水平井剖面及井身结构设计(朱宽亮)
- 格式:ppt
- 大小:4.08 MB
- 文档页数:80
第二章 井身结构设计井身结构设计就是钻井工程得基础设计。
它得主要任务就是确定套管得下入层次、下入深度、水泥浆返深、水泥环厚度、生产套管尺寸及钻头尺寸。
基础设计得质量就是关系到油气井能否安全、优质、高速与经济钻达目得层及保护储层防止损害得重要措施。
由于地区及钻探目得层得不同,钻井工艺技术水平得高低,国内外各油田井身结构设计变化较大。
选择井身结构得客观依据就是地层岩性特征、地层压力、地层破裂压力。
主观条件就是钻头、钻井工艺技术水平等。
井身结构设计应满足以下主要原则:1.能有效地保护储集层;2.避免产生井漏、井塌、卡钻等井下复杂情况与事故。
为安全、优质、高速与经济钻井创造条件;3.当实际地层压力超过预测值发生溢流时,在一定范围内,具有处理溢流得能力。
本章着重阐明地下各种压力概念及评价方法,井身结构设计原理、方法、步骤及应用。
第一节 地层压力理论及预测方法地层压力理论与评价技术对天然气及石油勘探开发有着重要意义。
钻井工程设计、施工中,地层压力、破裂压力、井眼坍塌压力就是合理钻井密度设计;井身结构设计;平衡压力钻井;欠平衡压力钻井及油气井压力控制得基础。
一、几个基本概念1.静液柱压力静液柱压力就是由液柱自身重量产生得压力,其大小等于液体得密度乘以重力加速度与液柱垂直深度得乘积,即0.00981hP H (2-1)式中:P h ——静液柱压力,MPa;r ——液柱密度,g/cm 3; H ——液柱垂直高度,m 。
静液柱压力得大小取决于液柱垂直高度H 与液体密度r ,钻井工程中,井愈深,静液柱压力越大。
2.压力梯度指用单位高度(或深度)得液柱压力来表示液柱压力随高度(或深度)得变化。
ρ00981.0==HP G hh (2-2) 式中:G h ——液柱压力梯度,MPa/m; P h ——液柱压力,MPa; H ——液柱垂直高度,m 。
石油工程中压力梯度也常采用当量密度来表示,即HP h00981.0=ρ (2-3)式中:r ——当量密度梯度,g/cm 3; 3.有效密度钻井流体在流动或被激励过程中有效地作用在井内得总压力为有效液柱压力,其等效(或当量)密度定义为有效密度。
南堡深层水平井探潜山面井斜角设计方法胡中志;周岩;李然;朱宽亮;李战伟;张红臣【摘要】为保证深层潜山水平井实钻轨迹能够顺利有效进入潜山,且沿地质要求的有利储层段钻进,建立了一种深层潜山水平井探潜山面井斜角的设计方法。
以设计轨道沿潜山高部位向低部位钻进这种相对难进山且进山后容易穿出有利储层的情况为研究对象,分析了地层倾角、有利储层预测厚度和工具造斜能力与设计探潜山面井斜角之间的关系,考虑了地层倾角与设计轨道方位间的夹角、地层倾角预测误差和有利储层厚度预测误差等主要影响因素,建立了探潜山面井斜角计算模型,并应用于冀东油田深层潜山水平井设计。
实钻表明:该设计方法达到了有效探潜山面并顺利沿地质要求的井段钻进的目的。
%To ensure the track of the deep buried hill horizontal wells can effectively enter the buried hill reservoir and drill in the favorable reservoirs as geologists desired, we have established a method for designing the hole deviation angle of horizontal well for detecting the surface of deep buried hills. Taking the designing of the well trajectories starting from the high position of the buried hill to the low position, where entering the buried hill reservoir is relatively dififcult and the favorable reservoirs tend to be drilled through as the research object, we have analyzed the relationship of the formation dip, reservoir thickness, tool angle building capability, and the designed inclination for detecting the surface of buried hills;considered the main inlfuence factors, such as the angle between forma-tion dip and designed azimuth, prediction error of the formation dip, the error of thickness prediction of the proiftable reservoirs, etc.;established the model for calculation of thehole inclination for detecting the buried hills and have applied it to the design of horizontal wells into buried hills in Jidong Oilifeld. The actual drilling shows that the design method has achieved the goal of effectively detecting the buried hill surface and drilling along the proiftable reservoirs as the geologists desired.【期刊名称】《石油钻采工艺》【年(卷),期】2014(000)003【总页数】3页(P7-9)【关键词】深层潜山;探潜山面井斜角;设计方法;预测误差;水平井【作者】胡中志;周岩;李然;朱宽亮;李战伟;张红臣【作者单位】冀东油田公司钻采工艺研究院,河北唐山 063004;冀东油田公司钻采工艺研究院,河北唐山 063004;冀东油田公司钻采工艺研究院,河北唐山063004;冀东油田公司钻采工艺研究院,河北唐山 063004;冀东油田公司勘探开发建设项目部,河北唐海 063200;冀东油田公司勘探开发研究院,河北唐山 063004【正文语种】中文【中图分类】TE21近年来,地震资料品质及处理精度得到了大幅度提高[1-2],但由于地层各向异性,利用已钻井合成记录来标定的速度应用到待钻井仍会出现误差[3-4],进而导致地层深度、倾角及厚度的预测结果存在误差,地层埋深越深,误差越大。
井身结构设计摘要:井深结构设计是钻井工程的基础设计。
它的主要任务是确定导管的下入层次,下入深度,水泥浆返深,水泥环厚度及钻头尺寸。
基础设计的质量是关系到油气井能否安全、优质、高速和经济钻达目的层及保护储层防止损害的重要措施。
由于地区及钻井目的层的不同,钻井工艺技术水平的高低,不同地区井身结构设计变化较大。
选择井身结构的客观依据是底层岩性特征、底层压力、地层破裂压力。
正确的井身结构设计决定整个油田的开采。
本文基于课本所学的基本内容,对井身结构做一个大致的程序设计。
井身结构设计的内容:1、确定套管的下入层次2、下入深度3、水泥浆返深4、水泥环厚度5、钻头尺寸井身结构设计的基础参数包括地质方面的数据和工程等数据1.地质方面数据(1)岩性剖面及故障提示;(2)地层压力梯度剖面;(3)地层破裂压力梯度剖面。
2.工程数据,以当量钻井液密度表示;单位g/cm3:如美国墨西(1)抽汲压力系数Sw=0.06。
我国中原油田Sw=0.015~0.049。
湾地区采用Sw,以当量钻井液密度表示,单位g/cm3。
(2)激动压力系数Sg由计算的激动压力用(2-58)进行计算,美国墨西湾地区取Sg=0.06, Sg我国中原油田Sg=0.015~0.049。
(3)地层压裂安全增值S,以当量钻井液密度表示,单位g/cm3。
fSf是考虑地层破裂压力检测误差而附加的,此值与地层破裂压力检测精度有关,可由地区统计资料确定。
美国油田Sf取值0.024,我国中原油田取值为0.02~0.03。
4)溢流条件Sk以当量钻井液密度表示,单位g/cm3。
由于地层压力检测误差,溢流压井时,限定地层压力增加值Sk。
此值由地区压力检测精度和统计数据确定。
美国油田一般取Sk=0.06。
我国中原油田取值为0.05~0.10。
(5)压差允值PN (Pa)裸眼中,钻井液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差卡钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行固井和完井工作。
分支水平井防砂工艺技术的应用研究3梅明霞 高雪峰 智勤功 卫然 孙秀钊 (中石化胜利油田有限公司采油工艺研究院)卢 刚(胜利油田孤岛采油厂)Ξ 摘要 目前分支水平井防砂工艺在国内已形成一套完整的分支水平井防砂工艺技术,能够满足51/2in 、7in 井筒分支水平井防砂工艺技术要求,介绍了分支水平井防砂管柱的结构设计的理论研究,胜利油田第一口防砂分支水平井的现场试验,从射孔工艺技术、防砂管柱、效果分析阐述了分支水平井防砂技术的应用。
主题词 水平井 防砂 工艺 射孔 分支井是指在一个主井眼内钻出两个以上的井眼,主井眼可以是直井也可以是斜井或水平井。
针对胜利油田疏松砂岩的地质特点,在水平井、侧钻水平井防砂工艺的基础上,开展了分支水平井防砂工艺技术研究工作,采用管内射孔滤砂管防砂工艺技术成功地对胜利油田桩西采油厂第一口分支水平井(桩1-支平1井)实施了防砂作业。
利用分支水平井防砂工艺技术,控制更大面积储量,控制底水锥进,改善疏松砂岩油藏开发效果,提高产能及采收率,收到了初步效果。
这是胜利油田,也是国内第一口防砂分支水平井,填补了我国在该技术领域的空白。
目前已形成一套完整的分支水平井防砂工艺技术,能够满足51/2in 、7in 井筒分支水平井防砂工艺技术要求。
1.防砂管柱结构设计111 工艺原理分支井防砂工艺运用滤砂管防砂原理,对进入分支井内的液体进行分级过滤,将一定粒径范围内的地层砂挡在滤套环空及炮眼附近,形成稳定砂桥,达到防砂产油的目的。
112 防砂管柱结构(1)基本结构。
分支水平井防砂管柱由丝堵+扶正器+金属毡滤砂管+封隔器组成。
一般要求金属毡滤砂管覆盖油层上、下限度为3~5m 。
(2)金属毡滤砂管最大外径和长度设计。
防砂管柱能否顺利下入到油层设计位置,取决于金属毡能否顺利通过造斜段和水平段。
在水平井套管内径确定的条件下,造斜段由于曲率半径对滤砂管通过时最大长度和外径给予限制,为了保证防砂管柱不被破坏,应进行设计计算。
水平井轨迹设计操作说明一、根据井组生成轨迹剖面设计水平井1、选择水平井设计方式在平面图上单击鼠标右键,选择“设计水平井”→“井组方式”图1-1 选择井组方式2、设置水平井设计剖面依次选中需要的参考井,创建两个井组,然后右键选择“设置剖面方向”,按住鼠标左键给定一个井轨迹设计剖面的方向,右键选择“完成连井”,生成有这些井组构造的参考剖面和轨迹设计剖面,且界面自动转换到参考剖面。
图1-2 完成连井3、提取虚拟井的储层信息在参考井剖面中将已知井的地层、砂层都对应连接好,然后在剖面图幅中右键选择“提取设计井地层属性”或者“提取设计井砂层属性”进行虚拟井储层信息的自动提取图1-3 设计井地层属性的提取图1-4 设计井砂层属性的提取4、激活水平井设计剖面在参考井剖面图幅上右键选择“激活水平井轨迹设计剖面”,软件的界面会自动转换到水平井轨迹设计剖面,如下图所示图1-5 激活水平井设计剖面5、设计井轨迹在水平井轨迹设计剖面中,选择右侧工具栏上的“激活图层”,将井轨迹设计图层激活;选择右侧工具栏上的“井口”,回到设计剖面图幅中在需要设计井口的位置双击,井口就会出现在对应的地方;图1-6 设定井口选择右侧工具栏的“靶点”,在剖面中的目的层段双击设置靶点,设置到第二个靶点时,会弹出剖面类型的选择对话框图1-7 剖面类型选择对话框软件针对水平井轨迹设计提供了4中模式,分别为:①增-稳-增;②增-增-增;③阶梯井;④拱形井;选择需要的类型,点击下一步,出现水平井参数对话框图1-8 水平井参数对话框对井口及靶点的参数进行调整,并在井名处设定一个井名,点击“完成”,就会在剖面中出现设计的井轨迹图1-9 生成井轨迹6、井轨迹的编辑单击右侧工具栏上的“轨迹编辑”,再选中轨迹,轨迹呈现出可编辑状态,移动结点,可对轨迹进行编辑图1-10 井轨迹编辑7、井轨迹风格的设置选中井轨迹,右键“设置风格”图1-11 设置井轨迹风格出现井轨迹风格设置的对话框图1-12 井轨迹属性对话框对轨道、井导眼、标注等进行设置,点击确定,轨迹就以设定的风格显示在剖面上图1-13 井轨迹显示8、模板的保存选中井轨迹右键,选择“保存轨道风格为模板”,弹出对话框,输入模板的名称,单击确定.图1-14 井轨迹模板9、剖面表格、标题、方位角的显示选中轨迹,再点选一下右侧工具栏的“剖面表格”,则设计轨道剖面数据表显示在剖面上,通过拖动可以移动它在平面图上的位置,也可以拖拉边框调整表格的大小。