当前位置:文档之家› 上海交通大学版大学物理学习题答案之7机械振动习题思考题

上海交通大学版大学物理学习题答案之7机械振动习题思考题

上海交通大学版大学物理学习题答案之7机械振动习题思考题
上海交通大学版大学物理学习题答案之7机械振动习题思考题

习题7

7-1.原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。(g 取9.8)

解:振动方程:cos()x A t ω?=+,

在本题中,kx mg =,所以9.8k =;ω=

==振幅是物体离开平衡位置的最大距离,当弹簧升长为0.1m 时为物体的平衡位置,以向下为正方向。所以如果使弹簧的初状态为原长,那么:A=0.1,

当t=0时,x=-A,那么就可以知道物体的初相位为π。

所以:0.1cos x π=+)

)

x =?7-2.有一单摆,摆长m 0.1=l ,小球质量g 10=m .0=t 时,小球正好经过

rad 06.0?=θ处,并以角速度rad/s 2.0=?

θ向平衡位置运动。设小球的运动可看

作简谐振动,试求:(g 取9.8)

(1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。

解:振动方程:cos()x A t ω?=+我们只要按照题意找到对应的各项就行了。

(1)角频率: 3.13/rad s ω=

==,

频率:0.5Hz ν=

==,

周期:22

T s ===

(2)根据初始条件:A

θ?=

0cos 象限)

象限)

4,3(02,1(0{

sin 0<>?=ωθ?A ?可解得:

32

.2088.0?==?,A 所以得到振动方程:0.088cos 3.13 2.32t θ=?()

7-3.一竖直悬挂的弹簧下端挂一物体,最初用手将物体在弹簧原长处托住,然后放手,此系统便上下振动起来,已知物体最低位置是初始位置下方cm 0.10处,求:(1)振动频率;(2)物体在初始位置下方cm 0.8处的速度大小。解:(1)由题知2A=10cm,所以A=5cm;

196

10

58

.92

=×=?=?x g m K 又ω=

14196==m

k

,即π

πν721==

m k (2)物体在初始位置下方cm 0.8处,对应着是x=3cm 的位置,所以:

03cos 5

x A ?=

=那么此时的04sin 5

v A ?ω=?

=±那么速度的大小为4

0.565

v

A ω=

=7-4.一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。当0=t 时,位移为cm 6,且向x 轴正方向运动。求:(1)振动表达式;(2)s 5.0=t 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于cm 6?=x ,且向x 轴负方向

运动,求从该位置回到平衡位置所需要的时间。解:由题已知A=12×10-2

m,T=2.0s ∴ω=2π/T=πrad·s

-1又,t=0时,cm x 60

=,0

0?v ∴由旋转矢量图,可知:3

0πφ?

=故振动方程为(3

cos

12.0π

π?=t x (2)将t=0.5s 代入得

0.12cos 0.12cos 0.10436x t m

ππ

π=?==(0.12sin 0.12cos 0.188/36v t m s

ππ

ππ=??==?(2

22/03.16

cos 12.03cos 12.0s m t a ?=?=??=π

ππππ)(方向指向坐标原点,即沿x 轴负向.

(3)由题知,某时刻质点位于cm 6?=x ,且向x 轴负方向运动

即x 0=-A/2,且v<0,故φt =2π/3,它回到平衡位置需要走π/3,所以:∴t=Δφ/ω=(π/3)/(π)=1/3s

7-5.两质点作同方向、同频率的简谐振动,振幅相等。当质点1在2/1A x =处,且向左运动时,另一个质点2在2/2A x ?=处,且向右运动。求这两个质

点的位相差。

解:由旋转矢量图可知:

当质点1在2/1A x =处,且向左运动时,相位为π/3,

而质点2在2/2A x ?=处,且向右运动,相位为4π/3。所以它们的相位差为π。

7-6.质量为m 的密度计,放在密度为ρ的液体中。已知密度

计圆管的直径为d 。试证明,密度计推动后,在竖直方向的振动为简谐振动。并计算周期。

解:平衡位置:当F 浮=G 时,平衡点为C 处。设此时进入水中的深度为a:mg

gSa =ρ可知浸入水中为a 处为平衡位置。

以水面作为坐标原点O,以向上为x 轴,质心的位置为x,则:分析受力:不管它处在什么位置,其浸没水中的部分都可以用a-x 来表示,所以力

()F g a x S gaS gSx kx ρρρ=??=?=?2

2dt

x d m gSx m F a =?==ρ令m

d g m gS 42

2

πρρω=

=可得到:

02

22=+x dt

x d ω可见它是一个简谐振动。周期为:g

m d T ρπωπ4/2=

=7-7.证明图示系统的振动为简谐振动。其频率为:m

k k k k )(21212

1+=

π

ν

证明:两根弹簧的串联之后等效于一根弹簧,所以仍为简谐振动(证明略),其劲度系数满足:Kx x K x K ==2211和x

x x =+21

可得:

2

1111K K K +=所以:2

121K K K K K +=

代入频率计算式,可得:m

k k k k m k )(2121212

1+==

π

πν7-8.当简谐振动的位移为振幅的一半时,其动能和势能各占总能量的多少?物体在什么位置时其动能和势能各占总能量的一半?

E P =

M K M E E E A k kx 4

34121212122===,)(当物体的动能和势能各占总能量的一半:

,)(M E kA kx 2

1

21212122==

所以:0.707x A A =±

=±。7-9.两个同方向的简谐振动曲线(如图所示)(1)求合振动的振幅。(2)求合振动的振动表达式。解:通过旋转矢量图做最为简单。先分析两个振动的状态:

,:211π?=A :2

22π

??=A 两者处于反相状态,(反相

π???)k (1212+±=?=?,?,,,k 210=)

所以合成结果:振幅1

2A A A ?=振动相位判断:当

121??=>,A A ;当221??=<,A A ;

所以本题中,2

2

π

???==振动方程:(

)(2

2cos 12π

π??=t T A A x 7-10.两个同方向,同频率的简谐振动,其合振动的振幅为cm 20,与第一个振动的位相差为

6

π

。若第一个振动的振幅为cm 310。则(1)第二个振动的振幅为多少?(2)两简谐振动的位相差为多少?解:由题意可做出旋转矢量图如下.由图知

°

?+=30cos 2122122A A A A A =(0.173)2+(0.2)2-2×0.173×0.2×3/2=0.01∴A 2=0.1m

设角AA 1O 为θ,则A 2

=A

+A 22-2A 1A 2cosθ

即cosθ=1

.0173.02)02.0()1.0()173.0(22

222122221××?+=

?+A A A A A =0即θ=π/2,这说明A 1与A 2间夹角为π/2,即二振动的位相差为π/2

7-11.一摆在空中作阻尼振动,某时刻振幅为cm 30=A ,经过s 101=t 后,振幅变为cm 11=A 。问:由振幅为0A 时起,经多长时间其振幅减为

cm 3.02=A ?

解:根据阻尼振动的特征,)

cos(00?ωβ+=?t e A x t

振幅为

t

e A A β?=

若已知cm 30=A ,经过s 101=t 后,振幅变为cm 11=A ,可得:β1031?=e 那么当振幅减为cm

3.02=A t

e β?=33.0可求得t=21s。

7-12.某弹簧振子在真空中自由振动的周期为0T ,现将该弹簧振子浸入水中,由于水的阻尼作用,经过每个周期振幅降为原来的90%,求:(1)求振子在水中的振动周期T

(2)如果开始时振幅100=A 厘米,阻尼振动从开始到振子静止求振子经过的路程为多少?

解:(1)有阻尼时

2

2

02βωπ

T ?=

002ωπ

T =t βe A A ?=0T

βe A A ?=009.0T

β9.0ln ?

=0

1.00014T T =

=(2)

7-13.试画出4

2cos(π

ω+

=t A x 和t B y ωcos =的李萨如图形。略,可参考书上的图形。

7-14.质点分别参与下列三组互相垂直的谐振动:

(1)

???

???

??

??????=??????+=68cos 468cos 4ππππt y t x (2)???

???

??

??????=??????+=658cos 468cos 4ππππt y t x (3)

???

???

??

?????+=??????

+=328cos 468cos 4ππππt y t x 试判别质点运动的轨迹。

解:质点参与的运动是频率相同,振幅相同的垂直运动的叠加。

)(sin )cos(2122

1222222?????=??+A

xy A y A x (1)3

12π

???=

?=?则方程化为:1222=?+xy y x ,轨迹为一般的椭圆。

(2)π

???

=?=?12则方程化为:022

1=+)A y A x (

x A A y 1

2

?

=轨迹为一直线。

(3)2

12π???=

?=?则方程化为:

1

2

2

22

1

2=+

A y A x 轨迹为一圆。

7-15.在示波器的水平和垂直输入端分别加上余弦式交变电压,荧光屏上出现如图所示的李萨如图形。已知水平方向振动频率为z 4H 107.2×,求垂直方向的振动频率。

解:通过和书上的李萨如图形想比较,可发现它满足两方向的振动频率比3:2。由水平方向振动频率为z 4

H 107.2×,可得垂直方向的振动频率为z 4

H 108.1×。

思考题

7-1.试说明下列运动是不是简谐振动:(1)小球在地面上作完全弹性的上下跳动;

(2)小球在半径很大的光滑凹球面底部作小幅度的摆动。

答:要使一个系统作谐振动,必须同时满足以下三个条件:一,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力

的作用.或者说,若一个系统的运动微分方程能用2

2dt

d ξ+ω2

ξ=0描述时,其所作的运动就是谐振动.

(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置;第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.

(2)小球在图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O;而小球在运动中的回复力为-mgsinθ,如题4-1图(b)所示.题中所述,ΔS<

mR 22dt

d θ

=-mgθ令ω2

=g/R,则有

22dt

d θ+ω2

θ=07-2.简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增加?反之,加速度为负值时,速率是否一定在减小?

答:简谐振动的速度:v=-A ωsin (ωt+φ);

加速度:a=-Aω2cos(ωt+φ);

要使它们同号,必须使质点的振动相位在第一象限。其他象限的相位两者就是异号的。

加速度为正值时,振动质点的速率不一定在增加,反之,加速度为负值时,速率也不一定在减小。

只有当速度和加速度是同号时,加速度才能使速率增加;反之,两者异号时,加速度使速率减小。

7-3.分析下列表述是否正确,为什么?

(1)若物体受到一个总是指向平衡位置的合力,则物体必然作振动,但不一定是简谐振动;

(2)简谐振动过程是能量守恒的过程,凡是能量守恒的过程就是简谐振动。答:(1)的表述是正确的,原因参考7-1;

(2)的表述不正确,比如自由落体运动中能量守恒,但不是简谐振动。

7-4.用两种方法使某一弹簧振子作简谐振动。方法1:使其从平衡位置压缩l ?,由静止开始释放。方法2:使其从平衡位置压缩2l ?,由静止开始释放。

若两次振动的周期和总能量分别用21T T 、和21E E 、表示,则它们满足下面那个关系?(A)212

1E E T T ==(B)2

121E E T T ≠=

(C)2121E E T T =≠(D)2

121E E T T ≠≠答:根据题意,这两次弹簧振子的周期相同,振幅相差一倍。所以能量不同。选择B 。

7-5.一质点沿x 轴作简谐振动,周期为T ,振幅为A ,质点从2

1A

x =

运动到A x =2处所需要的最短时间为多少?

答:质点从21A x =

运动到A x =2处所需要的最短相位变化为4

π

,所以运动的时间为:8

4T

t ==?ωπ。

7-6.一弹簧振子,沿x 轴作振幅为A 的简谐振动,在平衡位置0=x 处,弹簧振子的势能为零,系统的机械能为J 50,问振子处于2/A x =处时;其势能的瞬时值为多少?

答:由题意,在平衡位置0=x 处,弹簧振子的势能为零,系统的机械能为

J 50,所以该振子的总能量为50J ,当振子处于2/A x =处时;其势能的瞬时值

为:

J E A k kx M 5.124

504121212122====)(。

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

机械振动习题及答案

机械振动 一、选择题 1. 下列4种运动(忽略阻力)中哪一种是简谐运动 ( C ) ()A 小球在地面上作完全弹性的上下运动 ()B 细线悬挂一小球在竖直平面上做大角度的来回摆动 ()C 浮在水里的一均匀矩形木块,把它部分按入水中,然后松开,使木块上下浮动 ()D 浮在水里的一均匀球形木块,把它部分按入水中,然后松开,使木块上下浮动 解析:A 小球不是做往复运动,故A 不是简谐振动。B 做大角度的来回摆动显然错误。D 由于球形是非线性形体,故D 错误。 2.如图1所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动。若从松手时开始计时,则该弹簧振子的初相位应为 图 一 ( D ) ()0A ()2 πB

()2 π-C ()πD 解析: 3.一质量为m 的物体挂在劲度系数为k 的轻质弹簧下面,其振动周期为T 。若将此轻质弹簧分割成3等份,将一质量为2m 的物体挂在分割后的一根弹簧上,则此弹簧振子的周期为 ( B ) ()63T A ()36T B ()T C 2 ()T D 6 解析:有题可知:分割后的弹簧的劲度系数变为k 3,且分割后的物体质量变为m 2。故由公式k m T π2=,可得此弹簧振子的周期为3 6T 4.两相同的轻质弹簧各系一物体(质量分别为21,m m )做简谐运动(振 幅分别为21,A A ),问下列哪一种情况两振动周期不同 ( B ) ()21m m A =,21A A =,一个在光滑水平面上振动,另一个在竖直方向上 振动 ()B 212m m =,212A A =,两个都在光滑的水平面上作水平振动 ()C 21m m =,212A A =,两个都在光滑的水平面上作水平振动 ()D 21m m =,21A A =,一个在地球上作竖直振动,另一个在月球上作 竖直振动

大学物理学 答案

作业 1-1填空题 (1) 一质点,以1-?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大 小是 ;经过的路程 是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间 的变化关系为a=3+2t (SI),如果初始时刻 质点的速度v 0为5m 2s -1,则当t 为3s 时, 质点的速度v= 。 [答案: 23m 2s -1 ] 1-2选择题 (1) 一质点作直线运动,某时刻的瞬时 速度s m v /2=,瞬时加速度2/2s m a -=,则 一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (2) 一质点沿半径为R 的圆周作匀速率运 动,每t 秒转一圈,在2t 时间间隔中,其

平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π [答案:B] (3)一运动质点在某瞬时位于矢径) ,(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d || (D) 22)()(dt dy dt dx + [答案:D] 1-4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3) x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的 速度和加速度,并说明该时刻运动是加速 的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于

《大学物理学》习题解答

大学物理学 习 题 解 答 陕西师范大学物理学与信息技术学院 基础物理教学组 2006-5-8

说明: 该习题解答与范中和主编的《大学物理学》各章习题完全对应。每题基本上只给出了一种解答,可作为教师备课时的参考。 题解完成后尚未核对,难免有错误和疏漏之处。望使用者谅解。 编者 2006-5-8

第2章 运动学 2-1 一质点作直线运动,其运动方程为2 22t t x -+= , x 以m 计,t 以s 计。试求:(1)质点从t = 0到t = 3 s 时间内的位移;(2)质点在t = 0到t = 3 s 时间内所通过的路程 解 (1)t = 0时,x 0 = 2 ;t =3时,x 3 = -1;所以, m 3)0()3(-==-==t x t x x ? (2)本题需注意在题设时间内运动方向发生了变化。对x 求极值,并令 022d d =-=t t x 可得t = 1s ,即质点在t = 0到t = 1s 内沿x 正向运动,然后反向运动。 分段计算 m 1011=-===t t x x x ?, m 4)1()3(2-==-==t x t x x ? 路程为 m 521=+= x x s ?? 2-2 已知质点沿x 轴作直线运动,其运动方程为3 2 262t t x -+=。试求:(1)质点在最初4s 内位移;(2)质点在最初4s 时间内所通过的路程 解 (1)t = 0时,x 0 = 2 ;t = 4时,x 4 = -30 所以,质点在最初4s 内位移的大小 m 3204-=-=?x x x (2)由 0612d d 2=-=t t t x 可求得在运动中质点改变运动方向的时刻为 t 1 = 2 s , t 2 = 0 (舍去) 则 m 0.8021=-=?x x x ,m 40242-=-=?x x x 所以,质点在最初4 s 时间间隔内的路程为 m 4821=?+?=x x s 2-3 在星际空间飞行的一枚火箭,当它以恒定速率燃烧它的燃料时,其运动方程可表示为 )1ln(1bt t b u ut x -?? ? ??-+=,其中m/s 100.33?=u 是喷出气流相对于火箭体的喷射速度, s /105.73 -?=b 是与燃烧速率成正比的一个常量。试求:(1)t = 0时刻,此火箭的速度和加速度;(2)t = 120 s 时,此火箭的速度和加速度 解 )1l n (d d bt u t x v --== ;bt ub t v a -==1d d (1)t = 0时, v = 0 ,23 3s .m 5.221 105.7103--=???= a (2)t = 120s 时, )120105.71ln(10333 ??-?-=-v 1 3 s .m 91.6-?= 23 3 3s .m 225120 105.71105.7103---=??-???=a

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

15机械振动习题解答

第十五章 机械振动 一 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?( ) A. 物体在运动正方向的端点时,速度和加速度都达到最大值; B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零; C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; D. 物体处负方向的端点时,速度最大,加速度为零。 解:根据简谐振动的速度和加速度公式分析。 答案选C 。 2.下列四种运动(忽略阻力)中哪一种不是简谐振动?( ) A. 小球在地面上作完全弹性的上下跳动; B. 竖直悬挂的弹簧振子的运动; C. 放在光滑斜面上弹簧振子的运动; D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。 解:A 中小球没有受到回复力的作用。 答案选A 。 3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。则此系统作简谐振动时振动的角频率为( ) A. l g B. l g C. g l D. g l 解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为l g m k ==ω。 故本题答案为B 。 4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相?为( ) A. 2π- B. 0 C. 2π D. π 解 由 ) cos(?ω+=t A x 可得振动速度为 ) sin(d d ?ωω+-==t A t x v 。速度正最大时有0) cos(=+?ωt ,1) sin(-=+?ωt ,若t =0,则 2 π-=?。 故本题答案为A 。 5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( )

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

6.机械振动习题及答案

一、 选择题 1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ] (A ) 6π (B) 56π (C) 56π- (D) 6π- (E) 23 π- 2、已知一质点沿y 轴作简谐振动,如图所示。其振动方程为3cos()4 y A t π ω=+,与之对应的振动曲线为 [ B ] 3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大 振幅 2A 处需最短时间为 [ B ] (A );4T (B) ;6T (C) ;8 T (D) .12T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体, 此三个系统振动周期之比为 (A);2 1 : 2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .4 1 :2:1

5、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为 (A);1s (B) ;32s (C) ;34 s (D) .2s [ B ] 6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分, 且21nl l =,则相应的劲度系数1k ,2k 为 [ C ] (A );)1(,121k n k k n n k +=+= (B );11,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .1 1 ,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的 [ C ] (A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D ) 物体处于负方向的端点时,速度最大,加速度为零。 8、 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为 A 2 1 ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]

大学物理学(第三版)课后习题参考答案

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d | | (D) 22)()(dt dy dt dx + [答案:D] (2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2 /2s m a -=,则 一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A) t R t R ππ2, 2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π [答案:B] 1.2填空题 (1) 一质点,以1 -?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的 速度v 0为5m ·s -1 ,则当t 为3s 时,质点的速度v= 。 [答案: 23m ·s -1 ] (3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。如人相对于岸静止,则1V 、2V 和3V 的关系是 。 [答案: 0321=++V V V ]

1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2 -4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 2 2484 dx v t dt d x a dt = =+== t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2 。因加速度为正所以是加速的。 1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零哪些不为零? (1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。 解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。 1.6 |r ?|与r ? 有无不同?t d d r 和d d r t 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=,12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度在径向上的分量,

大学物理学第三版课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度与加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 2 22s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 就是随t 减少的, ∴ t s v v t l v d d ,d d 0-==-=船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=-=船 或 s v s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m,v =0,

求该质点在t =10s 时的速度与位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 m 7055102 1102s m 190102310432101 210=+?+?=?=?+?=-x v 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔 60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .

机械振动课后习题和答案第三章习题和答案

如图所示扭转系统。设12122;t t I I k k == 1.写出系统的刚度矩阵和质量矩阵; 2.写出系统的频率方程并求出固有频率和振型,画出振型图。 解:1)以静平衡位置为原点,设12,I I 的转角12,θθ为广义坐标,画出12,I I 隔离体,根据牛顿第二定律得到运动微分方程: 111121222221()0()0t t t I k k I k θθθθθθθ?++-=?? +-=??,即:1112122222122()0 t t t t t I k k k I k k θθθθθθ?++-=??-+=?? 所以:[][]12 21 2220,0t t t t t k k k I M K k k I +-?? ??==????-???? 系统运动微分方程可写为:[][]11220M K θθθθ?????? +=????????? ? ………… (a) 或者采用能量法:系统的动能和势能分别为 θθ= +22112211 22T E I I θθθθθθθ=+-=++-222211212121221121111 ()()2222t t t t t t U k k k k k k

求偏导也可以得到[][],M K 由于12122;t t I I k k ==,所以[][]212021,0111t M I K k -???? ==????-???? 2)设系统固有振动的解为: 1122cos u t u θωθ???? =????????,代入(a )可得: [][]12 2()0u K M u ω?? -=???? ………… (b) 得到频率方程:22 12 1 2 1 12 22()0t t t t k I k k k I ωωω--= =-- 即:224 222 121() 240t t I k I k ωωω=-+= 解得:2 1 1,22 2 (22t k I ω±= = 所以:1ω= 2ω =………… (c) 将(c )代入(b )可得: 1 121 2 121112 2(22)22 20(22t t t t t t k k I k I u u k k k I I ?? ±--?? ????=????????--?? ??

大学物理学上册习题解答

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a = 你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度 也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解: (1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-= 最初s 2内的平均速度为: 0(/)2 ave x v m s t ?= ==?

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

机械振动习题及答案

第一章 概述 1.一简谐振动,振幅为0、20cm,周期为0、15s,求最大速度与加速度。 解: max max max 1*2***2***8.37/x w x f x A cm s T ππ==== .. 2222max max max 1*(2**)*(2**)*350.56/x w x f x A cm s T ππ==== 2.一加速度计指示结构谐振在80HZ 时具有最大加速度50g,求振动的振幅。(g=10m/s2) 解:.. 22max max max *(2**)*x w x f x π== ..22max max /(2**)(50*10)/(2*3.14*80) 1.98x x f mm π=== 3.一简谐振动,频率为10Hz,最大速度为4、57m/s,求谐振动的振幅、周期、最大加速度。 解: .max max /(2**) 4.57/(2*3.14*10)72.77x x f mm π=== 110.110T s f = == .. 2max max max *2***2*3.14*10*4.57287.00/x w x f x m s π==== 4、 机械振动按激励输入类型分为哪几类?按自由度分为哪几类? 答:按激励输入类型分为自由振动、强迫振动、自激振动 按自由度分为单自由度系统、多自由度系统、连续系统振动

5、 什么就是线性振动?什么就是非 线性振动?其中哪种振动满足叠加原理? 答:描述系统的方程为线性微分方程的为线性振动系统,如00I mga θθ+= 描述系统的方程为非线性微分方程的为非线性振动系统0sin 0I mga θθ+= 线性系统满足线性叠加原理 6、 请画出同一方向的两个运动:1()2sin(4)x t t π=,2()4sin(4)x t t π=合成的的振动波形 7、请画出互相垂直的两个运动:1()2sin(4)x t t π=,2()2sin(4)x t t π=合成的结果。 如果就是1()2sin(4/2)x t t ππ=+,2()2sin(4)x t t π=

大学物理上册答案详解

大学物理上册答案详解 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=, 12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中 dt dv 就是加速度的切向分量.

(t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加 速度时,有人先求出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而求 得结果;又有人 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 222 22d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标 系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v == 其二,可能是将22d d d d t r t r 与误作速度与加速度的模。在1-1题中已说明 t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速

大学物理习题答案

B 班级 学号 姓名 第1章 质点运动学 1-2 已知质点的运动方程为r i 3j 6k e e t t -=++。(1)求:自t =0至t =1质点的位移。(2)求质点的轨迹 方程。 解:(1) ()k j i r 630++= ()k j i r 6e 3e 1-1++= 质点的位移为()j i r ?? ? ??-+-=3e 31e ? (2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 1=xy 且6=z 1-3运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为( D ) (A)dt dr (B)dt d r (C)dt d r (D)2 2 ?? ? ??+??? ??dt dy dt dx 1-5某质点的运动方程为k j i r 251510t t ++-=,求:t =0,1时质点的速度和加速度。 解:由速度和加速度的定义得 k j r v t dt d 1015+== , k v a 10==dt d 所以 t =0,1时质点的速度和加速度为 015==t j v 11015=+=t k j v 1 010,k a ==t 1-8 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为[ B ] (A) 匀速直线运动 (B) 匀变速直线运动 (C) 抛体运动 (D) 一般的曲线运动 *1-6一质点沿Ox ?轴运动,坐标与时间之间的关系为t t x 233-=(SI)。则质点在4s 末的瞬时速度为 142m·s -1 ,瞬时加速度为 72m·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为 61m·s -1 ,平均加速度为 45m·s -2。 解题提示:瞬时速度计算dt dx v =,瞬时加速度计算22dt x d a =;位移为()()14x x x -=?,平均速度为 ()()1414--= x x v ,平均加速度为 ()()1 414--=v v a 1-11 已知质点沿Ox ?轴作直线运动,其瞬时加速度的变化规律为t a x 3=2s m -?。在t =0时, 0=x v ,10=x m 。求:(1)质点在时刻t 的速度。(2)质点的运动方程。 解:(1) 由dt dv a x x =得

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

机械振动 课后习题和答案 第二章 习题和答案

精选范本 2.1 弹簧下悬挂一物体,弹簧静伸长为δ。设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。 解:设物体质量为m ,弹簧刚度为k ,则: mg k δ= ,即:n ω== 取系统静平衡位置为原点0x =,系统运动方程为: δ ?+=? =??=?&&&00 020mx kx x x (参考教材P14) 解得:δω=()2cos n x t t

精选范本 2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。 解:由题可知:弹簧的静伸长0.850.650.2()m =-=V 所以:7(/)n rad s ω= == 取系统的平衡位置为原点,得到: 系统的运动微分方程为:20n x x ω+=& & 其中,初始条件:(0)0.2 (0)0x x =-??=?& (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=- 弹簧力为:()()cos ()k n mg F kx t x t t N ω== =-V 因此:振幅为0.2m 、周期为2()7 s π 、弹簧力最大值为1N 。

精选范本 2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。 解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2 121()2T E m m x =+& 212 U kx = 由()0T d E U +=可知:12()0m m x kx ++=&& 即:12/()n k m m ω=+ 系统的初始条件为:?=??=-?+?&202012 2m g x k m x gh m m (能量守恒得:2 21201()2 m gh m m x = +&) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+ 其中:ω?==??==-?+? &200 2112 2n m g A x k x m g ghk A k m m

相关主题
文本预览
相关文档 最新文档