则2lim !n n n →∞= 。 6、若级数1 n n u ∞=∑发散,则原级数1 n n u ∞ =∑ (填敛散性)。 7、将函数()sin f x x =展开成马克劳林级数为 。 8、将函数()cos f x x =展开成幂级数为 。 二、选择题:本大题共8小题,每小题3分,共24分。在每小题给出的四个选项 中,只有一项是符合题意要求的。 9、lim 0n n u →∞ =是级数 1 n n u ∞ =∑收 敛的------------------------ --------------------------------------------------------------------------------------------( ) A 、充分条件 B 、必要条件 C 、充要条件 D 既非充分又非必要条件

10、设级数1 n n u ∞=∑收敛,级数1 n n v ∞=∑发散,则级数1 ()n n n u v ∞ =+∑------( ) A 、收敛 B 、绝对收敛 C 、发散 D 、敛散性不定 11、下列级数收敛的是----------------------------------------------------( ) A 、1n n ∞ =∑ B 、1ln n n ∞ =∑ C 、11n n n ∞ =+∑ D 、1 1 (1)n n n ∞ =+∑ 12、下列级数的发散的是-------------------------------------------------( ) A 、1n ∞ = B 、111 248+++ C 、0.001 D 、13 ()5n n ∞ =∑ 13、若级数1 n n u ∞ =∑收敛,n s 是它的前n 项部分和,则1 n n u ∞ =∑的和为( ) A 、n s B 、n u C 、lim n n s →∞ D 、lim n n u →∞ 14、幂级数0! n n x n ∞ =∑的收敛区间为 -----------------------------------( ) A (-1,1) B 、(0,)+∞ C 、(,)-∞+∞ D 、(1,2) 15、被世界公认的微积分的创始人为----------------------------( ) A 、阿基米德和刘徽 B 、牛顿和庄子 C 、莱布尼兹和牛顿 D 、欧拉 16、若幂级数0n n n a x ∞ =∑的收敛区间为(1,2)-则-------------------( ) A 、在1x =-处收敛 B 、在4x =处不一定发散 C 、在2x =处发散 D 、在0x =处收敛

无穷级数习题

第十二章 无穷级数习题课资料 丁金扣 一、本章主要内容 常数项级数的概念与基本性质,正项级数审敛法,交错级数与莱布尼兹审敛法,绝对收敛与条件收敛。幂级数的运算与性质(逐项求导、逐项积分、和函数的连续性),泰勒级数,函数展开为幂级数及幂级数求和函数,周期函数的傅立叶级数及其收敛定理。 二、本章重点 用定义判别级数的收敛,P-级数、正项级数的审敛法,莱布尼兹型级数的审敛法,幂级数的收敛域与收敛半径,幂级数求和函数,函数的泰勒级数,傅立叶级数收敛定理。 三、本章难点 用定义判别级数的收敛,P-级数审敛法,幂级数求和函数,函数的泰勒级数,傅立叶级 数收敛定理。 四、例题选讲 例1:判别级数()2 1ln 1ln ln 1n n n n ∞ =??+ ???+∑的敛散性。 (用定义) 解:原式=()()2 2ln 1ln 11 ()ln ln 1ln ln(1)n n n n n n n n ∞ ∞==+-=-++∑∑ 级数的部分和1 11111ln 2ln3ln3ln 4ln ln(1)n S n n ??????=-+-++- ? ? ?+?????? 111ln 2ln(1)ln 2 n = -→+, ()n →∞ 所以原级数收敛,且收敛于 1 ln 2 。 例2:证明级数 2 cos cos(1) n n n n ∞ =-+∑收敛。(利用柯西审敛原理) 证明:1 cos cos(1) n p n p n m n m m S S m ++=+-+-= ∑ ()()()11cos 1cos 11 ()cos 111n p m n n n p m n m m n p +-=+++=--+- +++∑ 得1 111112 ()111n p n p n m n S S n m m n p n +-+=+-≤+-+=++++∑, 对任意的0ε>,取2N ε??=???? ,则当n N >时,对所有p N ∈,都有 n p n S S ε +-<,

教案1无穷级数概念与性质

高等数学教案1 第十一章 无穷级数 编写人:吴炯圻 I. 授课题目: 第一节 常数项级数的概念和性质 Ⅱ.教学目的与要求 1、了解常数项级数的概念及其产生的背景; 2、掌握收敛级数的基本性质; 3、会采用级数敛散的定义或收敛级数的基本性质判断较简单级数的敛散性; 4、了解柯西审敛原理。 Ⅲ.教学重点与难点: 重点:级数收敛与发散的定义; 收敛级数的基本性质。 难点:无穷个数量求和与有限个量求和的差别。 关键: 1.会把级数的问题转化为部分和序列来处理; 2.熟悉数列的收敛与发散的判别. Ⅳ.讲授内容: 第一节 常数项级数的概念和性质 一、常数项级数的概念及其产生的背景 1.古代人如何求圆的面积? 我国古代数学家刘徽已经利用无穷级数的思想来计算圆的面积. 在半径为1的圆内作内接正六边形, 其面积记 为1a , 它是圆面积A 的一个近似值. 再以这正六边 形的每一边为底边分别作一个顶点在圆周上的等腰 三角形 (图1-1) , 算出这六个等腰三角形的面积之 和2a . 那么21a a (即内接正十二边形的面积)也是 图1-1

A 的一个近似值, 其近似程度比正六边形的好. 同样 地, 在这正十二边形的每一边上分别作一个顶点在圆周上的等腰三角形, 算出这十二个等腰三角形的面积之和3a . 那么321a a a ++(即内接正二十四边形的面积)是A 的一个更好的近似值. 如此继续进行n 次, 当n 是较大的整数时,得到的正多边形的面积 n n a a a s +++=Λ21就很接近A 的值了. 2.常数项级数的概念 古代数学家刘徽时代,人们只懂求有限个量之和,没有极限的概念,仅能把求圆面积的步骤和准确性停留在有限的数n 上。 随着科学的进步,人们认识的提高,人们自然认为,当n 无限增大时,则 n n a a a s +++=Λ21的极限就是圆的面积A ,即 )(lim lim 21n n n n a a a s A Λ++==∞ →∞ →. (1.1) 这时,上式右边括号中的项数无限增多,出现了无穷个数量累加的式子。 一般地, 给定一个数列 ΛΛ,,,,,321n u u u u , 则由这数列构成的表达式 ΛΛ+++++n u u u u 321 (1.2) 叫做(常数项)无穷级数, 简称(常数项)级数, 记为 ∑∞ =1 n n u , 即 ∑∞ =1 n n u ΛΛ+++++=n u u u u 321, 其中第n 项u n 叫做级数的一般项或通项. 上述级数的定义只是一个形式的定义,怎样理解无穷级数中无穷多个数量相加呢? 联系上面计算圆的面积的例子,即(1.1)式,用有限项的和S n 的极限来定义无穷多个数量相加的“和”,我们自然要问,对一般的级数是否也可以这样做? 这个思路是对的。 为此,我们把级数(1.2)的前n 项之和s n = u 1+u 2 +…+u n 称为级数(1.1)的部分和, n 依次取 1,2,L 时得数列 s 1, u 2 ,…, u n … 称为级数的部分和数列. 在上面求面积的例子中,部分和数列收敛(为什么?),并由此求得面积, 即求得无穷多个量之和12....n a a a A ++++=L 。 但是,能否由此推断, 所有级数的部分和数列收敛都收敛? (提问, 允许各种猜测.) 事实上, 正像一般的数列未必收敛一样,部分和数列也未必收敛。例如 1+(-1)+ 1+(-1)+ 1+(-1)+ 1+(-1)+……=1 1(1)n n -∞ =-∑. 其部分和数列是:1,0,1,0,…….,它显然不收敛。

微积分第七章-无穷级数

第七章 无穷级数 一、本章的教学目标及基本要求: (1) 理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性 质和收敛的必要条件。 (2) 掌握几何级数与p —级数的收敛性。 (3) 会用正项级数的比较审敛法、比值审敛法和根值审敛法,掌握正项级数的比值审敛法。 (4) 会用交错级数的莱布尼茨定理。 (5) 了解无穷级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。 (6) 了解函数项级数的收敛域及和函数的概念。 (7) 掌握幂级数的收敛半径、收敛区间及收敛域的求法。 (8) 了解幂级数在其收敛区间内的一些基本性质,会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。 (9) 了解函数展开为泰勒级数的充分必要条件。 (10) 掌握函数α )1(),1ln(,cos ,sin ,x x x x e x +-的麦克劳林展开式,会用它们 将一些简单函数间接展开成幂级数。 (11) 了解傅氏级数的概念以及函数展开成傅氏级数的狄利克雷定理,会将定义 在],[l l -上的函数展开成傅氏级数,会将定义在],0[l 上的函数展开成正弦级数与余弦级数,会写出傅氏级数的和的表达式。 二、本章教学内容的重点和难点: 重点:无穷级数的收敛与发散,正项级数的审敛法,幂级数的收敛半径与收敛区间的求 法. 难点:正项级数的审敛法,幂级数展开,傅立叶级数展开. §7.1 常数项级数的概念及性质 一、内容要点 1、常数项级数概念: 常数项级数、部分和、级数的收敛与发散、余项; 2、收敛级数的基本性质及收敛的必要条件: 性质1:若级数∑∞= 1 n n u 收敛于和s ,则级数∑∞ =1 n n ku 也收敛,且其和为ks .(证明) 性质2:若级数 ∑∞=1 n n u 、∑∞= 1 n n v 分别收敛于和s 、σ,则级数()∑∞ =+1 n n n v u 也收敛,且其和为s ±σ.(证明) 性质3:在级数中去掉、加上或改变有限项,不会改变级数的收敛性.(证明) 性质4:若级数∑∞ = 1 n n u 收敛,则对这级数的项任意家括号后所成的级数仍收敛,且其和不变.(证明); 性质5(级数收敛的必要条件):若级数 ∑∞ = 1 n n u 收敛,则它的一般项u n 趋于零,即

无穷级数练习题

无穷级数练习题 无穷级数习题 一、填空题 ,,nn1,1、设幂级数的收敛半径为3,则幂级数的收敛区间为。axnax(1),,,nnn0,n1, ,n2、幂级数的收敛域为。 (21)nx,,0n, ,n21n,R,3、幂级数的收敛半径。 x,nn(3)2,,n1, n,x4、幂级数的收敛域是。 ,,1n0n, 2n,(2)x,5、级数的收敛域为。 ,nn4n,1 n,(ln3)6、级数的和为。 ,n20n, ,1n1,7、。 n,(),2n1, 28、设函数fxxx(),,, 的傅里叶级数展开式为 (),,,,,x ,a0,,(cossin),则其系数b的值为。 anxbnx,nn321n, ,,,,x0,,1,,2,9、设函数则其以为周期的傅里叶级数在点处的fx(),x,,,20,,,x1,,x,, 敛于。 ,110、级数的和。 ,nnn,,(1)(2)n1, 2n,(2)x,11、级数的收敛域为。 ,nn,4n,1 ,1,1)R,3参考答案:1、 2、 3、 4、 5、 (2,4),(1,1),(0,4), 21212,,46、 7、 8、 9、 10、 11、 (0,4)422ln3,3 二、选择题 1

,,an2n1、设常数,而级数收敛,则级数是( )。 ,,0a(1),,,n21n1n,,,,n(A)发散 (B)条件收敛 (C)绝对收敛 (D)收敛与,有关 aa,aa,nnnn,,n,1.2,则下列命题中正确的是( )。 2、设q,p,nn22 ,,, (A)若条件收敛,则与都收敛。 apq,,,nnn,n1n1n1,, ,,, (B)若绝对收敛,则与都收敛。 apq,,,nnn,n1n1n1,, ,,, (C)若条件收敛,则与的敛散性都不一定。 apq,,,nnn,n1n1n1,, ,,, (D)若绝对收敛,则与的敛散性都不定。 apq,,,nnn,n1n1n1,, ,,n1,an,,0,1,23、设,若发散,收敛,则下列结论正确的是( )。 a(1),a,,nnnn1,n1, ,,,,(A)收敛,发散. (B)收敛,发散. aaaa,,,,21n2n2n21n,,N1,n1n1n1,,, ,, (C)收敛. (D)收敛. ()aa,()aa,,,212nn212nn,,n1n1,, ,sin()1n,4、设为常数,则级数,是( ) (),,2nnn1, (A)绝对收敛. (B)条件收敛. (C)发散. (D)收敛性与取值有关. , ,,n,05、级数(1)(1cos),,(常数)是( ) ,n1n, (A)发散. (B)条件收敛. (C) 绝对收敛. (D)收敛性与有关. , 1n6、设,则级数 u,,,(1)ln(1)nn

第七章 无穷级数

第七章 无穷级数 本章有四个问题: 1. 数项级数敛散性; 2. 幂级数的收敛半径、收敛区间、收敛域; 3. 求和函数; 4. 将函数展成麦克老林级数。 7.1数项级数敛散性的判别方法 一 基本概念 1. 级数收敛:令121 n n n k k s u u u u ==+++=∑ ,若lim n n s s →∞ =,则称级数 1 n n u ∞ =∑收敛, 若不然,则称 1 n n u ∞ =∑发散; 2.绝对收敛:若1 n n u ∞ =∑收敛,则称 1 n n u ∞ =∑为绝对收敛; 3. 条件收敛:若 1 n n u ∞ =∑发散,而 1 n n u ∞ =∑收敛,则称 1 n n u ∞ =∑为条件收敛; 二 基本结论 1.级数 1 n n u ∞ =∑收敛的必要条件lim 0n n u →∞ =。 2. 等比级数1 n n aq ∞ =∑的公比的绝对值小于1时,级数收敛,其和等于1减公比分之首项。 3. p 级数 11 p n n ∞ =∑,当1p >时,收敛;当1p ≤时,发散。 三 基本方法 1.正项级数敛散性的判别方法 (1)比较判别法: 一般形式:若n n u v ≤(n N >),则 若 1 n n v ∞ =∑收敛,则 1 n n u ∞ =∑收敛;若 1 n n u ∞ =∑发散,则 1 n n v ∞ =∑ 发散。 极限形式:如果0n v ≠,且 lim n n n u l v →∞=, (I )当0l <<∞时,则 1n n u ∞ =∑和 1 n n v ∞ =∑具有相同的敛散性。 (II )当0l =时,则 1 n n v ∞ =∑收敛, 1 n n u ∞=∑也收敛。 (III )当l =∞时,则 1 n n u ∞ =∑发散, 1 n n v ∞ =∑也发散。

高数 级数

《高等数学(下)》自学、复习参考资料Ⅲ ——使用前请详细阅读后面所附的“使用指南” 授课教师:杨峰(省函授总站高级讲师) 强烈建议同志们以《综合练习》为纲,仔细掌握其中的所有习题内容!各章复习范围: 第一部分《矢量代数与空间解析几何》 ————第八章第一至六节、第八节(即是除了第七节之外都要复习)第二部分《多元函数微积分》 ————第九章第一至五节(其中第四节只要求“全微分”) ————第十章第一至三节、第五节(即是第四、六节暂不作要求)第三部分《级数论》 ————第十一章都要复习 敬告学员——本门课程复习资料我们是根据听课和教研的基本情况结合自己的理解、加工,尽量全面、系统地整理出来,但是也只能供大家参考使用而已,并不能代表考试的任何信息,特此说明。不便之处,敬请原谅! 另外,以后象这样的数理学科,众所周知,其难度较大,数字稍作变化,许多同志未必能做出来。因此,这些科目的面授课建议大家都能克服困难,积极地参加,以获取准确的知识和复习信息,否则光是依赖网上复习参考资料,随时有不能一次通过的危险。

第十一章 级数 一、常数项级数的概念与性质(了解) 1、无穷级数的概念 设有无穷数列 ,,,,,21??????n u u u 则式子 ,21???++???++n u u u 称为无穷级数,简称级数。记作 ∑∞ =1 n n u 。即 , 211 ???++???++=∑∞ =n n n u u u u 其中,,,,,21??????n u u u 叫做级数的项,而n u 叫做级数的一般项或通项,各项都是常数的级数称为常数级数。 例如 ???++???+++n 321, ???++???+++n 3 1 31313132。 就是常数项级数。 2、级数的收敛与发散 定义 设级数,21 ???++???++n u u u 当n 无限增大时,

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

(完整版)高数第七章无穷级数知识点,推荐文档

第七章 无穷级数 一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性): 1、形如∑∞ =-11 n n aq 的几何级数(等比级数):当1p 时收敛,当1≤p 时发散。 3、? ≠∞ →0lim n n U 级数发散; 级数收敛 lim =?∞ →n n U 4、比值判别法(适用于多个因式相乘除):若正项级数 ∑∞ =1 n n U ,满足 条件l U U n n n =+∞→1 lim : ①当1l 时,级数发散(或+∞=l ); ③当1=l 时,无法判断。 5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞ =1n n U ,满足 条件λ =∞ →n n n U lim : ①当1<λ时,级数收敛; ②当1>λ时,级数发散(或+∞=λ); ③当1=λ时,无法判断。 注:当1,1==λl 时,方法失灵。 6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。(通过不等式的放缩)

推论:若∑∞ =1n n U 与∑∞ =1 n n V 均为正项级数,且l V U n n n =∞→lim (n V 是已知敛散 性的级数) ①若+∞<

(完整版)无穷级数习题及答案.doc

第十一章 无穷级数 (A) 用定义判断下列级数的敛散性 1 . n 2n 1 ; . 1 ;3. 1 1 。 2 n 1 2n 2n2 n 1 3 n 5 n n 1 判断下列正项级数的敛散性 . n! ;5. n e ; 6. n 1 ;7. 2n 3 ;8. n 4 ; 4 n 1 e n 1 2n n 1 n n 3 n 1 n! n 1 100 n n n n n 1 n 9. ;10. 3n n 1 2n 。 n 1 1 求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛 . 1 n 1 n 1 ; 12. 1 n 1 ; 13.1.1 1.01 1.001 1.0001; 11 2 n ln n n 1 n 2 14. 1 22 2 3 1 4 1 ; 2 1 3 2 4 2 求下列幂级数的收敛半径和收敛区间 . 3n x n ;16. 1 n x n ; 17. n! x n ; . 1 n ; 15 n n 18 n 1 2n n 1 n 1 n n 1 n 1 19. 1 2n 1 ; 20. n 2 n ; 1 2 n 1 x n 1 3 n x n 求下列级数的和函数 21. n 1 nx n 1 ; 22. n 1 2 1 n 1 x 2n 1 ; 将下列函数展开成 x x 0 的幂的级数 23. shx e x e x , x 0 0 ;24. cos 2 x , x 0 0 ; 2 25. 1 x ln 1 x , x 0 0 ; 26. 1 , x 0 3 ; x 将下列函数在区间 , 上展开为付里叶级数 27. A x cos x , x 。28. f x 2t , x 2

数项级数经典例题大全 (1)

第十二章 数项级数 1 讨论几何级数 ∑∞ =0n n q 的敛散性. 解 当1||q 时, , =n S 级数发散 ; 当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(12 1 -+= , ) (∞→n , 级数发散 . 综上, 几何级数 ∑∞ =0 n n q 当且仅当 1||

4、 讨论级数∑ ∞ =-1352n n n 的敛散性. 解 5 2 , 5252352?>?=>-n S n n n n n →∞+, ) (∞→n . 级数发散. 5、 证明2-p 级数 ∑∞ =121 n n 收敛 . 证 显然满足收敛的必要条件.令 21 n u n = , 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++p k p k p n n n n p n n k n k n k n u u u 112 2 1 ,1 11) )(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 | ∑=+p k k n u 1 |不失真地放大成只含n 而不含p 的式子, 令其小于ε,确定N . 6、 判断级数∑∞ =1 1 s i n n n n 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要 条件) 7、 证明调和级数∑ ∞ =11n n 发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n n n ln 1 1 211 )1ln(+<+++ <+ . 即得+∞→n S ,) (∞→n . ) 注: 此例为0→n u 但级数发散的例子. 8、 考查级数 ∑∞ =+-1 2 11 n n n 的敛散性 . 解 有 , 2 11 012222n n n n n <+-?>+- 9、 判断级数 ()() +-+??-+??++????+??+)1(41951)1(32852951852515212n n

相关主题
文本预览
相关文档 最新文档