导数与数列不等式
- 格式:docx
- 大小:31.01 KB
- 文档页数:2
高考中利用导数证明不等式的一些策略1与lnx分开来考虑,即将f(x)分解为两个函数的和:f(x)=lnx+2ex-1.然后分别对这两个函数求导,得到f'(x)=1/x+2ex>0,说明f(x)在定义域上单调递增,且f(0)=1,因此f(x)>1成立。
评注:对于这种需要分离成两个函数的不等式,可以先观察不等式的特征,尝试将其分解为两个函数的和或差,然后分别对这些函数求导来证明不等式。
类型三、需要构造辅助函数的不等式1.利用辅助函数构造上下界例3(2016年全国卷1第23题改编)已知a,b,c>0,证明:(a+b+c)(1/a+1/b+1/c)≥9分析:将(a+b+c)(1/a+1/b+1/c)展开,得到a/b+b/a+a/c+c/a+b/c+c/b+3≥9.观察不等式中的每一项,可以发现这些项都可以表示为三个数的和,因此可以构造辅助函数f(x)=ln(x)+1/x-1,然后对f(x)求导,得到f'(x)=1/x^2-1,f'(x)>0当且仅当x1,因此f(x)在(0,1)和(1,∞)上分别是减函数和增函数。
接着,将a/b+b/a+a/c+c/a+b/c+c/b分别表示为f(ab)+f(ac)+f(bc)+3,然后应用均值不等式,得到f(ab)+f(ac)+f(bc)≥3f((abc)^(2/3))=3ln(abc)+3/(abc)^(2/3)-3.将此式代入原不等式中,得到3ln(abc)+3/(abc)^(2/3)≥6,即ln(abc)+(1/3)/(abc)^(2/3)≥2/3.再次利用辅助函数,构造g(x)=lnx+(1/3)x^(-2/3)-2/3,对其求导得到g'(x)=1/x-(2/9)x^(-5/3),g'(x)>0当且仅当x9/4,因此g(x)在(0,9/4)和(9/4,∞)上分别是减函数和增函数。
由于a,b,c>0,因此abc>0,因此可将不等式中的abc替换为x,得到g(abc)≥0,即ln(abc)+(1/3)/(abc)^(2/3)-2/3≥0,即ln(abc)+(1/3)/(abc)^(2/3)≥2/3,因此原不等式成立。
解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。
利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。
题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。
高考常用数列不等式的证明方法知识点1.放缩为等比数列证明:2311111 (313131312)n ++++<++++ 2.裂项放缩1.<=<= 2.221111111422n b nn n n =<=---+证明:1. 22211151 (233)n ++++<2. 21<+<3.构造函数放缩1.ln(x +1) ≤x证明:设*2N n n ∈≥时,,求证:1!ln !33ln !22ln <++n n证明:求导数可证ln(x +1) ≤x1ln 2*-<∈≥n n N n n 时,,故!1)!1(1!1!ln n n n n n n --=-<∴1!11)!1)!1(1()!31!21()!211(!ln !33ln !22ln <-=--++-+-<++∴n n n n n 4.数学归纳法1. (2012广东)设数列{a n }的前n 项和为S n ,满足2S n =a n+1+1-2n+1,n ∈N ﹡,且a 1,a 2+5,a 3成等差数列。
(1)、求a 1的值;(2)、求数列{a n }的通项公式。
(3)、证明:对一切正整数n ,有12311113...2n a a a a ++++<. 解:(1)在11221n n n S a ++=-+中令1n =得:212221S a =-+ 令2n =得:323221S a =-+解得:2123a a =+,31613a a =+ 又()21325a a a +=+ 解得11a =(2)由11221n n n S a ++=-+212221n n n S a +++=-+得 12132n n n a a +++=+又121,5a a ==也满足12132a a =+ 所以132n n n a a n N *+=+∈对成立 ∴ ()11+232n n n n a a ++=+ ∴ 23n n n a += ∴ 32n n n a =- (3)(法一)∵1111132332233233n n n n n n n ------=⨯-⨯≥⨯-⨯=∴1113n n a -≤∴21123111311111113...1 (1333213)n n n a a a a -⎛⎫⎛⎫⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭+++≤++++=<- 2.数列{}n a 中,11a =,2123n n a a n n +=-+,(*n N ∈). (Ⅰ)试求λ、μ的值,使得数列2{}n a n n λμ++为等比数列; (Ⅱ)设数列{}n b 满足:112n n n b a n -=+-,n S 为数列{}n b 的前n 项和.证明:2n ≥时,65(1)(21)3n n S n n <<++.解:(Ⅰ)若2{}n a n n λμ++为等比数列,则存在0q ≠,使221(1)(1)()n n a n n q a n n λμλμ+++++=++对*n N ∀∈成立。
专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。
2018年高考数学破解命题陷阱方法总结 含参数的导数问题解题方法一、陷阱类型 1.导数与不等式证明 2.极值点偏移问题 3.导函数为0的替换作用 4.导数与数列不等式的证明 5.变形后求导 6.讨论参数求参数7.与三角函数有关的含参数的求导问题 8.构造函数问题 9.恒成立求参数二、陷阱类型分析及练习 1.导数与不等式证明例1. 已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 的单调性; (2)当a ﹤0时,证明()324f x a≤--.(2)由(1)知,当a <0时,f (x )在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设g (x )=ln x -x +1,则’11g x x =-.当x ∈(0,1)时, ()0g x '>;当x ∈(1,+∞)时, ()0g x '<.所以g (x )在(0,1)单调递增,在(1,+∞)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时, 11ln 1022a a -++≤,即324fx a≤--. 【放陷阱措施】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.练习1设函数()1ln x xbe f x ae x x-=+,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2.(1)求,a b (2)证明: ()1f x > 【答案】(I )1,2a b ==;(II )详见解析.试题解析:(1)函数()f x 的定义域为()0,+∞,()112'ln x x x x a b bf x ae x e e e x x x--=+-+.由题意可得()12f =, ()'1f e =.故1a =, 2b =. (2)证明:由(1)知, ()12ln x x f x e x e x-=+, 从而()1f x >等价于2ln x x x xe e->-. 设函数()ln g x x x =,则()'1ln g x x =+. 所以当10,x e ⎛⎫∈ ⎪⎝⎭, ()'0g x <;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()'0g x >.故()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递减, 1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,从而()g x 在()0,+∞上的最小值为11g e e⎛⎫=- ⎪⎝⎭.设函数()2x h x xe e-=-,则()()'1xh x e x -=-. 所以当()0,1x ∈时, ()'0h x >;当()1,x ∈+∞时, ()'0h x <.故()h x 在()0,1上单调递增,在()1,+∞上单调递减,从而()h x 在()0,+∞上的最大值为()11h e=-. 综上,当0x >时, ()()g x h x >,即()1f x >. 2.极值点偏移问题例2. .函数()()2ln 1f x x m x =++ .(1)当0m >时,讨论()f x 的单调性;(2)若函数()f x 有两个极值点12,x x ,且12x x <,证明: ()21122ln2f x x x >-+ . 【答案】(1)答案见解析;(2)证明见解析. 【解析】试题分析:(2)由题意结合函数的性质可知: 12,x x 是方程2220x x m ++=的两根,结合所给的不等式构造对称差函数()()()()()21241ln 1112ln2,(0)2x x x x x x x ϕ=-++-+--<< ,结合函数的性质和自变量的范围即可证得题中的不等式. 试题解析:函数()f x 的定义域为()()2221,,1x x mf x x++-+∞'=+,(1)令()222g x x x m =++,开口向上, 12x =-为对称轴的抛物线, 当1x >-时, ①11022g m ⎛⎫-=-+≥ ⎪⎝⎭,即12m ≥时, ()0g x ≥,即()0f x '≥在()1,-+∞上恒成立,②当102m <<时,由()222g x x x m =++,得1211,2222x x =--=-+,因为()10g m -=>,所以111122x -<<-<-,当12x x x <<时, ()0g x <,即()0f x '<,(2)若函数()f x 有两个极值点12,x x 且12x x <, 则必有102m <<,且121102x x -<<-<<,且()f x 在()12,x x 上递减,在()11,x -和()2,x +∞上递增, 则()()200f x f <=,因为12,x x 是方程2220x x m ++=的两根, 所以12122,2mx x x x +=-=,即12121,2,x x m x x =--=, 要证()21122ln2f x x x >-+又()()()222222122222ln 124ln 1f x x m x x x x x =++=++()()()()()222222222241ln 1121ln2121ln2x x x x x x x x =+++>--++--=+-+,即证()()()()222222241ln 1112ln20x x x x x -++-+->对2102x -<<恒成立, 设()()()()()21241ln 1112ln2,(0)2x x x x x x x ϕ=-++-+--<< 则()()()4412ln 1ln x x x eϕ=-++-' 当102x -<<时, ()4120,ln 10,ln 0x x e +>+,故()0x ϕ'>,所以()x ϕ在1,02⎛⎫-⎪⎝⎭上递增,故()()1111124ln 12ln2024222x ϕϕ⎛⎫>=⨯-⨯⨯--=⎪⎝⎭, 所以()()()()222222241ln 1112ln20x x x x x -++-+->, 所以()21122ln2f x x x >-+.【防陷阱措施】:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 练习1. 已知函数()bf x ax x=+(其中,a b R ∈)在点()()1,1f 处的切线斜率为1. (1)用a 表示b ;(2)设()()ln g x f x x =-,若()1g x ≥对定义域内的x 恒成立,求实数a 的取值范围; (3)在(2)的前提下,如果()()12g x g x =,证明: 122x x +≥. 【答案】(1)1b a =-;(2)[)1,+∞;(III )证明见解析. 【解析】试题分析:(1)由题意()11f a b '=-=即得; (2)()()1ln ln 1a g x f x x ax x x-=-=+-≥在定义域()0,+∞上恒成立,即()min 1g x ≥,由()1g x ≥恒成立,得1a ≥,再证当1a ≥时, ()()min 1g x g =即可;(3)由(2)知1a ≥,且()g x 在()0,1单调递减;在()1,+∞单调递增,当()()12g x g x =时,不妨设1201x x <≤≤,要证明122x x +≥,等价于2121x x ≥-≥,需要证明()()()1212g x g x g x -≤=,令()()()(]2,0,1G x g x g x x =--∈,可证得()G x 在(]0,1上单调递增, ()()10G x G ≤=即可证得.试题解析:(1)()2bf x a x-'=,由题意()111f a b b a =-=⇒=-' (2)()()1ln ln 1a g x f x x ax x x-=-=+-≥在定义域()0,+∞上恒成立,即()min 1g x ≥。
导数与不等式集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-1.已知函数f(x)=x2-ax-a ln x(a∈R).(1)若函数f(x)在x=1处取得极值,求a的值;(2)在(1)的条件下,求证:f(x)≥-+-4x+.2.(2016·烟台模拟)已知函数f(x)=x2-ax,g(x)=ln x,h(x)=f(x)+g(x).(1)若函数y=h(x)的单调减区间是,求实数a的值;(2)若f(x)≥g(x)对于定义域内的任意x恒成立,求实数a的取值范围.3.(2016·山西四校联考)已知f(x)=ln x-x+a+1.(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范围;(2)求证:在(1)的条件下,当x>1时,x2+ax-a>x ln x+成立.4.已知函数f(x)=(2-a)ln x++2ax.(1)当a<0时,讨论f(x)的单调性;(2)若对任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.5.(2017·福州质检)设函数f(x)=e x-ax-1.(1)当a>0时,设函数f(x)的最小值为g(a),求证:g(a)≤0;(2)求证:对任意的正整数n,都有1n+1+2n+1+3n+1+…+n n+1<(n+1)n+1.答案精析1.(1)解f′(x)=2x-a-,由题意可得f′(1)=0,解得a=1.经检验,a=1时f(x)在x=1处取得极值,所以a=1.(2)证明由(1)知,f(x)=x2-x-ln x,令g(x)=f(x)-=-+3x-ln x-,由g′(x)=x2-3x+3-=-3(x-1)=(x>0),可知g(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以g(x)≥g(1)=0,所以f(x)≥-+-4x+成立.2.解(1)由题意可知,h(x)=x2-ax+ln x(x>0),由h′(x)=(x>0),若h(x)的单调减区间是,由h′(1)=h′=0,解得a=3,而当a=3时,h′(x)==(x>0).由h′(x)<0,解得x∈,即h(x)的单调减区间是,∴a=3.(2)由题意知x2-ax≥ln x(x>0),∴a≤x-(x>0).令φ(x)=x-(x>0),则φ′(x)=,∵y=x2+ln x-1在(0,+∞)上是增函数,且x=1时,y=0.∴当x∈(0,1)时,φ′(x)<0;当x∈(1,+∞)时,φ′(x)>0,即φ(x)在(0,1)上是减函数,在(1,+∞)上是增函数,∴φ(x)min=φ(1)=1,故a≤1.即实数a的取值范围为(-∞,1].3.(1)解原题即为存在x>0,使得ln x-x+a+1≥0,∴a≥-ln x+x-1,令g(x)=-ln x+x-1,则g′(x)=-+1=.令g′(x)=0,解得x=1.∵当0<x<1时,g′(x)<0,g(x)为减函数,当x>1时,g′(x)>0,g(x)为增函数,∴g(x)min=g(1)=0,a≥g(1)=0.故a的取值范围是[0,+∞).(2)证明原不等式可化为x2+ax-x ln x-a->0(x>1,a≥0).令G(x)=x2+ax-x ln x-a-,则G(1)=0.由(1)可知x-ln x-1>0,则G′(x)=x+a-ln x-1≥x-ln x-1>0,∴G(x)在(1,+∞)上单调递增,∴G(x)>G(1)=0成立,∴x2+ax-x ln x-a->0成立,即x2+ax-a>x ln x+成立.4.解(1)求导可得f′(x)=-+2a=,令f′(x)=0,得x1=,x2=-,当a=-2时,f′(x)≤0,函数f(x)在定义域(0,+∞)内单调递减;当-2<a<0时,在区间(0,),(-,+∞)上f′(x)<0,f(x)单调递减,在区间(,-)上f′(x)>0,f(x)单调递增;当a<-2时,在区间(0,-),(,+∞)上f′(x)<0,f(x)单调递减,在区间(-,)上f′(x)>0,f(x)单调递增.(2)由(1)知当a∈(-3,-2)时,函数f(x)在区间[1,3]上单调递减,所以当x∈[1,3]时,f(x)max=f(1)=1+2a,f(x)min=f(3)=(2-a)ln3++6a.问题等价于:对任意的a∈(-3,-2),恒有(m+ln3)a-2ln3>1+2a-(2-a)ln3--6a成立,即am>-4a,因为a<0,所以m<-4,因为a∈(-3,-2),所以只需m≤(-4)min,所以实数m的取值范围为(-∞,-].5.证明(1)由a>0及f′(x)=e x-a可得,函数f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故函数f(x)的最小值为g(a)=f(ln a)=e ln a-a ln a-1=a-a ln a-1,则g′(a)=-ln a,故当a∈(0,1)时,g′(a)>0;当a∈(1,+∞)时,g′(a)<0,从而可知g(a)在(0,1)上单调递增,在(1,+∞)上单调递减,且g(1)=0,故g(a)≤0.(2)由(1)可知,当a=1时,总有f(x)=e x-x-1≥0,当且仅当x=0时等号成立,即当x>0时,总有e x>x+1.于是,可得(x+1)n+1<(e x)n+1=e(n+1)x.令x+1=,即x=-,可得n+1<e-n;令x+1=,即x=-,可得n+1<e-(n-1);令x+1=,即x=-,可得n+1<e-(n-2);…令x+1=,即x=-,可得n+1<e-1.对以上各式求和可得:n+1+n+1+n+1+…+n+1<e-n+e-(n-1)+e-(n-2)+…+e-1===<<1.故对任意的正整数n,都有1n+1+2n+1+3n+1+…+n n+1<(n+1)n+1.。
导数在证明不等式中的有关应用1.最值的判定导数可以帮助我们判断一个函数在其中一区间的最值。
具体来说,如果在一个区间内,函数的导数恒为零或者导数的正负性在其中一点发生变化,那么在该区间内函数的最值就会出现。
例如,考虑函数$f(x)=x^2-4x+3$。
我们可以通过求取导数$f'(x)=2x-4$,并令其等于零,得到$x=2$。
通过检查导数的符号,可以确认在$x<2$时导数为负,$x>2$时导数为正。
因此,在$x<2$时,函数的导数为负,说明函数在这个区间上是递减的;而在$x>2$时,函数的导数为正,说明函数在这个区间上是递增的。
因此,根据导数的正负性和最值判定原则,我们可以得出结论:函数$f(x)$在区间$(-\infty,2)$上单调递减,在区间$(2,+\infty)$上单调递增。
进一步,我们可以求得函数的最值,即当$x=2$时,函数取得最小值。
因此,我们得到了函数$f(x)$的最值以及最值的取值点。
2.利用导数证明不等式的成立导数可以被用来证明各种类型的不等式。
其中一个常见的方法是使用导数的定义和可微函数的局部性质。
考虑函数$f(x)$在闭区间$[a,b]$上有定义且在开区间$(a,b)$内可微。
如果在$(a,b)$内存在一个点$c$,使得$f'(c)>0$,那么基于导数的定义,我们可以得出结论:对于任意的$x \in (a,b)$,都有$f'(x)>0$。
这意味着$f(x)$在$(a,b)$内是单调递增的。
我们可以进一步得出结论:对于任意的$x \in [a,b]$,都有$f'(x) \geq f'(a)$。
因此,我们可以断定$f(x)$在闭区间$[a,b]$上是凸函数。
根据凸函数的性质,我们可以利用函数的凸性证明各种类型的不等式。
例如,我们可以证明对于任意的$x>0$和$y>0$,成立如下的不等式:$\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$。
利用函数证明数列不等式要证明数列不等式,我们可以利用函数进行证明。
下面我们将对两种不同类型的数列不等式进行探讨。
第一种类型的数列是递增数列。
递增数列是一种严格单调递增的数列。
为了证明递增数列的不等式,我们可以使用函数的性质。
假设我们有一个递增数列 {an},我们可以定义一个函数 f(x) = an,其中 x 是自然数的索引。
由于数列是递增的,所以我们可以得出 f(x) < f(y) ,其中 x < y。
为了证明数列不等式,我们需要证明对于任意的自然数 x 和 y ,都有 an < an+1、我们可以使用函数的导数来对函数进行分析。
假设函数 f(x) 是连续的,我们可以计算出它的导数 f'(x)。
如果对于所有的 x ,有 f'(x) > 0 ,那么说明函数是递增的。
这也意味着数列{an} 中的元素也是递增的。
通过证明函数的导数大于零,我们可以得出数列 {an} 中的元素是递增的,从而证明数列的不等式。
第二种类型的数列是递减数列。
递减数列是一种严格单调递减的数列。
为了证明递减数列的不等式,我们同样可以使用函数的性质。
假设我们有一个递减数列 {an},我们可以定义一个函数 f(x) = an,其中 x 是自然数的索引。
由于数列是递减的,所以我们可以得出 f(x) > f(y) ,其中 x < y。
为了证明数列不等式,我们需要证明对于任意的自然数 x 和 y ,都有 an > an+1、我们可以使用函数的导数来对函数进行分析。
假设函数 f(x) 是连续的,我们可以计算出它的导数 f'(x)。
如果对于所有的 x ,有 f'(x) < 0 ,那么说明函数是递减的。
这也意味着数列{an} 中的元素也是递减的。
通过证明函数的导数小于零,我们可以得出数列 {an} 中的元素是递减的,从而证明数列的不等式。
在使用函数证明数列不等式时,我们需要注意以下几点:1.函数的定义域和应用范围必须与数列的范围一致。
导数与数列不等式
xxeexexxxxxenTaTTanSaSSaxxnnnnnnnnnnln1,,1-1ln1-1-1-1-≥≥≥≥+≥==>>
导数常见放缩技巧:
项积)为前为通项,(
项和)为前为通项,(
法有如下两种:数列不等式常用通项求
大家讲解。我们通过几道例题来给
的大小。边的通项与右边的通项运用放缩比较不等式左的通项;第二,要学会
右边学生要学会找到不等式方面的知识点:第一,汇问题,主要用到两个导数与数列不等式的交
典型例题
的大小,并加以证明。与比较)设(的取值范围;恒成立,求实数)若(的表达式;求)(的导函数。是其中:设函数例)(-)(...)2()1(,∈3)(≥)(2)(,∈)),(()(),()(1)()(,0),()(),1ln()(1**11nfnngggNnaxagxfxgNnxggxgxgxgxfxfxxfxxgxxfnnn+++
==
′≥′
=+=
+
*
112111,1)()1(1)(1,)1(1111)(,1)(121111)(,1)()),(()(),()(,1)(,11)(,0),()(),1ln()(1Nnnxxxgxkxxgknxkxkxxkxxxgkxxxgknxxxxxxxgxxxgxggxgxgxgxxxgxxfxxfxxgxxfnkkknn∈+=++=+=∴++=+++=+=≥=+=+++=+=∴==+=+=′∴≥′=+=++
+
综上,
也成立。时,当则
时,,假设当
)(
解:
。综上可知与题设矛盾,<上单调递增,在上单调递减,在于是<,解得<,令>,解得>时,令>当满足条件;上单调递增,在上恒成立,在时,当则易知令)(1,0)0()1-(),1-(]1-,0[)(.1-00)(1-0)(1,0)0()(),0[)(00)(1.0,)1(-1)1()-1(-11)(,0)0(,0,1-)1ln()(.0,01-)1ln(,1)(),()(222≤=∴+∞≤′′=≥+∞∴≥≥′≤≥++=+++=′=≥++=≥≥++∴+=≥a
haha
axhaxxhaxxha
hxhxhxxha
xxaxxxxaxxhhx
xaxxxhxxaxxx
x
xgxagxf
).11...3121()1ln(,11ln-)1ln(,...,312ln-3ln211ln-2ln,11)1ln(,,10,1)1ln(,12).1ln()11...3121(1),ln(n-)11...3121(-1...3221)(...)2()1(),(-)(...)2()1(3*+++++++++∈=++=++++++++++=++++=++++++nnnnnnnnNnnxxxxxannnnnnnngggnfnnggg>
上述各式相加可得>>,>故有
>则,令>>可得)中取在(
<只需证>
证明:要证>)(
nnNnntxfxttxxflnln1...3ln12ln12)2(),1[)()1(ln--)(2*>时,证明:且当的取值范围;上为增函数,求实数在若函数:已知函数例+++∈≥
+∞
=
成立,则原命题成立。>综上可知>,则>,易知中取在;>则有中取在。>,只需证>要证明时取等号。,当且仅当即上为增函数,在则)知,令)证明:由((的取值范围是)实数(解:)1-ln(
ln1).1-ln(1-11)2≥(1-ln≥1-1-1ln1,ln≥1-),2(ln≥1-)1-ln(ln1)1-ln(...)23ln()12ln(lnln1...3ln12ln11ln1-,0)1()()∞,1[ln-1-)(,112),1[1nnn
nnnxnn
n
xxxnnnnnnxxxnnnnnnnxxxfxfxxxftt=
≥=
+++=+++
=≥
=≥+==
+∞