数学建模中综合评价模型(改进)
- 格式:ppt
- 大小:1.84 MB
- 文档页数:52
数学建模中模型的名词解释数学建模作为一门学科,是将实际问题转化为数学问题,并运用数学理论和方法来解决问题的过程。
在数学建模中,模型是其中最为重要的概念之一。
模型在解决实际问题时起着关键的作用,可以帮助我们更好地理解现象和规律,并进行预测和优化。
一、模型的定义模型是对实际问题的抽象和简化,通过数学形式来描述。
它可以是数学方程、图表或者其他数学表达形式。
模型的建立需要根据实际问题的特点和需求,选择合适的数学方法和变量,并对其进行适当的假设和简化。
二、数学模型的分类数学模型可以分为动态模型和静态模型两种类型。
1.动态模型动态模型是描述事物随时间变化的模型。
在动态模型中,时间是一个重要的变量,用来描述事物的演化过程。
动态模型可以采用微分方程、差分方程等数学方法进行描述,常见的动态模型包括物理系统的运动学模型、生态系统的种群动力学模型等。
2.静态模型静态模型是描述事物特定状态的模型。
在静态模型中,时间不再是一个重要的变量,模型的关注点集中于某一特定时刻或特定状态下的问题。
静态模型可以采用代数方程、优化模型等进行描述,常见的静态模型包括线性规划模型、统计回归模型等。
三、模型的构建步骤建立数学模型的过程可以分为问题的理解、建立数学模型、求解模型和模型的验证四个步骤。
1.问题的理解问题的理解是建立数学模型的第一步,需要深入了解问题的背景和需求,明确问题的目标和限制条件,分析问题的关键因素和变量。
2.建立数学模型建立数学模型是将实际问题转化为数学问题的过程,需要根据问题的特点和要求选择合适的数学方法和变量,并针对问题进行适当的假设和简化。
建立数学模型时,需要考虑模型的可解性、可行性和合理性。
3.求解模型求解模型是通过数学方法和计算工具,对建立的数学模型进行求解和分析,得到问题的解答或者优化结果。
求解模型时,需要选择合适的求解算法和计算方法,进行模型的计算和推导。
4.模型的验证模型的验证是对模型求解结果的合理性和可靠性进行分析和评价的过程。
评分排序优化模型摘要一年一度的全国大学生数学建模竞赛,是一项规模宏大的课外科技活动之一。
所给问题要求建立一个评分排序优化模型,正是针对建模竞赛中重要环节——答卷评分排序环节而提出的,具有很重要的实际应用意义。
答卷的评分排序只有做到科学、合理、公正,才能评选出优秀的作品。
根据这些特点,我们对所给问题运用统计数学中的统计学原理建立模型,由简单到复杂,由片面到均衡兼顾,逐步优化。
建模前期,我们对所给数据进行了筛选,部分答卷为零分或只有两个数据,也许违反了竞赛规则和评阅规则,将作为废卷处理,剔除这一小部分答卷的数据。
首先,我们建立了常用的简单模型I ——均值评比模型,其数学表达式为913jij i xP ==∑,得到最初的名次,前五名的答卷编号分别为。
然后,考虑到模型I忽略了不同评委对同一份答卷的差异,及评委的自身知识水平的限制和主观成份的波动误差影响,结果存在很大的误差。
在对均值评比模型改进的基础上建立了模型II ——标准分模型。
其数学表达式为90013ji j j j i x x x s P δ=⎛⎫-⋅+ ⎪ ⎪⎝⎭=∑,由于该模型成立的前提条件是服从正态分布,故借助SPSS 对数据进行了单样本K-S 正态检验和描述性统计分析,可得每位评委的评分服从正态分布及相关统计数据,使用MATLAB 软件编程计算出所有评分的标准分,再利用模型I 求出均值,进行名次排序,前五名的答卷编号分别为。
其次,对数据进行单因素方差分析,可得各评委的评分偏好存在较大的差异,给每位评委加权,建立了模型III ——加权评分模型,其数学表达式为()000,100100100,100ji j jji jx x x x x i x x P ⋅≤-⋅-+-⎧⎪=⎨⎪⎩当时否则利用MATLAB 软件编程求解出所有加权后的评分,依旧用模型I 求出均值,进行名次排序,得到新的名次,前五名的答卷编号分别为。
最后,对三个模型进行评价,并对其结果进行对比分析。
2016江西财经大学数学建模竞赛A题城市交通模型分析参赛队员: 黄汉秦、乐晨阳、金霞参赛队编号:20160182016年5月20日~5月25日承诺书我们仔细阅读了江西财经大学数学建模竞赛的竞赛章程。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C中选择一项填写): A我们的参赛队编号为2016018参赛队员(打印并签名) :队员1. 姓名专业班级计算机141队员2. 姓名专业班级计算机141队员3. 姓名专业班级计算机141日期: 2016 年 5 月 25 日编号和阅卷专用页江西财经大学数学建模竞赛组委会2016年5月15日制定城市交通模型分析摘要随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,交通出行结构发生了根本变化,城市道路交通拥挤堵塞问题已成为制约经济发展、降低人民生活质量、削弱经济活力的瓶颈之一。
本篇论文针对道路拥挤的问题采用层次分析法进行数学建模分析,讨论拥堵的深层次问题及解决方案。
首先建立绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。
其次,建立评价集V=(优,良,中,差)。
对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。
利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5)然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式1,ij ij n kj k u u u==∑ 1,n i ij j w u ==∑ 1,i i n j j w w w ==∑ []R W R W R W R W R W W R WO 5544332211,,,,==计算出权重值,经过一致性检验公式RI CICR =检验后,均有0.1CR <,由此得出各层次的权向量()12,,Tn W W W W =。
对学生宿舍设计方案的综合评价摘要本文研究的是对四种学生宿舍设计方案进行综合性量化评价和比较。
我们通过对四种学生宿舍设计方案标准层平面图所包含的信息图文进行分析综合,得到数据统计表如表1-1所示。
根据上表,我们对学生宿舍设计方案1、2、3、4做出了经济性、舒适性及安全性中各个方面进行评价。
最后运用层次分析法,用Matlab 软件计算权重系数,得出了建设成本1B 、运行成本2B 、收费标准3B 、人均面积4B 、使用方便5B 、互不干扰6B 、采光和通风7B 、人员疏散8B 、防盗9B 九项指标分别为0.7383、0.1702、0.0915、0.3424、0.2837、0.2209、0.1530、0.5500、0.4500,从而对问题进行了综合评价,以综合量指标t Y 进行评价估算,评价函数:i n i it C XY ⋅=∑==91(=t 1、2、3、4,=i 1、2、3、4、5、6、7、8、9),得到的结果是1Y =4.8328,2Y =6.6293,3Y =5.7446,4Y =6.9670, 从而说明学生宿舍设计方案4的综合量指标最大,学生宿舍设计方案1的综合量指标最小;学生宿舍设计方案2、3居于学生宿舍设计方案1、4之间。
关键词:综合评价 层次分析法 Matlab 软件一、问题重述学生宿舍事关学生在校期间的生活品质, 直接或间接地影响到学生的生活、学习和健康成长。
学生宿舍的使用面积、布局和设施配置等的设计既要让学生生活舒适,也要方便管理, 同时要考虑成本和收费的平衡, 这些还与所在城市的地域、区位、文化习俗和经济发展水平有关。
因此,学生宿舍的设计必须考虑经济性、舒适性和安全性等问题。
经济性:建设成本、运行成本和收费标准等。
舒适性:人均面积、使用方便、互不干扰、采光和通风等。
安全性:人员疏散和防盗等。
附件是四种比较典型的学生宿舍的设计方案。
请你们用数学建模的方法就它们的经济性、舒适性和安全性作出综合量化评价和比较。
数学建模教学反思
引言:
数学建模作为一门综合性学科,在培养学生解决实际问题的能力和创新思维方面起着至关重要的作用。
然而,当前我国数学建模教学还存在一些问题,需要进行深入的反思和改进。
本文将从几个相关标题出发,对数学建模教学的现状和问题进行分析,并提出一些改进的建议。
一、数学建模教学的目标和意义
1.1 培养学生的实际问题解决能力
1.2 增强学生的创新思维
1.3 促进跨学科的综合素养发展
二、数学建模教学的现状
2.1 教材内容过于抽象,与实际应用脱节
2.2 教学方法单一,缺乏趣味性和互动性
2.3 老师的教学经验和素养不足
三、数学建模教学的改进建议
3.1 优化教材内容,加强与实际应用的联系
3.2 多样化的教学方法,激发学生的学习兴趣
3.3 提高教师的专业素养和教学能力
四、数学建模教学的案例分析
4.1 实际问题的选取和解决方法
4.2 学生的学习成果展示和评估方式
4.3 教师在教学过程中的角色与作用
五、数学建模教学的实施策略
5.1 建立跨学科的教师团队
5.2 加强与实际应用领域的合作
5.3 创造专门的数学建模教学环境和资源
六、数学建模教学的评价体系
6.1 设定科学合理的评价标准
6.2 鼓励学生的自我评价和反思
6.3 将数学建模教学纳入学校综合评价体系
结语:
数学建模教学是培养学生创新思维和实际问题解决能力的关键环节。
通过对数学建模教学的反思和改进,我们可以提高学生的学习效果和实际应用能力。
希望本文的探讨能够引起更多教育者和相关部门的关注,推动数学建模教育的不断发展与创新。
E题数学建模竞赛成绩评价与预测摘要本体是关于评价比较与预测问题,是对数学建模开展以来各高校建模水平的评价和比较以及预测。
第一,分析给出的各高校的获奖数据,统计,进行综合量化评价,运用的方法是层次分析法,综合评判和线性分析。
最后,以学校的建模水平进评比。
对于四个问题,对各高校建模获奖数据进行了统计分析。
在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的一级评判模型把所给学校的国家一等奖、国家二等奖,省一等奖、省二等奖,省三等奖,成功参赛奖作为因素集。
在用模糊综合评判方法时,确定评判矩阵和权重分配是两项关键性的工作,求权重分配时,通过往年评分标准确定数据后用层次分析法计算权重;对于评判矩阵,通过对整理的各高校每个等级奖项数目对各高校获奖总数的比重建立评价矩阵。
通过C语言编程处理得出的各高校建模水平,通过线性回归,预测十二五期间的建模水平,从而解决问题。
关键字:综合评判;层次分析法;统计分析;线性回归;C语言编程;画图软件;一、问题的重述近20年来,CUMCM的规模平均每年以20%以上的增长速度健康发展,是目前全国高校中规模最大的课外科技活动之一。
2011 年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1251所院校、19490个队(其中本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。
在数学建模活动开展20周年之际,有必要对以往的数学建模工作进行总结及对未来的发展进行预测。
通过某高校2006-2011年数学建模成绩,建立合理的评价模型,对该校十一五期间数学建模工作进行评价,并对该校十二五期间的数学建模成绩进行预测;试建立评价模型,给出吉林赛区十一五期间各校建模成绩的科学、合理的排序;并给出吉林赛区各院校十二五期间的建模成绩进行预测;给出全国各院校的自建模竞赛活动开展以来建模成绩的科学、合理的排序;并对全国各院校十二五期间的建模成绩进行预测;你认为如果科学、合理地进行评价和预测,除全国竞赛成绩、赛区成绩外,还需要考虑那些因素?二、模型假设1、假设附表中的信息基本准确没有异常值并且数据是真实合理的。
数学建模模糊综合评价法1. 什么是模糊综合评价法?好啦,今天咱们聊聊一个听起来复杂,但其实挺有意思的话题——模糊综合评价法。
别担心,不会让你脑袋里冒烟的。
其实,模糊综合评价法就像一个超级聪明的评委,专门用来评判那些不那么明确的事情。
比如,假设你想评估一个产品的质量,单靠“好”或“不好”这两个词,太简单了吧?这时候,模糊综合评价法就能派上用场了!想象一下,如果你要评价一部电影,除了“好看”和“难看”,你可能会考虑“剧情”、“演技”、“音乐”、“特效”等等。
而每一项评价可能还有不同的分数,像是“非常好”、“一般”、“差不多”等等。
模糊综合评价法就像给你一张多维度的评分表,让你全面而又细致地评估一件事情,省得你像那种一口气就咽下去的面条,吞得太快,咽不下去还得拉肚子。
2. 模糊综合评价法的基本步骤2.1 确定评价指标首先,我们得确定评价指标。
就像你要做一道美味的菜,必须先想好要用哪些食材。
比如说,如果你在评价一款手机,可能会考虑“屏幕清晰度”、“电池续航”、“拍照效果”等等。
每个指标就像是你挑选的食材,每个食材的好坏都会影响到最后的菜肴。
2.2 建立评价模型接下来,就是建立评价模型。
这里的模型有点像是咱们的食谱,得把所有的指标按照一定的规则组合在一起。
你可以根据每个指标的重要性来加权,也就是说,有些食材比其他的更重要。
比如,电池续航对一个经常出门的人来说,肯定比音质重要。
然后,你把每个指标的评分汇总,算出一个总分。
简单说,就是给每个食材加点调料,让整道菜更有味道。
3. 实际应用案例3.1 选学校说到这里,咱们不妨举个例子,比如说你想给孩子选个学校。
光看排名可不够,你还得考虑学校的师资力量、校园环境、课外活动、家长评价等等。
这时候,模糊综合评价法就像是你的一个小助手,帮你把这些看似杂乱无章的信息整理成一张清晰的图。
你可以给每个学校的这些指标打分,最终找出一个最适合你孩子的学校。
3.2 企业评估再比如,在企业管理中,模糊综合评价法也大显身手。
数学建模评价类问题如何确定评价系统的指标权重?之前小编发过一篇系统介绍综合评价类问题的文章【数学建模之综合评价问题】,文中总结了综合评价模型一般步骤:1. 明确评价目的;2. 确定被评价对象;3. 建立评价指标体系(包括评价指标的原始值、评价指标的若干预处理等);4. 确定与各项评价指标相对应的权重系数;5. 选择或构造综合评价模型;6. 计算各系统的综合评价值,并给出综合评价结果。
今天,小编继续和大家聊聊——如何确定评价系统的指标权重?0、前言对于多指标的评价系统,各指标之间的相对重要性是互不相同的,单纯将所有指标的重要性假设为无差别并不是一种可取的方法。
指标间相对重要性的量化过程也就是不同指标的权重确定过程,不同的权重确定方法必然导致不同的评价结果。
而指标权重的确定不仅在综合评价系统中应用广泛,同时在多目标决策中也有很多应用(当然,综合评价问题也可视为多目标决策问题),在进行数学规划时,实际问题中往往存在多个目标,而且很难证,可行域内存在某一个解使得所有目标函数都取得最优值。
在这种情况下,就需要对多个目标进行综合加权,将多目标问题转化为单目标问题再进行求解。
1、权重确定方法分类现有的指标权重方法主要可以分为两类,一类是相对主观的方法,专家通过经验确定不同指标之间的相对重要程度,通过多个专家的打分,取其平均值作为权重。
这类方法中,非常具有代表性的就是层次分析法。
另一类相对客观的权重确定方法是根据不同评价对象在该指标上得分的离散程度来确定权重。
评价系统的最终目的是将所有的评价对象区分开,如果某一个指标的数据离散程度越大,其对评价对象的区分度也就越好,所以其权重也应该较大一些。
在这类方法中,应用比较广泛的有变异系数法和熵值法。
2、主观赋权法——层次分析法本文中,我们以层次分析法为例来看一看主观赋权法。
在确定指标之间的权重时,如果指标数量较多,我们很难直接凭经验给出一组权重。
比如通过语文、数学和英语3门功课来评价一个学生的文化课水平,我们无法给出一个3维向量,可以同时衡量不同功课间的相对重要程度。
所谓指标就是用来评价系统的参量.例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标.一般说来,任何—个指标都反映和刻画事物的—个侧面.从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值.例如,旅游景区质量等级有5A 、4A 、3A 、2A 和1A 之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.从指标值的变化对评价目的的影响来看,可以将指标分为以下四类: (1)极大型指标(又称为效益型指标)是指标值越大越好的指标; (2)极小型指标(又称为成本型指标)是指标值越小越好的指标;(3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标; (4) 区间型指标是指标值取在某个区间内为最好的指标.例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化范围一般是(10%,5%)-+×标的价,超过此范围的都将被淘汰,因此投标报价为区间型指标.投标工期既不能太长又不能太短,就是居中型指标.在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换8.2.4 评价指标的预处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便.为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理.1.指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一.一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点.如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷等极小型指标则是希望取值越小越好;对于室内温度、空气湿度等居中型指标是既不期望取值太大,也不期望取值太小,而是居中为好.若指标体系中存在不同类型的指标,必须在综合评价之前将评价指标的类型做一致化处理.例如,将各类指标都转化为极大型指标,或极小型指标.一般的做法是将非极大型指标转化为极大型指标.但是,在不同的指标权重确定方法和评价模型中,指标一致化处理也有差异.(1) 极小型指标化为极大型指标对极小型指标j x ,将其转化为极大型指标时,只需对指标j x 取倒数:1j jx x '=, 或做平移变换:j j j x M x '=-,其中1 max{}j ij i nM x ≤≤=,即n 个评价对象第j 项指标值ij x 最大者.(2) 居中型指标化为极大型指标对居中型指标j x ,令1 max{}j ij i nM x ≤≤=,1 min{}j ij i nm x ≤≤=,取2(),;2 2(),.2j j j j j j j j j j j j j j j j j x m M m m x M m x M x M m x M M m -+⎧≤≤⎪-⎪'=⎨-+⎪≤≤⎪-⎩就可以将j x 转化为极大型指标.(3) 区间型指标化为极大型指标对区间型指标j x ,j x 是取值介于区间[,]j j a b 内时为最好,指标值离该区间越远就越差.令1 max{}j ij i nM x ≤≤=,1 min{}j ij i nm x ≤≤=, max{,},j j j j j c a m M b =--取1,;1, ; 1,.j jj j j j j j j j jj j j a x x a c x a x b x bx b c -⎧-<⎪⎪⎪'=≤≤⎨⎪-⎪->⎪⎩就可以将区间型指标j x 转化为极大型指标.类似地,通过适当的数学变换,也可以将极大型指标、居中型指标转化为极小型指标.2.指标的无量纲化处理所谓无量纲化,也称为指标的规范化,是通过数学变换来消除原始指标的单位及其数值数量级影响的过程.因此,就有指标的实际值和评价值之分.—般地,将指标无量纲化处理以后的值称为指标评价值.无量纲化过程就是将指标实际值转化为指标评价值的过程.对于n 个评价对象12,,,n S S S ,每个评价对象有m 个指标,其观测值分别为 (1,2,,;1,2,,)ij x i n j m ==.(1) 标准样本变换法 令* (1,1).ij jij jx x x i n j m s -=≤≤≤≤其中样本均值11n j ij i x x n ==∑,样本均方差j s =*ij x 称为标准观测值.特点:样本均值为0,方差为1;区间不确定,处理后各指标的最大值、最小值不相同;对于指标值恒定(0j s =)的情况不适用;对于要求指标评价值*0ij x >的评价方法(如熵值法、几何加权平均法等)不适用.(2) 线性比例变换法 对于极大型指标,令*11 (max 0, 1, 1).max ij ij ij i niji n x x x i n j m x ≤≤≤≤=≠≤≤≤≤对极小型指标,令*1min (1,1).iji nijijx x i n j m x ≤≤=≤≤≤≤或*111 (max 0, 1, 1).max ij ij ij i niji nx x x i n j m x ≤≤≤≤=-≠≤≤≤≤该方法的优点是这些变换方式是线性的,且变化前后的属性值成比例.但对任一指标来说,变换后的*1ij x =和*0ij x =不一定同时出现.特点:当0ij x ≥时,*[0,1]ij x ∈;计算简便,并保留了相对排序关系.(3) 向量归一化法 对于极大型指标,令*,1).ij x x i n j m =≤≤≤≤对于极小型指标,令*1 (1,1).ij x x i n j m =≤≤≤≤优点:当0ij x ≥时,*[0,1]ijx ∈,即*21()1nij i x ==∑.该方法使*01ij x ≤≤,且变换前后正逆方向不变;缺点是它是非线性变换,变换后各指标的最大值和最小值不相同.(4) 极差变换法对于极大型指标,令*111min (1, 1).max min ij iji nijij iji ni nx x x i n j m x x ≤≤≤≤≤≤-=≤≤≤≤-对于极小型指标,令*111max (1, 1).max min ij iji nijij iji ni nx x x i m j n x x ≤≤≤≤≤≤-=≤≤≤≤-其优点为经过极差变换后,均有*01ij x ≤≤,且最优指标值*1ij x =,最劣指标值*0ij x =.该方法的缺点是变换前后的各指标值不成比例,对于指标值恒定(0j s =)的情况不适用.(5) 功效系数法 令*111min (1,1).max min ij iji nijij iji ni nx x x c d i n j m x x ≤≤≤≤≤≤-=+⨯≤≤≤≤-其中,c d 均为确定的常数.c 表示“平移量”,表示指标实际基础值,d 表示“旋转量”,即表示“放大”或“缩小”倍数,则*[,]ij x c c d ∈+.通常取60,40c d ==,即*111min 6040 (1,1).max min ij iji nijij iji ni nx x x i n j m x x ≤≤≤≤≤≤-=+⨯≤≤≤≤-则*ij x 实际基础值为60,最大值为100,即*[60,100]ij x ∈.特点:该方法可以看成更普遍意义下的一种极值处理法,取值范围确定,最小值为c ,最大值为c d +.3.定性指标的定量化在综合评价工作中,有些评价指标是定性指标,即只给出定性地描述,例如:质量很好、性能一般、可靠性高、态度恶劣等.对于这些指标,在进行综合评价时,必须先通过适当的方式进行赋值,使其量化.一般来说,对于指标最优值可赋值10.0,对于指标最劣值可赋值为0.0.对极大型和极小型定性指标常按以下方式赋值.(1) 极大型定性指标量化方法对于极大型定性指标而言,如果指标能够分为很低、低、一般、高和很高等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-2所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.图8-2 极大型定性指标量化方法(2) 极小型定性指标量化方法对于极小型定性指标而言,如果指标能够分为很高、高、一般、低和很低等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-3所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.模糊综合评价方法在客观世界中,存在着许多不确定性现象,这种不确定性有两大类:一类是随机性现象,即事物对象是明确的,由于人们对事物的因果律掌握不够,使得相应结果具有不可预知性,例如晴天、下雨、下雪,这是明确的,但出现规律不确定;另一类是模糊性现象,即某些事物或概念的边界不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,例如年轻与年老、高与矮、美与丑等,这种不确定性现象不是人们的认识达不到客观实际所造成的,而是事物的一种内在结构的不确定属性,称为模糊性现象.模糊数学就是用数学方法研究和处理具有“模糊性”现象的一个数学分支.而模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,进行综合评价的一种方法. .隶属度函数的确定方法隶属度的思想是模糊数学的基本思想,确定符合实际的隶属函数是应用模糊数学方法建立数学模型的关键,然而这是至今尚未完全解决的问题.下面介绍几种常用的确定隶属函数的方法.⑴ 模糊统计法模糊统计法是利用概率统计思想确定隶属度函数的一种客观方法,是在模糊统计的基础上根据隶属度的客观存在性来确定的.下面以确定青年人的隶属函数为例来介绍其主要过程. ① 以年龄为论域X ,在论域X 中取一固定样本点027x =.② 设*A 为论域X 上随机变动的普通集合,A 是青年人在X 上以*A 为弹性边界的模糊集,对*A 的变动具有制约作用.其中0x A ∈,或0x A ∉,使得0x 对A 的隶属关系具有不确定性.然后进行模糊统计试验,若n 次试验中覆盖0x 的次数为n m ,则称nm n为0x 对于A 的隶属频率.由于当试验次数n 不断增大时,隶属频率趋于某一确定的常数,该常数就是0x 属于A 的隶属度,即0()lim.n A n m x nμ→∞= 比如在论域X 中取027x =,选择若干合适人选,请他们写出各自认为青年人最适宜最恰当的年龄区间(从多少岁到多少岁),即将模糊概念明确化.若n 次试验中覆盖27岁的年龄区间的次数为m ,则称mn为27岁对于青年人的隶属频率,表8-4是抽样调查统计的结果.由于27岁对于青年人的隶属频率稳定在0.78附近,因此可得到027x =属于模糊集A 的隶属度(27)0.78A μ=.③ 在论域X 中适当的取若干个样本点12,,,n x x x ,分别确定出其隶属度()(1,2,,)i A x i n μ=,建立适当坐标系,描点连线即可得到模糊集A 的隶属函数曲线.将论域X 分组,每组以中值为代表分别计算各组隶属频率,连续地描出图形使得到青年人的隶属函数曲线,见表8-5与图8-5所示.确定模糊集合隶属函数的模糊统计方法,重视实际资料中包含的信息,采用了统计分析手段,是一种应用确定性分析揭示不确定性规律的有效方法.特别是对一些隶属规律不清楚的模糊集合,也能较好地确定其隶属函数.⑵ 三分法三分法也是利用概率统计中思想以随机区间为工具来处理模糊性的的一种客观方法.例如建立矮个子1A ,中等个子2A ,高个子3A 三个模糊概念的隶属函数.设3{}P =矮个子,中等个子,高个子, 论域X 为身高的集合,取(0,3)X =(单位:m).每次模糊试验确定X 的一次划分,每次划分确定一对数(,)ξη,其中ξ为矮个子与中等个子的分界点,η为中等个子与高个子的分界点,从而将模糊试验转化为如下随机试验:即将(,)ξη看作二维随机变量,进行抽样调查,求得ξ、η的概率分布()P x ξ、()P x η后,再分别导出1A 、2A 和3A 的隶属函数1()A x μ、2()A x μ和3()A x μ,相应的示意图如图8-6所示.1()(),A xx P t dt ξμ+∞=⎰ 3()(),A x x P t dt ημ+∞=⎰213()1()().A A A x x x μμμ=--图8-5 年轻人的隶属函数曲线图8-6 由概率分布确定模糊集隶属函数通常ξ和η分别服从正态分布211(,)N a σ和222(,)N a σ,则1A 、2A 和3A 的隶属函数分别为111()1,A x a x μσ⎛⎫-=-Φ⎪⎝⎭322()1,A x a x μσ⎛⎫-=-Φ ⎪⎝⎭22121().A x a x a x μσσ⎛⎫⎛⎫--=Φ-Φ ⎪ ⎪⎝⎭⎝⎭其中22().t xx dt -Φ=⎰⑶ 模糊分布法根据实际情况,首先选定某些带参数的函数,来表示某种类型模糊概念的隶属函数(论域为实数域),然后再通过实验确定参数.在客观事物中,最常见的是以实数集作论域的情形.若模糊集定义在实数域R 上,则模糊集的隶属函数便称为模糊分布.下面给出几种常用的模糊分布,在以后确定隶属函数时,就可以根据问题的性质,选择适当(即符合实际情况)模糊分布,根据测量数据求出分布中所含的参数,从而就可以确定出隶属函数了.为了选择适当的模糊分布,首先应根据实际描述的对象给出选择的大致方向. 偏小型模糊分布适合描述像“小”、“冷”、“青年”以及颜色的“淡”等偏向小的一方的模糊现象,其隶属函数的一般形式为1, ;()(),.A x a x f x x a μ≤⎧=⎨>⎩偏大型模糊分布适合描述像“大”、“热”、“老年”以及颜色的“浓”等偏向大的一方的模糊现象,其隶属函数的一般形式为0, ;()(),.A x a x f x x a μ<⎧=⎨≥⎩ 中间型模糊分布适合描述像“中”、“暖和“、“中年”等处于中间状态的模糊现象,其隶属面数可以通过中间型模糊分布表示.① 矩形(或半矩形)分布此类分布是用于确切概念.矩形(或半矩形)分布相应的示意图如图8-7所示.图8-7矩形(或半矩形)分布示意图② 梯形(或半梯形)分布梯形(或半梯形)分布的示意图如图8-8所示.③ 抛物形分布抛物形分布的示意图如图8-9所示.(a)偏小型 (b)偏大型 (c)中间型(a)偏小型 (b)偏大型 (c)中间型图8-8梯形(或半梯形)分布示意图(a)偏小型 (b)偏大型 (c)中间型图8-9 抛物形分布示意图④ 正态分布正态分布的示意图如图8-10所示.柯西形分布的示意图如图8-11所示.其中0k >.Γ型分布的示意图如图8-12所示.(a)偏小型 (b)偏大型 (c)中间型 图8-10 正态分布示意图 (a) 偏小型 (b)偏大型 (c)中间型 图8-11 柯西分布示意图(a) 偏小型 (b)偏大型 (c)中间型图8-12 Γ型分布示意图。
数学建模常见评价模型简介Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A显然,A 是正互反阵。