当前位置:文档之家› 先进材料成形技术与理论大纲

先进材料成形技术与理论大纲

先进材料成形技术与理论大纲
先进材料成形技术与理论大纲

研究生课程教学大纲

课程编号:S292023

课程名称:先进材料成形技术与理论

开课院系:机电工程学院任课教师:郭永环

先修课程:理论力学、材料力学、材料成型原理、工程材料等

适用学科范围:机械工程

学时: 36 学分: 2

开课学期:2 开课形式:讲授

课程目的和基本要求:

本课程主要介绍与材料成型与加工相关的知识,通过本课程的学习,可以使学生对液态成形、连接成形、固态塑性成形、粉末冶金及成形、高分子材料及成形、陶瓷材料及成形、复合材料及成形基本过程有较深入的理解;掌握典型机械零件制造的基本工艺,初步具备根据零件使用要求合理选择成形工艺以及根据成形工艺要求合理设计零件结构的能力,并能进行简单的技术经济性分析。

课程主要内容:

第一章金属材料与热处理

主要内容包括金属材料的机械性能、金属的晶体结构和结晶、常用的热处理工艺。

第二章铸造成型技术

主要内容包括合金的铸造性能、常用的铸造合金和铸造方法、先进液态金属成型技术。

第三章压力加工成型技术

主要内容包括压力加工成型的特点和方法、锻造和冲压等常用压力加工技术、超塑性成形、粉末锻造等特殊压力加工新技术。

第四章焊接成型技术

主要内容包括焊接原理及方法、焊接接头的组织和性能、常用金属的焊接、激光焊和微连接技术等新的连接技术。

第五章粉末冶金及其成型

主要内容包括粉末冶金基础知识及粉末冶金工艺过程知识。

第六章高分子材料及其成型

主要内容包括工程塑料的分类和工程塑料成型工艺、塑料制品的结构工艺性。

第七章陶瓷材料及成型

主要内容包括陶瓷材料的性能。

第八章复合材料及其成型

主要内容包括复合材料的定义和分类、复合材料成型工艺和应用。

第九章快速成型技术

主要内容包括快速成型技术的原理、分类及特点

第十章成型材料与方法选择

主要内容包括材料成型方法选择的原则、几种常用的机械零件的毛坯成型方法的选择方法。

课程主要教材:

樊自田.先进材料成形技术及理论,化学工业出版社,2006

主要参考文献:

1.刘建华. 材料成型工艺基础,西安电子科技大学出版社,2007

2.毛萍莉. 材料成形技术,机械工业出版社,2007

3. 毛卫民. 金属材料成形与加工,清华大学出版社,2008

学院审核意见:学位分委员会审批意见:

签字:签字:

日期:日期:

第四讲--先进过程控制技术

第四讲先进过程控制技术 1工业生产过程的先进控制 1.1先进控制的概念 现代控制理论和人工智能几十年的发展已为先进控制奠定了应用理论基础,而DCS的普及与提高,则为先进控制的应用提供了强有力的硬件和软件平台。企业的需要、控制理论和计算机技术的发展是先进控制(Advanced Process Control)发展强有力的推动力。 先进控制是对那些不同于常规单回路PID控制,并具有比常规PID控制更好控制效果的控制策略的统称。先进控制的任务是用来处理那些采用常规控制效果不好,甚至无法控制的复杂工业过程控制的问题。其主要特点如下: ①与传统的PID控制不同,先进控制是一种基于模型的控制策略,如模型预测控制和推断控制等。目前, 基于知识的控制,如智能控制和模糊控制,正成为先进控制的一个重要发展方向。 ②先进控制通常用于处理复杂的多变量过程控制问题。如大时滞、多变量耦合、被控变量与控制变量存 在着各种约束等。 ③先进控制的实现需要足够的计算能力作为支持平台。随着DCS功能的不断增强,更多的先进控制策 略可以与基本控制回路一起在DCS上实现,有效地增强先进控制的可靠性、可操作性和可维护性。 从全厂综合自动化的角度看,先进控制恰好处在承上启下的重要地位。性能良好的先进控制是在线优化得以有效实施的前提,进而可将企业领导者的经营决策、生产管理和调度的有关信息及时落实至全厂生产装置的实际运行中,并可真正实现全厂综合优化控制。 1.2先进控制的核心内容 作为一个整体,先进控制系统应包括从数据采集处理、数学模型建立、先进控制策略到工程实施的全部内容。 1.2.1数据的采集、处理和软测量技术 利用大量的实测信息是先进控制的优势所在。由于来自工业生产现场的过程信息通常带有噪声,数据采集时应作滤波处理,采集到的数据还应进行过失误差的检测与识别和过程数据的有效性检验及数据调理工作,这是先进控制应用的重要保障。 基于可测信息和模型,实时计算不可测量的变量,即软测量技术,是先进控制中不可缺少的内容。 1.2.2多变量动态过程模型辨识技术 获取对象的动态数学模型是实施先进控制的基础。实际工业过程模型化是一项专门的技术,它涉及到过程动态学、系统辨识、统计学以及人工智能等多种知识。目前类似模型预测控制这样的先进控制策略均采用工业试验的方法来获取控制模型,而机理模型和智能模型建立也有望成为有效的控制模型。 1.2.3先进控制策略 先进控制采用了合理的控制目标和控制结构,可更好地适应工业生产过程的需要。先进控制主要解决: ①个别重要过程变量控制性能的改善,主要采用单变量模型预测控制与原控制回路构成所谓的“透明控 制”的方式 ②解决约束多变量过程的协调控制问题,主要采用带协调层的多变量预测控制策略 ③推断质量控制,利用软测量的结果实现闭环的质量卡边控制。涉及到的主要控制策略有模型预测控制、 推断控制、协调控制、质量卡边控制、统计过程控制,以及模糊控制、神经控制等。 1.2.4先进控制的实施 先进控制在实施时需要解决许多具体的工程问题:

材料成型技术基础复习重点

1.常用的力学性能判据各用什么符号表示它们的物理含义各是什么 塑性,弹性,刚度,强度,硬度,韧性 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 工程材料的发展趋势

据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。 铸件的宏观组织一般包括三个晶区:表面的细晶粒区、柱状晶粒区和内部等轴晶区。 金属塑性成形指利用外力使金属材料产生塑性变形,使其改变形状、尺寸和改善性能,从而获得各种产品的加工方法。 主要应用: (1)生产各种金属型材、板材、线材等; (2)生产承受较大负荷的零件,如曲轴、连杆、各种工具等。 金属塑性成形特点

材料成形技术基础知识点总结

材料成形技术基础第一章 1-1 一、铸造的实质、特点与应用 铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A适应性大(铸件重量、合金种类、零件形状都不受限制); B成本低 C工序多,质量不稳定,废品率高 D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。 二、铸造工艺基础 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和长大两部分组成。通常情况下,铸件的结晶有如下特点: A以非均质形核为主 B以枝状晶方式生长为主。 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。 (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。 具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断

先进材料成型技术及理论

华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编号:MB11001 学时数:40 学分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要求: 材料的种类繁多,其加工方法各异,近年来随同科学技术的发展,新材料、材料加工新技术不断出现。本课程将概述材料的分类及其加工方法的选择;重点介绍液态金属精密成形、金属材料塑性精确成形及金属连接成形等研究与应用领域的新技术、新理论;阐述材料加工中的共性与一体化技术。本课程作为材料加工工程专业的学位课,将使研究生对材料加工的新技术与新理论有个全面的了解,引导研究生在大材料学科领域进行思考与分析,为从事材料加工工程技术的研究与发展奠定基础。 三、课程内容: 第一章材料的分类及其加工方法概述 1.1材料的分类及加工方法概述 1.2材料加工方法的选择(不同材料)及不同加工方法的精度比较(同一种材料) 1.3材料加工中的共性(与一体化)技术 1.4材料加工技术的发展趋势 第二章液态金属精密成形理论及应用 2.1 材料液态成形的范畴及概述 2.2 消失模精密铸造原理及应用(原理、关键技术、应用实例、缺陷与防治) 2.3 Corsworth Process新技术(精密砂型铸造:锆英(砂)树脂砂型、电磁浇注、热法旧砂再生) 2.4 半固态铸造成形原理与技术(流变铸造、触变成形、注射成形) 2.5 铝、镁合金的精确成形技术(金属型铸造、压铸、反重力精密铸造、精密熔模铸造等) 2.6 特殊凝固技术(快速凝固、定向凝固、振动凝固) 2.7 金属零件的数字化铸造(铸件三维造型、工艺模拟及优化、样品铸件快速铸造、工业化生产及 其设计) 2.8 高密度粘土砂紧实机理及其成形技术(高压造型、气冲造型、静压造型) 第三章金属材料塑性精密成形工艺及理论 3.1 金属塑性成形种类与概述 3.2金属材料的超塑性及超塑成形(概念、条件、成形工艺) 3.3 复杂零件精密模锻及复杂管件的精密成形(精密模锻、复杂管件成形) 3.4 板料精密成形(精密冲裁、液压胀形、其它板料精密成型) 3.5 板料数字化成形(点(锤)渐进成形、线渐进(快速)成形、无模(面、液压缸作顶模)成形)

工程材料与成型技术基础复习总结

工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大 应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留 一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断 前的最大承载能力。 7.发生塑性变形而力不增加时的应力称为屈服强度。 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材 料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10. 11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两 种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称 为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的 最大应力。

熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间 隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸 很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很 小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。 结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其 差值称为过冷度ΔT,即ΔT=Tm﹣Tn。 24.同一液态金属,冷却速度愈大,过冷度也愈大。 25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金, 当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。这种方法称为变质处理。 26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的 晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。 27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。 28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体 强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

重庆大学材料成型技术基础--名词解释

名词解释 一、二章(绪论+铸造成型): 1缩孔、缩松:液态金属在凝固的过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,细小而分散的孔洞称为缩松。 2顺序凝固:指采用各种措施保证铸件结构各部分,从远离冒口部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固再向冒口方向顺序凝固的凝固方式。3同时凝固:由顺序凝固的定义可得。 4偏析:铸件凝固后截面上不同部位晶粒内部化学成分不均匀的现象称为偏析。 5:宏观偏析:其成分不均匀现象表现在较大尺寸范围,也称为区域偏析。 6微观偏析:指微小范围内的化学成分不均匀现象。 7流动性:液态金属自身的流动能力称为“流动性”。 8冲型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力叫冲型能力。 9正偏析:当溶质的分配系数K>1的合金进行凝固时,越是后来结晶的固相,溶质的浓度越低,这种成分偏析称之为正偏析。 10逆偏析:当溶质的分配系数K<1的合金进行凝固时,越是

后来结晶的固相,溶质的浓度越高,这种成分偏析称之为逆偏析。 11:自由收缩:铸件在铸型中收缩仅受到金属表面与铸型表面的摩擦阻力时,为自由收缩。 12:受阻收缩:如果铸件在铸型中的收缩除了受到金属表面与铸型表面的摩擦阻力,还受到其他阻碍,则为受阻收缩。13:析出性气孔:溶解于熔融金属中的气体在冷却和凝固的过程中,由于溶解度的下降而从合金中析出,当铸件表面已凝固,气泡来不及排除而保留在铸件中形成的气孔。 14:反应性气孔:浇入铸型的熔融金属与铸型材料、芯撑、冷铁或熔渣之间发生化学反应所产生的气体在、铸件中形成的孔洞,称为反应气孔。 15:侵入性气孔:浇注过程中熔融金属和铸型之间的热作用,使型砂和型芯中的挥发物挥发生成,以及型腔中原有的空气,在界面上超过临界值时,气体就会侵入金属液而不上浮逸出而形成的气孔。 三章(固态材料塑性成型) 1金属塑性变形:是指在外力作用下,使金属材料产生预期的变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。 2加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬

材料与成形技术历年试卷1

上海大学 材料与成形技术基础(二)试卷A 2002.1 一、改错题(将下表不合适结构改为合适结构,并写出改进理 1.铸件 2.铸件 4.自由锻件

6.拉深件 7.手弧焊 8.点焊 9.手弧焊 10.焊接 合适的毛坯成形或连接方法。(每空1分,共16分)

8. 大口径管环缝对接

三、单项选择题(每题1分,共10分) 1. 今有青铜仿古铜像须按普通人尺寸的十分之一大小进行仿形 铸造,应采用() (1) 金属型铸造 (2) 压力铸造 (3) 熔模铸造 (4) 普通砂型铸造 2. 对于高熔点合金精密铸件的成批生产,常采用() (1) 压力铸造 (2) 低压铸造 (3) 熔模铸造 (4) 金属型铸造 3. 助动车发动机缸体,材料ZL202,100万件,其毛坯成形工艺为 () (1) 低压铸造 (2) 压力铸造 (3) 离心铸造 (4) 熔模铸造 4. 下列模锻设备中最适宜进行拔长工步的是() (1) 模锻锤 (2) 机械锻压机 (3) 摩擦压力机 (4) 平锻机

5. 模锻时,当要求坯料某部分横截面减少,以增加该部分的长度时 一般选用() (1) 滚压模膛 (2) 拔长模膛 (3) 弯曲模膛 (4) 切断模膛 6. 当凸模和凹模之间间隙大于板料厚度,凸模又有圆角时,此冲压模 为() (1) 冲孔模 (2) 落料模 (3) 切断模 (4) 拉深模 7. 结构钢焊接时焊条选择的主要原则是焊缝与母材在下列哪一方面 应相等() (1) 化学成份 (2) 结晶组织 (3) 强度等级 (4) 抗腐蚀性能 8. 轿车油箱生产时既经济合理又生产效率高的焊接方法是() (1) 二氧化碳焊 (2) 点焊 (3) 缝焊 (4) 埋弧焊 9. 大批生产ABS小齿轮的成形方法应是() (1) 粉末冶金 (2) 压力铸造 (3) 注塑 (4) 机械切削 10. 最便宜的快速成形方法是() (1) FDM (2) SLA (3) LOM (4) SLS 四、多项选择题(每题2分,共20分) 1.可采用金属铸型的铸造方法有:()()()()() (1) 压力铸造 (2) 离心铸造 (3) 低压铸造 (4) 机器造型 (5) 熔模铸造 2. 为提高铸铁件的强度,尽量选用:()()()()() (1) 增大壁厚 (2) 改进结构 (3) 增设加强筋 (4) 增设补缩冒口 (5) 改善结晶条件

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。(因为不平衡结晶) 晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。)(2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色 冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF内<ΣF横ΣF横>F直下端>F直上端) 浇注位置和分型面选择的基本原则有哪些? 答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷) (2)铸件的宽大平面朝下或倾斜浇注; (3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。(原因:便于补缩)容易形成缩孔的铸件,厚大部分朝上。(原因:便于安置冒口实现自上而下的定向凝固,防止产生缩孔) 分型面的选择:(1)应尽可能使全部或大部分构件,或者加工基准面与重要的加工面处于同

材料成形技术基础试题

材料成形技术基础复习题 一、填空题 1、熔模铸造的主要生产过程有压制蜡模,结壳,脱模,造型,焙烧和浇注。 2、焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。 3、接的主要缺陷有气孔,固体夹杂,裂纹,未熔合,未焊透,形状缺陷等。 4、影响陶瓷坯料成形性因素主要有胚料的可塑性,泥浆流动性,泥浆的稳定性。 5、焊条药皮由稳弧剂、造渣剂、造气剂、脱氧剂、合金剂和粘结剂组成。 6、常用的特种铸造方法有:熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造和陶瓷型铸造等。 7、根据石墨的形态特征不同,可以将铸铁分为普通灰口铸铁、可锻铸铁和球墨铸铁等。 二、单项选择题 1.在机械性能指标中,δ是指( B )。 A.强度 B.塑性 C.韧性 D.硬度 2.与埋弧自动焊相比,手工电弧焊的优点在于( C )。 A.焊接后的变形小 B.适用的焊件厚 C.可焊的空间位置多 D.焊接热影响区小 3.A3钢常用来制造( D )。 A.弹簧 B.刀具 C.量块 D.容器 4.金属材料在结晶过程中发生共晶转变就是指( B )。 A.从一种液相结晶出一种固相 B.从一种液相结晶出两种不同的固相 C.从一种固相转变成另一种固相 D.从一种固相转变成另两种不同的固相 5.用T10钢制刀具其最终热处理为( C )。 A.球化退火 B.调质 C.淬火加低温回火 D.表面淬火 6.引起锻件晶粒粗大的主要原因之一是( A )。 A.过热 B.过烧 C.变形抗力大 D.塑性差 7.从灰口铁的牌号可看出它的( D )指标。 A.硬度 B.韧性 C.塑性 D.强度 8.“16Mn”是指( D )。 A.渗碳钢 B.调质钢 C.工具钢 D.结构钢 9.在铸造生产中,流动性较好的铸造合金( A )。 A.结晶温度范围较小 B.结晶温度范围较大 C.结晶温度较高 D.结晶温度较低 10.适合制造齿轮刀具的材料是( B )。 A.碳素工具钢 B.高速钢 C.硬质合金 D.陶瓷材料 11.在车床上加工细花轴时的主偏角应选( C )。 A.30° B.60° C.90° D.任意角度 12.用麻花钻加工孔时,钻头轴线应与被加工面( B )。 A.平行 B.垂直 C.相交45° D.成任意角度 三、名词解释 1、液态成型液态成型是指熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成型方法。金属的液体成型也称为铸造。 2、焊缝熔合比熔焊时,被熔化的母材金属部分在焊道金属中所占的比例,叫焊缝的熔合比。 3、自由锻造利用冲击力或压力使金属在上下砧面间各个方向自由变形,不受任何限制而获得所需形状及尺寸和一定机械性能的锻件的一种加工方法,简称自由锻 4、焊接裂纹在焊接应力及其它致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏,形成新的界面所产生的缝隙称为焊接裂纹。 5、金属型铸造用重力浇注将熔融金属浇入金属铸型(即金属型)中获得铸件的方法。 四、判断题: 1、铸造的实质使液态金属在铸型中凝固成形。(√) 2、纤维组织使金属在性能上具有了方向性。(√) 3、离心铸造铸件内孔直径尺寸不准确,内表面光滑,加工余量大。(×)

先进控制技术及应用

先进控制技术及应用 1.前言 工业生产的过程是复杂的,建立起来的模型也是不完善的。即使是理论非常复杂的现代控制理论,其效果也往往不尽人意,甚至在一些方面还不及传统的PID控制。20世纪70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。在这样的背景下,预测控制的一种,也就是动态矩阵控制(DMC)首先在法国的工业控制中得到应用。因此预测控制不是某种统一理论的产物,而是在工业实践中逐渐发展起来的。预测控制中比较常见的三种算法是模型算法控制(MAC),动态矩阵控制(DMC)以及广义预测控制。本篇分别采用动态矩阵控制(DMC)、模型算法控制(MAC)进行仿真,算法稳定在消除稳态余差方面非常有效。 2、控制系统设计方案 2.1 动态矩阵控制(DMC)方案设计图 动态矩阵控制是基于系统阶跃响应模型的算法,隶属于预测控制的范畴。它的原理结构图如下图2-1所示: 图2-1 动态矩阵控制原理结构图 2.2 模型算法控制(MAC)方案设计图 模型算法控制(MAC)由称模型预测启发控制(MPHC),与MAC相同也适用于渐进

稳定的线性对象,但其设计前提不是对象的阶跃响应而是其脉冲响应。它的原理结构图如下图2-2所示: 图2-2 模型算法控制原理结构图 3、模型建立 3.1被控对象模型及其稳定性分析 被控对象模型为 (1) 化成s 域,g (s )=0.2713/(s+0.9),很显然,这个系统是渐进稳定的系统。因此该对象 适用于DMC 算法和MAC 算法。 3.2 MAC 算法仿真 3.2.1 预测模型 该被控对象是一个渐近稳定的对象,预测模型表示为: )()1()(?)(?1j k j k u z g j k y m ++-+=+-ε, j=1, 2, 3,……,P . (2) 这一模型可用来预测对象在未来时刻的输出值,其中y 的下标m 表示模型,也称为内 部模型。(2)式也可写成矩阵形式为: )1()()1(?-+=+k FU k GU k Y m 4 1 11 8351.012713.0)(-----=z z z z G

《材料成形技术基础》习题集答案

填空题 1.常用毛坯的成形方法有铸造、、粉末冶金、、、非金属材料成形和快速成形. 2.根据成形学的观点,从物质的组织方式上,可把成形方式分为、、 . 1.非金属材料包括、、、三大类. 2.常用毛坯的成形方法有、、粉末冶金、、焊接、非金属材料成形和快速成形作业2 铸造工艺基础 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O) 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×) 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O) 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。 A.减弱铸型的冷却能力; B.增加铸型的直浇口高度; C.提高合金的浇注温度; D.A、B和C; E.A和C。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适合于(D),而同时凝固适合于(B)。 A.吸气倾向大的铸造合金; B.产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D.产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A.采用同时凝固原则; B.提高型、芯砂的退让性; C.及时落砂; D.去应力退火。 4.合金的铸造性能主要是指合金的(B)、(C)和(G)。 A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.铸造应力;F.裂纹;G.偏析;H.气孔。

控制理论发展历史

控制理论发展历史综述 一:20世纪40年代末-50年代的经典控制理论时期,着重解决单输入单输出系统的控制问题,主要数学工具是微分方程、拉氏变换、传递函数;主要方法是时域法、频域法、根轨迹法;主要问题是系统的稳、准、快。 二:20世纪60年代的现代控制理论时期,着重解决多输入多输出系统的控制问题,主要数学工具是以此为峰方程组、矩阵论、状态空间法主要方法是变分法、极大值原理、动态规划理论;重点是最优控制、随即控制、自适应控制;核心控制装置是电子计算机。 三:20世纪70年代之后的先进控制理时期,先进控制理论是现代控制理论的发展和延伸。先进控制理论内容丰富、涵盖面最广,包括自适应控制、鲁棒控制、模糊控制、人工神经网络控制等。 经典控制理论 经典控制理论适用于单输入、单输出的线性定常(参数不随时间而变)系统。 发展过程 1.原始阶段 中国,两千年前我国发明的指南车:一种开环自动调节系统,它利用差速齿轮原理,利用齿轮传动系统,根据车轮的转动,由车上木人指示方向。不论车子转向何方,木人的手始终指向南方,“车虽回运而手常指南”。 2.起步阶段 人类社会发展,有一个点把人类社会的发展分成两大部分,那就是工业革命。18世纪中叶之前,不管你什么怎么划分人类社会也好(农业牧业手工业),社会的发展始终离不开人力,就是必须得有人亲自去做。18世纪中叶之后,机器的出现,使得以机器取代了人力,所以称之为革命。然后机器的出现变革了人类的整个历史,直至现代社会文明的如此进步。工业革命的开始的标志为哈格里夫斯发明的珍妮纺纱机,而工业革命的标志是瓦特改良蒸汽机,为什么扯这么多?如果机器不能控制,那和工具又有什么区别?所以工业革命的标志是瓦特改良蒸汽机。钱学森也在最新一版的工程控制论中提到技术革命。 1769年,控制思想首次应用于工业控制的是瓦特,发明用来控制蒸汽机转速的飞球离心控制器。以后人们曾经试图改善调速器的准确性,却常常导致系统产生振荡。 1868年以前,这一百年来,自动控制装置的设计还出于“直觉”阶段,没有系统的理论指导,因此在控制系统的各项性能(稳、准、快)的协调方面经常出现问题。实践中出现的问题,促使科学家们从理论上进行探索研究。19世纪后半叶许多科学家开始基于理论来研究控制。 1868年,麦克斯韦(J.C. Maxwell)通过对瓦特的调速器建立起线性常微分方程,解释了瓦特蒸汽机速度控制系统中出现的剧烈振荡的不稳定问题,提出了简单的稳定性代数判据,开辟了用数学方法研究控制系统的途径。 1877年,劳斯(E.J.Routh)提出了不直接求解系统微分方程的根的稳定性判据。 1895年,霍尔维茨(A.Hurwitz)也独立提出了类似的霍尔维茨稳定性判据。 他俩把麦克斯韦的思想扩展到高阶微分方程描述的更复杂的系统中,各自提出了直接根据代数方程的系数判别系统稳定性的准则两个著名的稳定性判据—劳斯判据和霍尔维茨判据。这些方法基本上满足了20世纪初期控制工程师的需要,奠定了经典控制理论中时域分析法的基础。 3.发展阶段 早期的控制的目的是防止不稳定,控制目的比较单一,于是劳斯和霍尔维茨的代数稳定判据在相当一个历史时期里基本满足了控制工程师的需要。直至二战前后,这种情况才发生了改变。战争的发生某种意义上也是有好处的,比如推动的科技的发展这方面。战争武器的 1 / 4

材料成型技术基础复习重点

材料成型技术基础复习重点-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1.1 1.常用的力学性能判据各用什么符号表示它们的物理含义各是什么 塑性,弹性,刚度,强度,硬度,韧性 1.2 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 1.3 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 1.4 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 1.5 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 1.6 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 1.8工程材料的发展趋势

据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 2.0材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 2.1 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。 铸件的宏观组织一般包括三个晶区:表面的细晶粒区、柱状晶粒区和内部等轴晶区。

材料成型技术基础复习重点资料讲解

材料成型技术基础复 习重点

1.1 1.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么? 塑性,弹性,刚度,强度,硬度,韧性 1.2 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 1.3 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 1.4 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 1.5 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 1.6 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。

通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 1.8工程材料的发展趋势 据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 2.0材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 2.1

材料成形技术及新材料

材料成形技术及新材料 ` 一、项目定义 项目名称:材料成形技术及新材料 项目所属领域:基础产业和高新技术 涉及的主要学科:材料加工工程(国家重点学科)、材料学、材料物理化学 项目主要研究方向: ●塑性精成形及模具CAD/CAE/CAM的集成 ●铸造合金新材料及其精密成形 ●汽车现代焊接成形与控制 ●纳米材料相变及组织与性能 ●功能新材料在塑性精成型中的应用 二、项目背景 1.项目建设意义 材料加工工程在先进制造技术中占有重要地位,是发展高新技术产业和传统工业更新换代的重要科学基础和共性技术。其中囊括高效、精密的加工工艺、装备和检测技术,低能耗、低成本产品的流程制造,集成、柔性、智 95

能化制造系统,是工程可持续发展与绿色制造体系的重要组成部分。 材料科学的基础研究为新材料、新技术提供理论基础,是现代国防、机械、汽车等支柱产业发展的共性基础。同时,材料科学基础研究揭示物质本质,促进成形新型材料,引导新型技术和行业,产生新的支柱产业。材料合成与加工新技术研究包含纳米结构材料和金属加工、聚合物加工、陶瓷加工、复合材料加工、快速凝固、超纯材料、近终型加工等各类合成与加工的基础研究。根据材料的服役效能来调整成份、组织、结构、进而对材料的制备工艺进行设计,将使材料在强韧性、抗摩擦、抗冲击、抗腐蚀等方面的性能大大提高,对材料科学的全面发展起关键促进作用。 吉林大学材料加工工程学科是国家重点学科,在师资队伍、人才培养、科学研究和设备条件等方面,居国内先进地位。以材料加工工程学科为核心,结合材料学、材料物理与化学,加强内涵建设、重视专业外延,强调团队精神,突出个性特色。力争跟住世界先进水平、缩小差距,在本学科群中的一些有相对优势的研究分支(金属塑性与超塑性、无模成形、变质铸造、纳米材料及应用和功能材料等)继续保持世界先进水平,对于我国在材料科学与工程领域实现教学和科研水平的跨越式发展有重要意义。 96

控制理论发展历史

控制理论发展历史 综述一: 20世纪40年代末-50年代的经典控制理论时期,着重解决单输入单输出系统的控制问题,主要数学工具是微分方程、拉氏变换、传递函数;主要方法是时域法、频域法、根轨迹法;主要问题是系统的稳、准、快。 二: 20世纪60年代的现代控制理论时期,着重解决多输入多输出系统的控制问题,主要数学工具是以此为峰方程组、矩阵论、状态空间法主要方法是变分法、极大值原理、动态规划理论;重点是最优控制、随即控制、自适应控制;核心控制装置是电子计算机。 三: 20世纪70年代之后的先进控制理时期,先进控制理论是现代控制理论的发展和延伸。 先进控制理论内容丰富、涵盖面最广,包括自适应控制、鲁棒控制、模糊控制、人工神经网络控制等。 经典控制理论适用于单输入、单输出的线性定常(参数不随时间而变)系统。 发展过程 1.原始阶段中国,两千年前我国发明的指南车: 一种开环自动调节系统,它利用差速齿轮原理,利用齿轮传动系统,根据车轮的转动,由车上木人指示方向。 不论车子转向何方,木人的手始终指向南方,“车虽回运而手常指南”。 2.起步阶段人类社会发展,有一个点把人类社会的发展分成两大部分,那就是工业革命。

18世纪中叶之前,不管你什么怎么划分人类社会也好(农业牧业手工业),社会的发展始终离不开人力,就是必须得有人亲自去做。 18世纪中叶之后,机器的出现,使得以机器取代了人力,所以称之为革命。 然后机器的出现变革了人类的整个历史,直至现代社会文明的如此进步。 工业革命的开始的标志为哈格里夫斯发明的珍妮纺纱机,而工业革命的标志是瓦特改良蒸汽机,为什么扯这么多?如果机器不能控制,那和工具又有什么区别?所以工业革命的标志是瓦特改良蒸汽机。 钱学森也在最新一版的工程控制论中提到技术革命。 1769年,控制思想首次应用于工业控制的是瓦特,发明用来控制蒸汽机转速的飞球离心控制器。 以后人们曾经试图改善调速器的准确性,却常常导致系统产生振荡。 1868年以前,这一百年来,自动控制装置的设计还出于“直觉”阶段,没有系统的理论指导,因此在控制系统的各项性能(稳、准、快)的协调方面经常出现问题。 实践中出现的问题,促使科学家们从理论上进行探索研究。 19世纪后半叶许多科学家开始基于理论来研究控制。 1868年,麦克斯韦(J. C.Maxwell)通过对瓦特的调速器建立起线性常微分方程,解释了瓦特蒸汽机速度控制系统中出现的剧烈振荡的不稳定问题,提出了简单的稳定性代数判据,开辟了用数学方法研究控制系统的途径。 1877年,劳斯( E.J.Routh)提出了不直接求解系统微分方程的根的稳定性判据。 1895年,霍尔维茨(

相关主题
文本预览
相关文档 最新文档