疲劳强度理论分析及应用
- 格式:pdf
- 大小:18.79 MB
- 文档页数:65
高速列车轮对不同工况下应力及疲劳强度分析高速列车轮对不同工况下应力及疲劳强度分析一、引言随着高速铁路的发展,高速列车成为人们出行的重要方式之一。
高速列车的安全和可靠性是保障乘客出行的重要因素。
在运行过程中,轮对是高速列车中非常重要的部件之一,它承受着列车的重量和运行时产生的应力。
轮对在运行过程中面临着各种工况,包括加速、减速、制动、过弯等。
不同的工况会对轮对产生不同的应力,从而可能导致疲劳破坏。
因此,对高速列车轮对在不同工况下应力及疲劳强度进行分析,对于确保列车的安全和可靠运行具有重要意义。
二、高速列车轮对应力分析在高速列车运行过程中,轮对承受着来自列车本身重量以及运行时产生的动力学载荷。
这些载荷会导致轮对表面上的应力分布产生变化。
2.1 轮对静载荷分析:轮对承受的静载荷主要来自于列车本身的重量。
通过分析轮对在静态状态下的承载力和应力分布,可以得到轮对的最大接触应力和应力分布情况。
2.2 轮对动力学载荷分析:轮对在运行过程中,除了静载荷外,还要承受来自于列车运行时产生的动力学载荷,包括加速度、减速度、制动力等。
这些载荷会导致轮对表面应力分布产生动态变化。
三、高速列车轮对疲劳强度分析轮对在运行过程中所承受的应力会导致疲劳损伤,进而可能导致疲劳破坏。
因此,对轮对的疲劳强度进行分析,可以提前预测轮对的寿命,并采取相应的措施来延长轮对的使用寿命。
3.1 疲劳损伤计算:利用疲劳损伤累积理论,可以计算轮对在不同工况下的疲劳损伤量。
通过考虑应力幅值、循环次数以及材料的疲劳性能指标等参数,可以得到轮对在不同工况下的疲劳寿命。
3.2 疲劳强度分析:在获得轮对的疲劳寿命后,可以进一步分析轮对的疲劳强度。
通过比较轮对的疲劳寿命和实际使用寿命,可以评估轮对的疲劳强度,并采取相应的维修措施,以确保列车的安全和可靠运行。
四、应力及疲劳强度分析案例分析为了验证上述分析方法的准确性和有效性,可以选取一个具体的应力及疲劳强度分析案例进行分析。
疲劳载荷及分析理论疲劳载荷及分析理论疲劳载荷谱( fatigue load spectrum 是建立疲劳设计方法的基础。
根据研究对象的不同,施加在对象上的疲劳载荷也是不同的,所以在应用时要依据某种统计分析方法和理论进行分析。
1 疲劳载荷谱1.1 疲劳载荷谱及其编谱载荷分为静载荷和动载荷两大类。
动载荷又分为周期载荷、非周期载荷和冲击载荷。
周期载荷和非周期载荷可统称为疲劳载荷。
在很多情况下,作用在结构或机械上的载荷是随时间变化的,这种加载过程称为载荷—时间历程。
由于随机载荷的不确定性,这种谱无法直接使用,必须对其进行统计处理。
处理后的载荷—时间—历程称为载荷谱。
载荷谱是具有统计特性的图形,它能本质地反映零件的载荷变化情况[] 。
为了估算结构的使用寿命和进行疲劳可靠性分析,以及为最后设计阶段所必需的全尺寸结构和零部件疲劳试验,都必须有反映真实工作状态的疲劳载荷谱。
实测的应力—时间历程包含了外加载荷和结构的动态响应的影响,它不仅受结构系统的影响,而且也受应力—时间历程的观测部位的影响。
将实测的载荷—时间历程处理成具有代表性的典型载荷谱的过程称为编谱。
编谱的重要一环,是用统计理论来处理所获得的实测子样[] 。
1.2 统计分析方法对于随机载荷,统计分析方法主要有两类:计数法和功率谱法[] 。
由于产生疲劳损伤的主要原因是循环次数和应力幅值,因此在编谱时首先必须遵循某一等效损伤原则,将随机的应力—时间历程简化为一系列不同幅值的全循环和半循环,这一简化的过程叫做计数法。
功率谱法是借助富氏变换,将连续变化的随机载荷分解为无限多个具有各种频率的简单变化,得出功率谱密度函数。
在抗疲劳设计中广泛使用计数法。
目前,已有的计算法有十余种之多,同一应力—时间历程用不同计数法编制出的载荷谱有时会差别很大。
当然,按照这些载荷谱来进行寿命估算或试验,也会给出不同的结果。
从统计观点上看,计数法大体分为两类:单参数法和双参数法[]0所谓单参数法是指只考虑应力循环中的一个变量,例如,峰谷值、变程(相邻的峰值与谷值之差),而双参数法则同时考虑两个变量。
疲劳强度设计对承受循环应力的零件和构件,根据疲劳强度理论和疲劳试验数据,决定其合理的结构和尺寸的机械设计方法。
机械零件和构件对疲劳破坏的抗力,称为零件和构件的疲劳强度。
疲劳强度由零件的局部应力状态和该处的材料性能确定,所以疲劳强度设计是以零件最弱区为依据的。
通过改进零件的形状以降低峰值应力,或在最弱区的表面层采用强化工艺,就能显著地提高其疲劳强度。
在材料的疲劳现象未被认识之前,机械设计只考虑静强度,而不考虑应力变化对零件寿命的影响。
这样设计出来的机械产品经常在运行一段时期后,经过一定次数的应力变化循环而产生疲劳,致使突然发生脆性断裂,造成灾难性事故。
应用疲劳强度设计能保证机械在给定的寿命内安全运行。
疲劳强度设计方法有常规疲劳强度设计、损伤容限设计和疲劳强度可靠性设计。
简史19 世纪40 年代,随着铁路的发展,机车车轴的疲劳破坏成为非常严重的问题。
1867年,德国A.沃勒在巴黎博览会上展出了他用旋转弯曲试验获得车轴疲劳试验结果,把疲劳与应力联系起来,提出了疲劳极限的概念,为常规疲劳设计奠定了基础。
20 世纪40 年代以前的常规疲劳强度设计只考虑无限寿命设计。
第二次世界大战中及战后,通过对当时发生的许多疲劳破坏事故的调查分析,逐渐形成了现代的常规疲劳强度设计,它非但提高了无限寿命设计的计算精确度, 而且可以按给定的有限寿命来设计零件,有限寿命设计的理论基础是线性损伤积累理论。
早在1924年,德国A.帕姆格伦在估算滚动轴承寿命时,曾假定轴承材料受到的疲劳损伤的积累与轴承转动次数(等于载荷的循环次数)成线性关系,即两者之间的关系可以用一次方程式来表示。
1945 年,美国M.A. 迈因纳根据更多的资料和数据,明确提出了线性损伤积累理论,也称帕姆格伦-迈因纳定理。
随着断裂力学的发展,美国 A.K. 黑德于1953 年提出了疲劳裂纹扩展的理论。
1957年,美国P.C.帕里斯提出了疲劳裂纹扩展速率的半经验公式。
混凝土结构的疲劳性能评估方法一、前言混凝土结构是建筑中常见的结构之一,而疲劳是混凝土结构在使用过程中常见的问题之一。
疲劳会导致混凝土结构的损坏和失效,因此评估混凝土结构的疲劳性能是必要的。
本文旨在介绍混凝土结构疲劳性能评估的方法。
二、疲劳的概念和分类疲劳是指材料或结构在受到交替或周期性荷载作用下,经过一定次数的循环荷载后产生的变形和损伤。
混凝土结构的疲劳主要分为高周疲劳和低周疲劳两种。
1.高周疲劳高周疲劳是指在频率较高(大于10Hz)的循环荷载下,混凝土结构受到的疲劳损伤。
高周疲劳对混凝土结构的影响主要是引起裂缝的产生和扩展。
2.低周疲劳低周疲劳是指在频率较低(小于10Hz)的循环荷载下,混凝土结构受到的疲劳损伤。
低周疲劳对混凝土结构的影响主要是引起变形和破坏。
三、疲劳性能评估方法评估混凝土结构的疲劳性能需要进行疲劳试验和分析。
下面分别介绍疲劳试验和分析的具体方法。
1.疲劳试验疲劳试验是评估混凝土结构疲劳性能的重要手段。
疲劳试验需要在实验室中进行,其具体方法如下:(1)试件制备:按照规定的尺寸、材料和配合比制备试件。
(2)荷载加载:按照规定的荷载幅值、频率和循环次数进行荷载加载。
(3)观察记录:观察记录试件的变形和损伤情况,包括裂缝产生和扩展、变形增量等。
(4)分析结果:根据试验结果,分析试件的疲劳性能,包括疲劳寿命、疲劳裂缝扩展速率等指标。
2.疲劳分析疲劳分析是评估混凝土结构疲劳性能的重要手段。
疲劳分析需要进行理论分析和计算,其具体方法如下:(1)建立模型:建立混凝土结构的有限元模型,并根据荷载幅值、频率和循环次数进行模拟加载。
(2)分析结果:根据模拟结果,分析结构的疲劳性能,包括疲劳寿命、疲劳裂缝扩展速率等指标。
(3)修正参数:根据试验结果和分析结果,对模型进行修正和调整,以提高分析精度。
四、疲劳性能评估指标疲劳性能评估需要依据一定的指标进行。
下面介绍常用的疲劳性能评估指标。
1.疲劳寿命疲劳寿命是指混凝土结构在循环荷载下能够承受的循环次数。
第十章疲劳强度概述以上各章主要研究构件的静强度问题,这自然是构件安全性设计最基本的、也是解决的最好的一环。
但是在实际中,结构失效的原因往往并不是其静强度不足,而是材料的疲劳(fatigue )与断裂(fracture )。
这方面有许多惨痛的例子,如1954年世界上第一架喷气客机—英国的彗星号,在投入飞行不到二年,就因其客舱的疲劳破坏而坠入地中海;又如在1967年,美国西弗吉尼亚的Point Pleasant桥因其一根拉杆的疲劳而突然毁坏;最近(2002年)在空中解体、坠入台湾海峡彭湖海域的台湾华航波音747宽体客机也是因其机翼与机身连接部位的疲劳破坏而引起的;等等。
所以,研究构件的疲劳强度具有重要的意义。
所谓疲劳,是指构件中的某点或某些点承受交变应力,经过足够长的时间(或次数)累积作用之后,材料形成裂纹或完全断裂这样一个发展和变化过程。
所谓交变应力(或循环应力),是指随时间循环变化的应力。
交变应力随时间变化的历程称为应力谱,当然,应力谱源自载荷谱,它们或是周期性的(图10.1a),或是随机性的(图10.1b)。
图10.1理论与实验研究均表明,构件在交变应力下的疲劳破坏,与静应力下的失效有本质区别,疲劳破坏具有以下特点:•破坏时应力低于材料的强度极限,甚至低于材料的屈服应力;•破坏是一个积累损伤的过程,即需经历多次应力循环后才能出现;•即使是塑性材料,破坏时一般也无明显的塑性变形,即表现为脆性断裂;•在破坏的断口上,通常呈现两个区域,一个是光滑区域,另一个是粗粒状区域。
例如,图10.2车轴疲劳破坏的断口如图10.2所示。
以上现象可以通过疲劳破坏的形成过程加以说明。
原来,当交变应力的大小超过一定限 度并经历了足够多次的交替重复后,在构件内部应力最大或材质薄弱处,将产生细微裂纹(即所谓疲劳源),这种裂纹随应力循环次数增加而不断扩展,并逐渐形成宏观裂纹。
在扩展过程 中,由于应力循环变化,裂纹两表面的材料时而互相挤压,时而分离,或时而正向错动,从 而形成断口的光滑区。