基于混合高斯背景模型和四帧差分法的目标检测方法
- 格式:pdf
- 大小:1.63 MB
- 文档页数:5
视频检测和运动目标跟踪方法总结目前常用的视频检测方法可分为如下几类:光流法,时域差分法,背景消减法,边缘检测法,运动矢量检测法[2]。
一、光流法光流法[1]是一种以灰度梯度基本不变或亮度恒定的约束假设为基础对运动目标进行检测的有效方法。
光流是指图像中灰度模式运动的速度,它是景物中可见的三维速度矢量在成像平面上的投影,表示了景物表面点在图像中位置的瞬时变化,一般情况下,可以认为光流和运动场没有太大区别,因此就可以根据图像运动来估计相对运动。
优点:光流不仅携带了运动目标的运动信息,而且还携带了有关景物三维结构的丰富信息,它能够检测独立运动的对象,不需要预先知道场景的任何信息,并且能够适用于静止背景和运动背景两种环境。
缺点:当目标与背景图像的对比度太小,或图像存在噪音时,单纯地从图像灰度强度出发来探测目标的光流场方法将会导致很高的虚警率。
且计算复杂耗时,需要特殊的硬件支持。
二、时域差分法时域差分法分为帧差法和改进的三帧双差分法。
1.帧差法帧差法[8]是在图像序列中的相邻帧采用基于像素点的时间差分, 然后阈值化来提取出运动区域。
视频流的场景具有连续性,在环境亮度变化不大的情况下,图像中若没有物体运动,帧差值会很小;反之若有物体运动则会引起显著的差值。
优点:时域相邻帧差法算法简单,易于实现,对背景或者光线的缓慢变化不太敏感,具有较强的适应性,能够快速有效地从背景中检测出运动目标。
缺点:它不能完全提取运动目标所有相关像素点,在运动实体内部不容易产生空洞现象。
而且在运动方向上被拉伸,包含了当前帧中由于运动引起的背景显露部分,这样提取的目标信息并不准确。
2.三帧双差分法三帧双差分法与相邻帧差法基本思想类似,但检测运动目标的判决条件上有所不同。
三帧双差分较两帧差分提取的运动目标位置更为准确。
三、背景消减法背景消减法[4]是将当前帧与背景帧相减,用阈值T判断得到当前时刻图像中偏离背景模型值较大的点,若差值大于T则认为是前景点(目标);反之,认为是背景点,从而完整的分割出目标物体。
说明1、如果直接套用本模版(懒人的最佳选择),最后论文定稿后这些红字要删除(本页也是要删除的);黑色字为固定性内容(可直接采用);蓝色字为可变性内容(需要替换成你的实际内容)。
2、学位论文中要通过插入word“分节符”来划分“word节”(“word节”概念不同于通常意义下的“章节”概念,“分节符”能够使各“word节”有不同页眉、页码)。
这是格式排版一般人不熟悉的word软件重点、难点技巧。
3. 重点关注要素:标题级数最多三级,字体格式,段落格式,图、表、公式。
请至少把本文所有红色字都看一遍。
硕士学位论文(小二号黑体)学位论文题名(二号黑体字)学位论文英文题名(小二号Times New Roman)学科专业一级学科名称(三号宋体)研究方向二级学科或三级学科名称(三号宋体)(自主设置二级学科和自主设置交叉学科须括号注明)作者姓名×××(三号宋体)指导教师×××(三号宋体)中南大学(小三号宋体)二〇一六年五月(小三号宋体)中图分类号学校代码10533 UDC 学位类别(学术学位或专业学位)硕士学位论文(小二号黑体)学位论文中文题名(小二号黑体字)学位论文英文题名(小二号Times New Roman)作者姓名:某某某(三号宋体)学科专业:一级学科名称(三号宋体)研究方向:二级学科或三级学科名称(三号宋体)(自主设置二级学科和自主设置交叉学科须括号注明)学院(系、所):学生所在学院(三号宋体)指导教师:某某某教授(三号宋体)副指导教师:某某某教授(三号宋体,本栏无则空)论文答辩日期答辩委员会主席中南大学(小三号宋体)二〇一六年五月(小三号宋体)原创性声明本人声明,所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了论文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得中南大学或其他单位的学位或证书而使用过的材料。
基于视频的车流量统计算法设计摘要:智能交通系统(ITS)已经被科学家认为是解决当前城市交通问题最有效的方法,也是目前和未来交通发展的主流方向。
ITS的前提是获得交通道路的实时信息,比如车速、车流量等。
本文主要研究ITS中基于视频检测技术的车流量统计方法,对所涉及的运动目标检测、背景提取、阴影去除以及车辆统计等核心技术进行了详细的研究。
本文的工作主要分为以下四部分:1)对车流量统计相关算法进行了研究,针对目标检测算法,研究了光流法、帧间差分法和背景差分法。
针对背景提取算法,研究了均值法、统计中值法、单高斯背景模型法和混合高斯背景模型法;针对阴影消除算法,研究了基于HSV颜色空间变换的阴影消除算法、基于色彩特征不变量的阴影消除算法和基于纹理特征的阴影消除算法。
同时,本文对上述算法进行了实验对比分析。
2)给出了一种改进的混合高斯模型背景提取算法,当读入一定帧数的图像之后认为背景达到稳定状态,读入新的视频帧时,对当前帧进行判断,如果像素点和稳定背景图像的像素点差值大于阈值Th1,就对该像素点进行更新,反之就不更新。
3)给出了一种改进的基于虚拟区域的车流量统计算法,首先设置检测区域和检测线,然后跟踪检测区域中车辆的质心到检测线的距离d,如果d小于Th2认为有一辆车辆通过,通过实验验证,本文算法的精确率能达到90%左右。
4)实现了一个车流量统计系统,整个系统主要包括视频播放模块、GMM背景更新模块、前景构建模块和车辆计数模块。
视频播放模块主要完成视频的播放和显示;GMM背景更新模块主要是实现本文的背景提取算法;前景构建模块的主要功能是通过阴影去除和形态学操作得到较好的前景图像;车辆计数模块的主要功能是完成本文的车流量统计算法。
本文深入研究了车流量统计的相关算法,并给出了一种改进的混合高斯模型算法和一种改进的基于虚拟区域的车流量统计算法,最后用VC实现了一个车流量统计系统,实验结果表明本文设计的系统能够对车辆目标进行准确检测与统计。
视频处理算法范文一、视频去抖动算法视频去抖动是指消除视频中由于相机抖动或者拍摄器材不稳定导致的图像抖动。
常见的视频去抖动算法包括基于均值滤波、位移算法、卷积神经网络等。
其中,位移算法通过分析图像上的像素位移信息,计算抖动量,并根据计算结果对图像进行修复,能够有效地减少抖动现象。
二、背景建模算法背景建模是指对视频中的背景进行建模和分析,通过提取背景信息,可以实现目标检测、目标跟踪和背景减除等功能。
常见的背景建模算法包括基于高斯模型、自适应混合高斯模型、基于学习的方法等。
其中,自适应混合高斯模型是一种广泛使用的背景建模算法,它可以根据背景变化自动适应调整高斯分布的参数,从而更好地适应不同场景下的背景变化。
三、运动目标检测算法运动目标检测是指对视频中的移动目标进行检测和定位。
常见的运动目标检测算法包括帧差法、光流法、背景模型法和基于深度学习的方法。
帧差法通过比较相邻帧之间的像素差异,判断是否为运动目标,是一种简单高效的方法。
而光流法则通过分析相邻帧之间的像素位移,进一步计算运动目标的速度和方向。
基于深度学习的方法则通过卷积神经网络对视频图像进行特征提取,进而实现高精度的运动目标检测。
四、视频编码算法视频编码是指将视频信号经过压缩编码处理,以减少视频数据的存储空间和传输带宽。
常见的视频编码算法包括MPEG系列标准、H.264、H.265等。
其中,H.264是一种广泛使用的视频编码标准,它通过在空间和时间域上对图像进行预测和差分编码,并采用变换和量化等方法进行数据压缩,从而实现高效的视频编码。
背景帧差与分块帧差相融合的运动目标检测
杨辉;刘从军;武尚
【期刊名称】《计算机与数字工程》
【年(卷),期】2013(041)012
【摘要】提出一种融合使用背景帧差和分块帧差的运动目标检测方法.该方法通过对图像的每个像素点进行学习,然后建立初始背景,通过不完全覆盖分块法对图像进行分块,对各子块进行帧间差分实现对前景图像的粗提取,采用otsu算法获取阈值,运用背景差分对前景图像进行细提取.背景采用分段学习的更新方法,能够消除光照变化、背景物体摇动等噪声.实验结果表明,该方法快速、准确,抗干扰能力强,能较好地满足实时检测运动目标的要求.
【总页数】4页(P1915-1917,2023)
【作者】杨辉;刘从军;武尚
【作者单位】江苏科技大学计算机科学与工程学院镇江212003;江苏科技大学计算机科学与工程学院镇江212003;江苏科大汇峰科技有限公司镇江212003;江苏科技大学计算机科学与工程学院镇江212003
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于四帧帧差和混合高斯模型的运动目标检测 [J], 刘波;王平;杨小敏;邓艾
2.基于五帧帧差和混合高斯模型的运动目标检测 [J], 刘波;王平;杨小敏;邓艾
3.结合分块的改进三帧差和背景差的运动目标检测 [J], 王彬;马永杰;李鹏飞
4.分块帧差和背景差相融合的运动目标检测 [J], 高美凤;刘娣
5.基于背景差法和帧间差法的运动目标检测方法 [J], 李刚;邱尚斌;林凌;曾锐利因版权原因,仅展示原文概要,查看原文内容请购买。
运动目标检测方法概述作者:景阳黄柔周婧琳来源:《计算机光盘软件与应用》2012年第23期摘要:随着社会的发展,人们获取的信息途径越来越多,单纯的依靠人类的五官已不能及时的将我们获取的海量信息进行甄别和判断,因此计算机技术基础上发展的图像处理技术为我们生活、工作中的信息处理提供了很大的帮助,其在社会中的作用也越来越凸显。
其中,运动目标检测技术是整个图像处理技术的基础性环节,直接关系到后续信息处理的成败。
本文主要介绍了目标检测的常用算法的原理以及它们的优缺点,并对其中的帧间差分法和背景减除法进行了仿真实验,以验证其优缺点。
关键词:运动目标检测算法;帧间差分法;背景减除法中图分类号:TP391 文献标识码:A 文章编号:1007-9599 (2012) 23-0000-031 引言运动目标检测技术是图像处理技术中的关键基础技术[1],利用运动目标检测技术可以对视频图像中感兴趣的目标进行实时地检测、识别、提示报警,是进一步视频图像处理的重要依据。
运动目标检测技术已经广泛应用于智能视频监控、犯罪预防、智能分辨、自动制导等安防、军事领域[2]。
运动目标检测是将运动目标从视频序列图像背景中分离出来。
各类实际应用需求的不断增多,大大地推动了运动目标检测技术的发展,产生了许多成熟的目标检测算法。
一般我们会把运动目标检测区分为动态环境下和静态环境下,由于动态环境处理较为复杂,所以本文主要介绍静态环境下的目标检测算法。
2 运动目标检测常见方法静态环境下的运动目标检测是指将视频序列中的图像分割为背景图像和前景图像[1],提取其中存在变化的区域为前景图像,即运动目标或称感兴趣区域,而没有发生变化的区域为背景图像。
能否准确地检测出监控场景中的运动目标直接影响了后续目标跟踪和行为分析等效果的好坏,因为目标检测提取出来的像素是后续处理分析的主要对象,是分析与处理的基础。
虽然,在视频监控场景中,监控环境情况十分复杂,但每个运动图像都具有独特的可供计算机识别的特点,计算机利用这些特点就可以将前景图像检测出来。
基于机器视觉的机织物耐静水压性能检测作者:倪嘉陆王若雯石文慧袁志磊徐平华来源:《现代纺织技术》2024年第01期摘要:为提升机织物静水压检测效率,实现静水压自动评级,在优化视频采集模块的基础上,利用改进的背景差分法,对不同表观机织物静水压性能进行测试和分析。
利用3D打印技术,实现采集设备和光源的封装;实时对视频帧进行掩膜、去噪和分割处理,以获得稳定有效的观测区域;利用优化更新背景策略的背景差分法,结合高斯混合模型,实现织物出水位置和帧位的实时记录,进而换算出织物耐静水压值。
结果表明:该方法总体优于常规背景差分法、高斯混合模型背景差分法;对纯色和宽条格织物检测表现良好,误差在037%~2.77%;但对于细密的规则条纹和不规则印花织物误差较大,误差率在9.27%以上。
该方法能够有效地检测纯色和部分规则花纹织物,对复杂表观织物的适用性有待提升。
关键词:机织物;静水压;抗渗水性;水珠;高斯混合模型中图分类号:TS107.4文献标志码:A文章编号:1009-265X(2024)01-0018-09舒适、健康、环保等消费理念加速材料的科技变革,促使传统的织物性能测评方法不断优化。
抗渗水性能是影响织物湿舒适性重要指标之一,在面料研发、生产中,常采用静水压法考核纺织品的抗渗水性能。
现行标准如ISO 811:2018《Textiles—Determination of resistance to water penetration—Hydrostatic pressure test》、GBT 4744—2013《纺织品防水性能的检测和评价静水压法》、AATCC 127—2017《Water Resistance: Hydrostatic Pressure Test》等适用于经过防水处理的各种织物、非织造布(如帆布、土工材料、帐篷布)抗渗水性能评估。
上述标准规定了测试水压、试样准备等要求,但在终止判定方面,仍需测试人员在观测到第3颗水珠时截停增压。
红外图像弱小目标检测技术研究1、本文概述随着技术的不断进步,红外成像技术已成为现代军事、航空航天、民用安全等领域不可或缺的重要工具。
特别是在夜间或弱光条件下,红外成像技术以其独特的成像方法实现了对目标的清晰观察和识别。
在实际应用中,红外图像往往含有大量的噪声和干扰,使得弱目标的检测异常困难。
研究红外图像弱小目标检测技术具有重要的现实意义和应用价值。
本文旨在探索红外图像弱小目标检测技术的相关理论和方法。
我们将分析红外图像的特征,以了解红外图像中弱小目标的特征和困难。
我们将回顾现有的弱目标检测算法,包括基于滤波的方法、基于背景抑制的方法和基于多帧融合的方法等,并分析其优缺点和适用场景。
接下来,我们将提出一种基于深度学习的弱目标检测算法,该算法通过从红外图像中提取和分类深度特征来实现对弱目标的精确检测。
我们将通过实验验证所提出算法的有效性,并将其与其他算法进行比较,为红外图像弱小目标检测技术的发展提供参考和启示。
2、红外图像弱小目标检测技术综述红外图像弱小目标检测技术是识别、提取和跟踪复杂背景下弱目标的重要技术。
由于红外图像中弱目标的信噪比低、对比度低、体积小、运动轨迹不确定等特点,其检测成为一项极具挑战性的任务。
近年来,随着红外成像技术和信号处理技术的快速发展,红外图像中的弱小目标检测技术也受到了广泛的关注和研究。
红外图像弱小目标检测技术的核心在于如何有效地从复杂背景中提取目标信息。
这通常涉及多个阶段,如图像预处理、对象增强、对象提取和对象跟踪。
在图像预处理阶段,主要目的是去除图像中的噪声,提高图像质量,为后续的目标检测提供良好的基础。
在目标增强阶段,使用直方图均衡和对比度增强等各种算法来提高目标与背景之间的对比度,从而突出目标信息。
在目标提取阶段,采用阈值分割、边缘检测、形态学处理等方法从增强图像中提取目标区域。
在目标跟踪阶段,通过滤波算法、匹配算法等实现对目标的连续跟踪。
目前,在红外图像中微弱小目标的检测方面取得了重大进展。