钢丝绳隔振器等效刚度的一种分析计算方法
- 格式:pdf
- 大小:169.05 KB
- 文档页数:3
振动力学课程设计报告课设题目:垂直振动输送机的机械振动与隔振分析单位:理学院专业/班级:工程力学09-1姓名:指导教师:2011-12-18一、前言1、课题目的或意义主要研究双质体垂直振动输送机输送原理及设计理论,根据参数对其进行运动分析和隔振分析。
通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中的基础理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。
2、课题背景:垂直振动输送机主要应用于箱式元件的提升输送,按照进料口出料口的方向分为Z型垂直提升机和C型垂直提升机两种提升输送机。
垂直振动提升机主要应用于矿山、冶金、化工、轻工、建材、机械、粮食等各行业垂直输送50毫米以下的粉状、颗粒状、块状物料,在连续供料条件下也可用于输送具有滚动性的团状物料,可以代斗式提升机、倾斜使用皮带输送机等。
惯性自同步垂直振动提升机由于应用了机械振动学的自同步原理具有结构简单,技术参数先进,安装调整方便,维修量小,占地面积小及对基础无特殊要求等特点,而且设备费用和运送费用较低。
在有特殊要求时可同时完成冷却、干燥等多种工艺过程,是一种理想的物料垂直提升设备。
ZC系列垂直振动输送机的工作原理:ZC系列垂直振动输送机的驱动装置振动安装在输送塔下部,两台振动电机堆成交叉安装,输送塔由管体和焊接在管体周围的螺旋输送槽组成,输送塔座于减振装置上,减振装置有底座和隔振弹簧组成。
当垂直输送机工作时,根据双振电机自同步原理,由振动电机产生激振力,强迫整个输送塔体作水平圆运动和向上垂直运动的空间复合振动,螺旋槽内的物料则受输送槽的作用,做匀速抛掷圆运动,沿输送槽体向上运动,从而完成物料的向上(或向下)输送作业。
二、振动(力学)模型建立1、结构(系统)模型简介此系统为双质体垂直振动输送机,为离散体。
此结构由螺旋槽体、底座、隔振弹簧、激振电动机和底架组成,底架固结于地面上,两台振动电机堆成交叉安装,输送塔由管体和焊接在管体周围的螺旋输送槽组成,输送塔座于减振装置上,减振装置有底座和隔振弹簧组成。
钢丝绳受力计算方法1钢丝绳受力计算公式钢丝绳是起重机上应用最广泛的挠性构件,也是起重机械安全生产三大重要构件(制动器、钢丝绳和吊钩)之一。
钢丝绳具有重量轻、挠性好、使用灵活、韧性好、能承受冲击载荷、高速运行中没有噪音、破断前有断丝预兆等优点。
但起重钢丝绳频繁用于各种作业场所,因此易磨损、易腐蚀等。
如果钢丝绳的选择、维护、保养和使用不当,容易发生钢丝绳断裂,造成伤亡事故或重大险情。
因此正确掌握使用钢丝绳的方法是十分重要的。
一、钢丝绳的种类钢丝绳是把很多根直径为0.3~3mm的高强度碳素钢钢丝先拧成股,再把若干股围绕着绳芯拧成绳的。
钢丝绳种类很多,按绕捻方法不同可分为左同向捻、右同向捻、左交互捻、右交互捻四种,起重作业中常用右交互捻钢丝绳。
按钢丝绳芯材料不同可分为麻芯、石棉芯和金属绳芯三种,起重作业中常采用麻芯钢丝绳,麻芯中浸有润滑油,起减小绳股及钢丝之间的摩擦和防腐蚀的作用。
按钢丝绳绳股及丝数不同可分为6×19、6×37和6×61三种,起重作业中最常用的是6×19和6×37钢丝绳。
按钢丝表面处理不同又可分为光面和镀钵两种,起重作业中常用光面钢丝绳。
按钢丝绳股结构分类,又可分为点接触绳、线接触绳和面接触绳。
点接触绳的各层钢丝直径相同,但各层螺距不等,所以钢丝互相交叉形成点接触,在工作中接触应力很高,钢丝易磨损折断,但其制造工艺简单。
线接触绳的股内钢丝粗细不同,将细钢丝置于粗钢丝的沟槽内,粗细钢丝间成线接触状态。
由于线接触钢丝绳接触应力较小,钢???绳寿命长,同时挠性增加。
由于线接触钢丝绳较为密实,所以相同直径的钢丝绳,线接触绳破断拉力大些。
绳股内钢丝直径相同的同向捻钢丝绳也属线接触绳。
面接触绳的股内钢丝形状特殊,采用异形断面钢丝,钢丝间呈面状接触。
其优点是外表光滑,抗腐蚀和耐磨性好,能承受较大的横向力;但价格昂贵,故只能在特殊场合下使用。
二、钢丝绳的规格参数一般起重作业可采用GB/T8918-1996《钢丝绳》中6×19和6×37钢丝绳,其规格参数见表 1和表2。
钢丝绳受力计算公式钢丝绳是起重机上应用最广泛的挠性构件,也是起重机械安全生产三大重要构件(制动器、钢丝绳和吊钩)之一。
钢丝绳具有重量轻、挠性好、使用灵活、韧性好、能承受冲击载荷、高速运行中没有噪音、破断前有断丝预兆等优点。
但起重钢丝绳频繁用于各种作业场所,因此易磨损、易腐蚀等。
如果钢丝绳的选择、维护、保养和使用不当,容易发生钢丝绳断裂,造成伤亡事故或重大险情。
因此正确掌握使用钢丝绳的方法是十分重要的。
一、钢丝绳的种类钢丝绳是把很多根直径为0.3~3mm的高强度碳素钢钢丝先拧成股,再把若干股围绕着绳芯拧成绳的。
钢丝绳种类很多,按绕捻方法不同可分为左同向捻、右同向捻、左交互捻、右交互捻四种,起重作业中常用右交互捻钢丝绳。
按钢丝绳芯材料不同可分为麻芯、石棉芯和金属绳芯三种,起重作业中常采用麻芯钢丝绳,麻芯中浸有润滑油,起减小绳股及钢丝之间的摩擦和防腐蚀的作用。
按钢丝绳绳股及丝数不同可分为6×19、6×37和6×61三种,起重作业中最常用的是6×19和6×37钢丝绳。
按钢丝表面处理不同又可分为光面和镀钵两种,起重作业中常用光面钢丝绳。
按钢丝绳股结构分类,又可分为点接触绳、线接触绳和面接触绳。
点接触绳的各层钢丝直径相同,但各层螺距不等,所以钢丝互相交叉形成点接触,在工作中接触应力很高,钢丝易磨损折断,但其制造工艺简单。
线接触绳的股内钢丝粗细不同,将细钢丝置于粗钢丝的沟槽内,粗细钢丝间成线接触状态。
由于线接触钢丝绳接触应力较小,钢???绳寿命长,同时挠性增加。
由于线接触钢丝绳较为密实,所以相同直径的钢丝绳,线接触绳破断拉力大些。
绳股内钢丝直径相同的同向捻钢丝绳也属线接触绳。
面接触绳的股内钢丝形状特殊,采用异形断面钢丝,钢丝间呈面状接触。
其优点是外表光滑,抗腐蚀和耐磨性好,能承受较大的横向力;但价格昂贵,故只能在特殊场合下使用。
二、钢丝绳的规格参数一般起重作业可采用GB/T8918-1996《钢丝绳》中6×19和6×37钢丝绳,其规格参数见表 1和表2。
钢丝绳受力计算公式钢丝绳是起重机上应用最广泛的挠性构件, 也是起重机械安全生产三大重要构件( 制动器、钢丝绳和吊钩 ) 之一。
钢丝绳具有重量轻、挠性好、使用灵活、韧性好、能承受冲击载荷、高速运行中没有噪音、破断前有断丝预兆等优点。
但起重钢丝绳频繁用于各种作业场所 , 因此易磨损、易腐蚀等。
如果钢丝绳的选择、维护、保养和使用不当 , 容易发生钢丝绳断裂, 造成伤亡事故或重大险情。
因此正确掌握使用钢丝绳的方法是十分重要的。
一、钢丝绳的种类钢丝绳是把很多根直径为 0.3 ~3mm的高强度碳素钢钢丝先拧成股 , 再把若干股围绕着绳芯拧成绳的。
钢丝绳种类很多 , 按绕捻方法不同可分为左同向捻、右同向捻、左交互捻、右交互捻四种 , 起重作业中常用右交互捻钢丝绳。
按钢丝绳芯材料不同可分为麻芯、石棉芯和金属绳芯三种 , 起重作业中常采用麻芯钢丝绳 , 麻芯中浸有润滑油 , 起减小绳股及钢丝之间的摩擦和防腐蚀的作用。
按钢丝绳绳股及丝数不同可分为 6×19、6×37 和 6×61 三种 , 起重作业中最常用的是 6×19 和 6×37 钢丝绳。
按钢丝表面处理不同又可分为光面和镀钵两种, 起重作业中常用光面钢丝绳。
按钢丝绳股结构分类 , 又可分为点接触绳、线接触绳和面接触绳。
点接触绳的各层钢丝直径相同, 但各层螺距不等 , 所以钢丝互相交叉形成点接触,在工作中接触应力很高 , 钢丝易磨损折断 , 但其制造工艺简单。
线接触绳的股内钢丝粗细不同, 将细钢丝置于粗钢丝的沟槽内, 粗细钢丝间成线接触状态。
由于线接触钢丝绳接触应力较小, 钢???绳寿命长 , 同时挠性增加。
由于线接触钢丝绳较为密实 , 所以相同直径的钢丝绳 , 线接触绳破断拉力大些。
绳股内钢丝直径相同的同向捻钢丝绳也属线接触绳。
面接触绳的股内钢丝形状特殊, 采用异形断面钢丝 , 钢丝间呈面状接触。
其优点是外表光滑, 抗腐蚀和耐磨性好, 能承受较大的横向力; 但价格昂贵 , 故只能在特殊场合下使用。
钢丝绳受力计算公式钢丝绳是起重机上应用最广泛的挠性构件,也是起重机械安全生产三大重要构件(制动器、钢丝绳和吊钩)之一。
钢丝绳具有重量轻、挠性好、使用灵活、韧性好、能承受冲击载荷、高速运行中没有噪音、破断前有断丝预兆等优点。
但起重钢丝绳频繁用于各种作业场所,因此易磨损、易腐蚀等。
如果钢丝绳的选择、维护、保养和使用不当,容易发生钢丝绳断裂,造成伤亡事故或重大险情。
因此正确掌握使用钢丝绳的方法是十分重要的。
一、钢丝绳的种类钢丝绳是把很多根直径为0.3~3mm的高强度碳素钢钢丝先拧成股,再把若干股围绕着绳芯拧成绳的。
钢丝绳种类很多,按绕捻方法不同可分为左同向捻、右同向捻、左交互捻、右交互捻四种,起重作业中常用右交互捻钢丝绳。
按钢丝绳芯材料不同可分为麻芯、石棉芯和金属绳芯三种,起重作业中常采用麻芯钢丝绳,麻芯中浸有润滑油,起减小绳股及钢丝之间的摩擦和防腐蚀的作用。
按钢丝绳绳股及丝数不同可分为6×19、6×37和6×61三种,起重作业中最常用的是6×19和6×37钢丝绳。
按钢丝表面处理不同又可分为光面和镀钵两种,起重作业中常用光面钢丝绳。
按钢丝绳股结构分类,又可分为点接触绳、线接触绳和面接触绳。
点接触绳的各层钢丝直径相同,但各层螺距不等,所以钢丝互相交叉形成点接触,在工作中接触应力很高,钢丝易磨损折断,但其制造工艺简单。
线接触绳的股内钢丝粗细不同,将细钢丝置于粗钢丝的沟槽内,粗细钢丝间成线接触状态。
由于线接触钢丝绳接触应力较小,钢绳寿命长,同时挠性增加。
由于线接触钢丝绳较为密实,所以相同直径的钢丝绳,线接触绳破断拉力大些。
绳股内钢丝直径相同的同向捻钢丝绳也属线接触绳。
面接触绳的股内钢丝形状特殊,采用异形断面钢丝,钢丝间呈面状接触。
其优点是外表光滑,抗腐蚀和耐磨性好,能承受较大的横向力;但价格昂贵,故只能在特殊场合下使用。
二、钢丝绳的规格参数一般起重作业可采用GB/T8918-1996《钢丝绳》中6×19和6×37钢丝绳,其规格参数见表 1和表2。
墙式剪切型金属抗震阻尼器刚度等效计算流程
1) 根据连接墙尺寸和阻尼器参数计算消能部件的相关参数: 1连接墙刚度=11+连接墙弯曲刚度连接墙剪切刚度
⨯⨯⨯连接墙剪切刚度=0.4混凝土弹性模量连接墙厚度连接墙长度/连接墙计算长度/1.2⨯⨯⨯⨯⨯⨯⨯33
321
连接墙弯曲刚度=
11+混凝土弹性模量连接墙厚度连接墙长度混凝土弹性模量连接墙厚度连接墙长度连接墙计算高度4连接墙计算高度阻尼器高度3连接墙变形=阻尼器屈服力/连接墙刚度
消能部件屈服位移=阻尼器屈服位移+连接墙变形
2) 消能部件初始刚度
1
消能部件初始刚度=11+阻尼器初始刚度连接墙刚度 3) 计算等代构件(等代柱)的刚度:
⎛⎫⨯⨯⨯⨯ ⎪⎝⎭33112钢弹性模量等代柱宽度等代柱高度12等代柱弯曲刚度=等代柱长度
⨯⨯⨯钢剪切模量等代柱宽度等代柱高度
等代柱剪切刚度= 1.2等代柱长度
1
等代柱刚度=11+等代柱弯曲刚度等代柱剪切刚度
由“等代柱刚度=消能部件初始刚度”可以得到初始的等代柱的构件尺寸。
4) 将等代柱按计算得到的尺寸输入到反应谱计算模型中,开始迭代计算。
对建入等代柱的模型进行小震反应谱分析,读取反应谱计算结果中墙式剪切型阻尼器所在位置的等代柱在阻尼器工作方向的地震工况下的出力(阻尼器实际工作
方向),其中出力为调整前标准出力
5)计算消能部件的水平位移:
消能部件出力
消能部件位移=
消能部件刚度
其中消能部件刚度为目前模型中等代构件的刚度。
6)根据前文“反应谱法迭代计算步骤”,由消能部件的出力和消能部件位移,可求得下一步的附加阻尼比和等代构件的有效刚度,开始迭代直至收敛。
弹簧刚度系数计算公式
1.钢丝弹簧的刚度系数计算公式:
钢丝弹簧是一种较为常见的弹簧结构,其刚度系数可以根据以下公式进行计算:
k=(Gd^4)/(8ND^3)
其中
k是弹簧的刚度系数;
G是钢丝的剪切模量;
d是钢丝的直径;
N是弹簧的有效圈数;
D是弹簧的平均直径。
2.螺旋弹簧的刚度系数计算公式:
螺旋弹簧是一种常见的弹簧结构,其刚度系数可以根据以下公式进行计算:
k=(Gd^4)/(8D^3n)
其中
k是弹簧的刚度系数;
G是螺旋弹簧钢丝的剪切模量;
d是螺旋弹簧钢丝的直径;
D是螺旋弹簧的平均直径;
n是螺旋弹簧的圈数。
3.压缩弹簧的刚度系数计算公式:
压缩弹簧是一种常见的弹簧结构,其刚度系数可以根据以下公式进行计算:
k=(Gd^4)/(8D^3)
其中
k是弹簧的刚度系数;
G是弹簧钢丝的剪切模量;
d是弹簧钢丝的直径;
D是弹簧的直径。
需要注意的是,上述公式只给出了一些常见类型弹簧的刚度系数计算公式。
在实际应用中,由于弹簧的形状和特性各异,可能需要根据具体情况进行适当调整。
此外,要注意单位的恰当使用。
计算刚度系数时,常使用国际单位制中的牛顿和米。
在进行计算时,使用正确的单位可以保证计算结果的准确性。
最后,当计算弹簧刚度系数时,还应注意所用公式适用的范围和假设条件是否符合实际情况。
在实际应用中,还应结合实际使用环境以及所需的设计要求进行综合考虑和选择。