当前位置:文档之家› 材料笔记

材料笔记

材料笔记
材料笔记

笔记

绪论

一、生物医用材料定义

广义的生物材料:一是指用于生物体内的材料,达到治疗康复的目的,例如隐形眼镜、人工髋关节;二是指来源于生物体,可能用于或不再用于生物体内(这种不是本课程研究对象),例如动物皮革用于服装。

生物医用材料明确的定义:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。生物医用材料本身并不必须是药物,而是通过与生物机体直接结合和相互作用来进行治疗。

另一种说法是:生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。

二、生物医用材料的分类:由于生物材料应用广泛,品种很多,所以会有不同角度的分类。

按材料的传统分类法分为:

(1)合成高分子材料(如聚氨酯、聚酯、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物)

(2)天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖)

(3)金属与合金材料(如钛及钛合金)

(4)无机材料(如生物活性陶瓷、羟基磷灰石)

(5)复合材料(如碳纤维/聚合物、玻璃纤维/聚合物)

按材料的医用功能分为:

(1)血液相容性材料

(2)软组织相容性材料

(3)硬组织相容性材料

(4)生物降解材料

(5)高分子药物

三、生物医用材料的研究现状

四、当前研究比较活跃的生物材料主要有:

(1)高抗凝血

生物活性陶瓷及玻璃材料

钛及钛合金、钛镍记忆合金

生物活性缓释材料及靶向药物载体材料

生物粘合剂

可生物降解与可吸收性生物材料

智能与杂化材料

血液净化材料

五、生物医用材料的研究方向

(1)生物相容性的分子设计学研究,重点研究材料的一次结构及表面高次结构与活体的组织相容性、血液相容性及体内耐老化性的关系,深入探讨生物材料分子设计的理论与方法,并用于指导新材料的开发。

(2)血液相容性材料研究,特别是对仿肝素结构材料和表面生物化处理材料的研究。

(3)生物膜材料的研究,重点是人工肺膜用气体透析材料,血液净化用透析膜、超滤膜尤其

是可分离分子物质的透析膜材料。

(4)缓释材料研究,重点是研究植入型可吸收性缓释材料及生物粘附型缓释材料。

(5)天然生物材料中再生胶原及弹性纤维蛋白的稳定化和增强处理方法、甲壳素和透明质酸代替物的应用研究。

(6)生物陶瓷和生物玻璃材料研究

(7)医用钛及钛合金、镍钛合金材料表面与体液相互作用机理和生化反应及金属表面生物惰性化处理方法的研究。

(8)生物材料表面修饰学的研究

(9)生物材料的生物相容性表征及评价方法的研究

(10)生理活性材料、仿生材料、智能材料、生物/合成杂化材料的研究

(11) 生物降解/吸收的调控机制研究。

(12) 生物结构和生物功能的设计和构建原理研究。

(13) 继续筛选现有或新出现的材料,注意材料结构与性能关系的研究

专题1、生物医用材料的生物相容性及其生物学评价

生物医用材料必须具备优良的生物相容性才能被人体接受,保证临床使用的安全性。第一节、生物相容性概念和原理

生物医用材料必须对人体无毒、无致敏、无刺激、无遗传毒性、无致癌性,对人体组织、血液、免疫等系统不产生不良反应。材料的生物相容性是生物医用材料研究设计中首先考虑的重要问题。

生物医用材料与组织、细胞、血液接触时,会产生各种反应,(包括宿主反应(即机体生物学反应)和材料反应)

多数医用材料植入体内以后,物理的化学的性状会变化。引起生物医用材料变化的因素有:

(1)生理活动中骨路、关节、肌肉的力学性动态运动;

(2)细胞生物电、磁场和电解、氧化作用:

(3)新陈代谢过程中生物化学和酶催化反应;

(4)细胞粘附吞噬作用:

(5)体液中各种酶、细胞因子、蛋白质、氨基酸、多肽、自由基对材料的生物降解作用。

另一方面,医用材料植入人体后,机体会发生三种生物学反应:组织反应、血液反应和免疫反应。引起生物体反应的因素有:

(1)材料中残留有毒性的低分子物质;

(2)材料聚合过程残留有毒性、刺激性的单体;

(3)材料及制品在灭菌过程中吸附了化学毒剂和高温引发的裂解

(4)材料和制品的形状、大小、表面光滑程度

(5)材料的酸碱度。

生物相容性的分类

生物医用材料的生物相容性分为两类:

若材料用于心血管系统与血液直接接触,主要考察与血液的相互作用,称为血液相容性;

若与心血管系统外的组织和器官接触,主要考察与组织的相互作用,称为组织相容性或一般生物相容性。

所有医用材料和装置都将首先遇到组织相容性问题(即便是人工心血管系统),所以叫做一般生物相容性。

第二节组织相容性

在组织相容性中,人们最关心的两个问题是材料与炎症和材料与肿瘤。

于是就可能有下述三种情况:

毒性反应、包绕反应、活性反应

因此有评价软组织相容性的方法:包绕层的厚薄以及其中毛细血管的数量,可以反映材料的生物相容性高低。

影响医用材料生物相容性的因素:

1. 材料的化学成分;

2. 表面的化学成分;

3. 形状和表面的粗糙度:

生物医用材料与炎症

造成细菌性感染的原因有以下几点:

(1)植入手术过程中对皮肤和组织造成损伤体内组织的机会;

(2)植入生产过程中已被细菌污染的材料和制品或无菌材料已被污染;

(3)植入材料能抑制体内的抗炎防御系统的反应性。增加了局部组织易感染性;

(4)植入材料能抑制和吸附补体C3a、C5a,增加多核白细胞在植入物附近局部组织中的数量,使抑制局部炎症反应的能力减弱。

生物医用材料诱发肿瘤可能与下列因素有关:

(1)引起肿瘤的原因与植入材料的外形有明显的相关性。

(2)与植入材料的埋植方法有关。

(3)与植入材料表面的租糙程度有关。

(4)被致癌物污染的材料或生物老化时能释放致癌物的材料,植入动物体内能诱发恶性肿瘤

(5)与植入材料在体内形成的纤维包膜厚度有关。

(6)材料中残留的有毒或刺激性的小分子物质使局部组织长期受毒或受刺激,可诱发恶性肿瘤。

要消除生物医用材料及医用装置的潜在致癌性,材料不能残留有毒、有刺激性的小分子物质溶出;植入物的外形、表面性质和植入的方式均应避免出现可能诱发肿瘤的有关因素;对长期植入体内的医用材料和装置应进行慢性毒性和致突变、致癌的生物学评价试验,在分子水平上研究材料对基因DNA、细胞染色体的影响。

高分子材料在体内的表面钙化

高分子材料在植入人体内后,经过一段时间,会出现钙化合物在材料表面沉积的现象,即钙化现象。一般而言,材料植入时,被植个体越年青,材料表面越可能发生钙化。多孔材料的钙化情况比无孔材料要严重。

第三节血液相容性

生物材料对血液影响主要有以下几方面:

a) 血小板激活、聚集、血栓形成;

b) 凝血系统和纤溶系统激活、凝血机能增强、凝血系统加快、凝血时间缩短;

c) 红细胞膜破坏、产生溶血;

d) 白细胞减少及功能变化;

e) 补体系统的激活或抑制;

f) 对血浆蛋白和细胞因子的影响。

影响血液相容性的因素:

1. 材料表面光洁度:表面越粗糙,暴露在血液上的面积就越大,凝血的可能性就增大。

2. 表面亲水性:亲水性材料比疏水性材料有更好的血液相容性。

3. 表面带电性:表面带负电的材料具有更好的血液相容性。

目前使用较多的抗凝血的表面:

1. 肝素表面。肝素是一种糖。

2. 低温裂解碳。

3. 二氧化钛表面,氧化钽表面。

凝血过程:

血液在受到下列因素影响时,都可能发生血栓:①血管壁特性与状态发生变化;②血液的性质发生变化;③血液的流动状态发生变化。

改变材料表面的性能或结构有助于提高材料的血液相容性。

生物医用材料与血小扳

当血小板与进入血管内的材料接触时,血小板会被激活。由于血液分子细胞学的发展,已在分子水平上搞清了血小板激活、粘附、聚集、释放反应。

生物医用材料与补体系统

补体(complement)是血液中的一群蛋白质。是存在于正常人和动物血清与组织液中的一组经活化后具有酶活性的蛋白质。一般认为补体在机体抵御感染中起重要作用。

补体激活对机体产生下面的影响:

(1)可引起患者过敏症状。

(2)在透析时观察到患者有血氧下降或低血压现象。

(3)C3b将引起白细胞在材料表面粘附,促进血小板聚集,参与血栓的形成。

(4)出现慢性并发症,如易感染、恶性肿瘤发生率增加、软组织钙化,特别是肺泡细胞纤维化、钙化及动脉硬化。

(5)植入物的表面拈附大量的白细胞,是由于C3b结合在材料表面,起到白细胞在材料表面粘附的调理作用。

第四节、生物医用材料的生物相容性评价

1、生物学评价项目的选择:

具体有如下几点:

(1)接触部位有体表和体内组织、骨骼、牙齿、血液;

(2)接触方式有直接接触和间接接触;

(3)接触时间是:暂时接触小于24小时,中短期接触长于24小时至30日,长期接触长于30日;

(4)用途:一般的功能、生殖与胚胎发育及生物降解;

2、美国ASTM(F748-82)标准生物学评价项目选择表

3、美、英、加拿大三国的标准

1986年美国、英国和加拿大三国生物学评价学者达成协议,提出一个新的比较完善的生物材料和医用装置生物学评价项目选择指南。

4、ISO生物学评价标准

5、我国的生物学评价试验选择标准:

第五节骨组织反应

用于骨修补和骨替代的材料除了用软组织反应的宿主反应来评价其生物相容性外,还应具备一些特殊的生物学性能:骨生物活性、骨诱导性、骨传导性:

1、骨生物活性:

如果植入骨组织的材料界面上不存在结缔组织层,而是羟基磷灰石层,这样的材料被认为是具有生物活性。体外浸泡方法常常被用作快速评价材料生物活性的一种方法。

2、骨诱导性:

具有骨诱导性的材料,当其被植入在软组织中时,也能在其表面生长出骨组织。

3、骨传导性:

只能在骨组织中,促进骨细胞在材料表面生长并沉积羟基磷灰石的材料,骨传导性不是骨诱导性。

4、影响骨相容性的因素:

材料化学性质,尤其是表面的化学性质;材料的表面粗糙度,

5、评价骨相容性的参数:

专题2 组织工程材料与人工器官---软组织修复与重建

组织工程是指用生命科学与工程的原理构建一个生物装置来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。

组织工程的基本原理和方法

组织工程三要素:种子细胞、支架材料、生长信息分子

二、组织工程材料—软组织修复与重建

1、组织工程材料应具备的条件

(1)材料能够促进组织的生长,使细胞之间能够沟通,并最大限度地获取营养物、生长因子和活性药物分子;

(2)在某些场合能防止细胞激活(如外科手术、防粘连的场合);

(3)指导和控制组织的反应(促进某一组织反应,抑制其他反应)

(4)促进细胞粘附及激活细胞(皮肤修复中成纤维细胞的粘附和增殖)

(5)抑制细胞的粘附和激活细胞(防止血小板粘附在血管上):

(6)防止某一生物反应的攻布(在器官移植中,阻止抗体攻击同种或异种细胞)。

(7)易于加工成三维多孔支架:

(8)支架要有一定力学强度以支持新生组织的生长,并待成熟后能自行降解;

(9)低毒、无毒、可消毒;

(10)能够释放药物或活性物质如生长激素等。

2、生物降解材料:生物降解材料通常分为天然生物降解材料与合成生物降解材料。

天然生物降解材料:与细胞的相容性比较好

1)Ⅰ型胶原

2)氨基葡聚糖

3)壳聚糖

4)聚羟基烷基酸酯

5)发展中的可降解材料

3、合成生物降解材料

合成降解材料则具有强度高、来源充足、易于加工等优点,被广泛应用于组织工程领域。聚羟基乙酸及其共聚物

2)聚ε-己内酯

3)聚原酸酯和聚酐

4)聚磷腈

5)聚氨基酸

4、组织引导材料

5、组织诱导材料

6、组织隔离材料

以下介绍组织工程支架的几种制备方法:

1)纤维连结法

2)溶剂浇铸和孔隙制取法

3)层压膜法

4)熔融膜压法

5)纤维增强法

6)相分离法

7)原位聚合法

四、细胞与材料的界面反应

1、细胞与材料界面反应的评价方法

1)细胞的粘附和扩散

最简单的测定方法分三步:

①将细胞分散到聚合物表面;

②进行细胞培养;

③在一定作用力下脱附那些贴附较弱的细胞,最后统计贴壁的细胞数。

2)细胞的迁移

3)细胞的聚集

4)细胞的功能

2、材料化学表面对细胞的影响

聚合物表面的化学组成对细胞的贴附和扩散有重要影响。

3、降解材料及一般聚合物表面修饰对细胞的影响

4、材料物理表面对细胞的影响

植入体微观形态对细胞生长有重要影响。

5、细胞与悬浮聚合物的影响

在组织工程中,有时需要贴壁细胞附着在聚合物微载体上:在人工肝支持装置中,微载体的表面性质对细胞生长具有重要影响。

组织工程另一重要研究领域是将细胞悬浮在微囊里,用囊膜来保护细胞不受抗体的攻击,这一方法己用于人工胰。

五、组织与细胞的微环境

它们之间的相互作用决定了细胞的定位、迁移和生长,组织微环境主要涉及三个方面,即:细胞要素、可溶性生长因子、胞外基质。

六、组织工程中的人工器官

组织工程可以分为两个方面:

第一方面,在体外用分离的细胞建造人工组织;

第二方面,在体内调整细胞的生长和功能,例如植入聚合物导管促使损伤的神经细胞生长并连接。

人工皮肤

2、人工肝支持装置

3、人工血液

人工神经

5、人工血管

6、人工胰

7、组织工程材料研究方向探讨

近年来组织工程的发展对医用材料提出了更高的要求:材料不应只是“惰性”植入体,还要能引导和诱导细胞组织器官修复再生。

专题3 硬组织修复与骨组织工程材料

一、生物活性陶瓷

生物活性陶瓷,是指能与活体骨组织、活体软组织形成化学键合的陶瓷材料。典型的生物活性陶瓷主要包括两类:一类是生物活性玻璃和玻璃陶瓷,另一类是磷酸钙基生物陶瓷。

1、生物活性玻璃陶瓷及其骨键合机制

1)生物活性玻璃

2)生物活性玻璃与骨的键合机制

玻璃陶瓷与活体骨组织键合,是通过在体内环境中玻璃陶瓷表面形成的磷灰石层实现的,玻璃陶瓷体相中的磷灰石相在键合形成中不起作用。在体内环境中形成表面磷灰石相,是通过玻璃陶瓷体相中的硅灰石和玻璃相降解,释放的Ca2+和HSIO3-间的反应完成的。

3)生物活性玻璃陶瓷

2、羟基磷灰石生物活性陶瓷及其骨键合

1)羟基磷灰石和磷灰石

2)羟基磷灰石生物活性陶瓷

3)HA生物活性陶瓷的生物学性能及其与骨键合

3、可降解生物陶瓷及其降解机制

材料的生物降解是指在生命体系中材料从形态上由整体分化成部分和化学成分上由复杂变成简单的过程。可降解生物陶瓷是一种暂时性的替代材料。

降解机制:可降解生物陶瓷植入体内后,将被体液溶解和组织吸收而导致解体。其生物降解和吸收通过下述机制进行:

(1)生理化学溶解(2)物理解体

(3)生物因素的作用主要是细胞介导过程,如吞噬或迁移被解体的陶瓷颇粒。

4、磷酸钙基骨水泥

5、生物活性陶瓷复合增强

二、钛合金的表面生物活化

1、医用全属表面生物活化原理

骨替换材料植入体内后,与骨组织的结合方式分为形态固定、生物固定、骨键合。后者也称生物活性结合。

上述各种方法的应用主要归纳为两类:

(I)在医用金属材料表面涂覆HA或其他磷酸盐涂层;

(2)针对钛和钛合金进行特有的生物活化处理,即在钛表面制备活性二氧化钛层。

三、金属植入材料的功能涂层

1、等离子喷涂羟基磷灰石涂层及其作用

2、电化学沉积磷酸钙涂层方法

1)电泳沉积

2)电化学结晶法

3)阳极氧化法:以待处理的金属为阳极,在—定组成的电解液中制备阳极氧化膜。

3、多孔钛涂层和生物固定

1)多孔钛涂层的种类

2)多孔钛涂层的生物固定作用

四、聚台物基骨替换复合材料

1、纤维增强高分子复合材料

2、钙磷增强高分子复合材料

五、骨衍生材料

由于天然骨具有优异的生物、力学等多种特性,合成材料难以全面满足要求。

1、骨支架材料

2、骨基质材料

1)脱钙骨基质(DBM)

2)脱蛋白骨基质

3)重组合异种骨基质

6、骨组织工程

骨组织工程,利用工程和生命科学的原理与方法,再生新的骨组织,以修复、替代病变缺损骨组织,或增进其功能的技术。

采用组织工程的方法构建新的骨组织,或恢复病变骨组织的功能,通常有三条以下途径:

(1)在生物材料支架上种植细胞,在体内或体外培养活体组织,随后将它们植入缺损或病变的部位;

(2)将骨生长生物化学信号分子(如生长因子)与控释载体材料复合,植入体内,诱导间充质细胞向成骨细胞分化,进而再生新骨;

(3)将骨组织细胞及其他生物活性物质,注入或移植到病变或骨缺损部位,以恢复病变组织功能,或再生新骨。

1、骨生长因子及其与支架材料的复合

1)骨生长因子概述

2)骨形态发生蛋白(BMP)

3)BMP复合材料

2、骨诱导材料及骨诱导材料体内成骨

1)骨诱导和骨传导

2)磷酸钙生物材料诱导成骨作用的机理

发生骨诱导必须满足三个条件:

①存在可分化为成骨细胞的间无质细胞(即靶细胞);

②存在引导问充质细胞向成骨细胞分化的生物化学信号,如骨生长因子;

③适当的成骨环境。

3、骨组织的三维立体培养及组织工程化骨替换材料

1)骨组织细胞的三维立体培养

2)骨组织工程支架材料

3)软骨的三维培养

4、软骨和骨组织工程进展

专题4 生物医用材料表面改性

生物材料必须具有良好的生物相容性:不引起生物体发生毒性、致敏、炎症、致癌、血栓等的不良生物反应。

生物相容性取决于材料表面性质:材料表面成分、表面结构、表面形貌、表面能量状态、表面亲水性、表面电荷、表面导电性等。

一、表面形貌与生物相容性

表面平整光洁的材料与组织接触一段时间,周围形成的是一层较厚的、与材料没有结合的包裹组织。这种包裹组织由成纤维细胞平行排列而成,容易形成炎症和肿瘤。

控制材料表面的粗糙化主要合以下方法:

(1)用精密的机械加工方法在材料表面加工出约500μm尺寸的螺线、台阶和孔;

(2)用微机械和微刻蚀技术获得3μm-10μm深度且距离和形状均可精确控制的粗糙表面;

(3)用等离子体喷涂复型方法、离子束轰击方法,获得精确的表面显微形貌。

二、生物医用材料的表面修饰

制备出类似于生物体的表面结构,称为表面修饰。进行表面修饰有以下几种方法:

1)种植内皮细胞

2)涂布白蛋白涂层

3)聚氧化乙烯表面接枝

4)磷脂基团表面

三、等离子体表面改性

等离子体表面改性有三种类型:等离子体表面聚合、等离子体表面处理、等离子体表面接枝。

四、离子注入表面改性

五、表面涂层与薄膜合成

生物材料表面合成薄膜有两类,陶瓷薄膜和高分子薄膜。

1)生物陶瓷涂层

2)低温液相沉积

3)气相沉积

4)离子束薄膜合成

5)溶胶凝胶方法

原理:金属的烃基氧化物,在乙醇等挥发性溶液中,在酸催化剂作用下,水解,形成含有金属氧化物的薄膜,再加热处理形成晶态薄膜。

六、自组装单分子层

专题5 生物玻璃

生物玻璃的最大优点是具有很高的生物活性,快速与骨组织结合;但它的缺点是强度太低,目前仅用于涂层、颗粒和不受力的场合。

生物玻璃是软的玻璃,最后的形状尺寸由机械加工得到。

生物玻璃与骨组织结合的原理

生物玻璃与骨组织化学结合的本质是在体液中的化学反应,在生物玻璃表面发生的反应导致生成羟基磷灰石层,羟基磷灰石层则可直接与骨发生结合。

专题6 生物医用复合材料的研究进展及趋势

一、概述

定义:生物医用复合材料是由两种或两种以上的不同材料复合而成的生物医用材料,它主要用于人体组织的修复、替换和人工器官的制造。

为什么要复合:利用不同性质的材料复合而成的生物医用复合材料,不仅兼具组分材料的性质,而且可以得到单组分材料不具备的新性能。

生物医用复合材料组分材料的选择要求:

生物医用复合材料根据应用需求进行设计:基体材料+增强材料或功能材料。

复合材料的性质取决于组分材料的性质、含量、组分间的界面。

生物医用组分材料必须满足下面几项要求:

(1)具有良好的生物相容性和物理相容性,保证材料复合后不出现有损生物学性能的现象;

(2)具有良好的生物稳定性,材料的结构不因体液作用而有变化,同时材料组成不引起生物体的生物反应;

(3)具有足够的强度和韧性,能够承受人体的机械作用力,所用材料与组织的弹性模量、硬度、耐磨性能相适应,增强体材料还必须具有高的刚度、弹性模量和抗冲击性能;

(4)具有良好的灭菌性能,保证生物材料在临床上的顺利应用。

(5)生物材料要有良好的成型、加工性能,不因成型加工困难而使其应用受到限制。

二、生物医用复合材料的种类

1、陶瓷基生物医用复合材料

陶瓷基复合材料是以陶瓷、玻璃或玻璃陶瓷基体,通过引入颗粒、晶片、晶须、纤维等增强体材料或者生物活性材料而获得的一类复合材料。

2、高分子基生物医用复合材料

3、金属基生物医用复合材料

金属材料与机体的亲和性、生物相容性较差,在体液中存在材料腐蚀、渗出离子等问题。

三、生物医用复合材料的研究趋势与展望

1、整体材料性能按梯度变化

2、生物医用复合材料研究与生物材料的生理活化研究相结合

3、生物医用复合材料研究与仿生材料研究相结合

4、生物医用复合材料研究与组织工程材料研究相结合

专题7 人工心瓣膜

机械式瓣膜的特点:

(1)使用寿命长,适合年轻的患者使用;

(2)尽管瓣膜涂层有较好的血液相容性,但是瓣膜的抗凝血能力仍然低,患者需要长期服用抗凝血药物以抵抗表面凝血。

生物瓣膜的特点和适应症:

(1) 生物瓣膜使用寿命较短,血液回流比机械瓣大;

(2) 相对来讲,生物瓣膜抗凝血性能优于机械瓣,因此适合于年老的患者,或不能长期服用抗凝血药物的患者。

机械式瓣膜材料选用金属钛、聚合物、碳纤维等制作,表面有涂层。

生物瓣膜用猪或牛心包,采用生物固定技术,经交联处理后制得。固定交联剂一般采用戊二醛。因此存在戊二醛渗出的毒性问题和寿命短问题,优点是生物相容性优于机械式瓣膜的涂层,不用服抗凝血药物,适合于老年人。

生物瓣膜质量的关键是交联。

机械式瓣膜需要进一步开发优良涂层,生物瓣膜需要更好的交联剂,第三个方向就是用组织工程制备心脏瓣膜。

专题8 纳米的小尺寸效应

随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。

(1 )特殊的光学性质

(2 )特殊的热学性质

(3 )特殊的磁学性质

(4 )特殊的力学性质

超微颗粒的小尺寸效应还表现在超导电性、介电性能、声学特性以及化学性能等方面。

《材料科学基础》经典习题及答案全解

材料科学与基础习题集和答案 第七章回复再结晶,还有相图的内容。 第一章 1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001 等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。 4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3 Mg/m 74.1=m g ρ,相对原子质量为24.31,原子半径r=0.161nm 。 5.当CN=6时+Na 离子半径为0.097nm ,试问: 1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少? 6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的 (100),(110)及(111)平面上12mm 中各有多少个原子。 8. 石英()2SiO 的密度为2.653Mg/m 。试问: 1) 13 m 中有多少个硅原子(与氧原子)? 2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)? 9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移 动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/ 原子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

(完整word版)行测总结笔记 学霸笔记 必过

现在开始 资料分析 之所以把资料分析放在第一,是因为本人以前最怕资料分析不难但由于位于最后,时间紧加上数字繁琐,得分率一直很低。而各大论坛上的普遍说法是资料分析分值较高,不可小觑。有一次去面试,有个行测考90分的牛人说他拿到试卷先做资料分析,我也试过,发觉效果并不好,细想来经验因人而议,私以为资料分析还是应该放在最后,只是需要保证平均5分钟一篇的时间余量,胆大心细。 一、基本概念和公式 1、同比增长速度(即同比增长率)=(本期数-去年同期数)/去年同期数x100% =本期数/去年同期数-1 显然后一种快得多 环比增长速度(即环比增长率)=(本期数-上期数)/上期数=本期数/上期数-1 2、百分数、百分比(略) 3、比重(略) 4、倍数和翻番 翻番是指数量的加倍,翻番的数量以2^n次变化 5、平均数(略) 6、年均增长率 如果第一年的数据为A,第n+1年为B 二、下面重点讲一下资料分析速算技巧 1、a=b÷(1+x%)≈b×(1-x%)结果会比正确答案略小,记住是略小,如果看到有个选项比 你用这种方法算出来的结果略大,那么就可以选;比它小的结果不管多接近一律排除; x越小越精确 a=b÷(1-x%)≈bX(1+x%)结果会比正确答案略小,x越小越精确 特别注意: ⑴当选项差距比较大时,推荐使用该方法,当差距比较小时,需验证 ⑵增长率或者负增长率大于10%,不适用此方法 2、分子分母比较法 ⑴分子大分母小的分数大于分子小分母大的分数 ⑵差分法★ 若其中一个分数的分子和分母都大于另外一个分数的分子和分母,且大一点点时,差分法非常适用。 例:2008年产猪6584头,2009年产猪8613头,2010年产猪10624头,问2009与2010哪一年的增长率高 答:2009增长率8613/6584-1 ,2010增长率10624/8613-1,-1不用看,利用差分法

材料力学笔记(第四章)(可编辑修改word版)

材料力学(土)笔记 第四章弯曲应力 1.对称弯曲的概念及梁的计算简图 1.1弯曲的概念 等直杆在包含其轴线的纵向平面内,承受垂直于杆轴线的横向外力或外力偶作用时 杆的轴线将变成曲线,这种变形称为弯曲 凡是以弯曲为主要变形的杆件,通称为梁 工程中常见的梁,其横截面都具有对称轴 若梁上所有的横向外力或(及)力偶均作用在包含该对称轴的纵向平面(称为纵对称面)内,由于梁的几何、物性和外力均对称于梁的纵对称面,则梁变形后的轴线必定是在该纵对称面内的平面曲线,这种弯曲称为对称弯曲 若梁不具有纵对称面,或者,梁虽然具有纵对称面但横向力或力偶不作用在纵对称面内,这种弯曲统称为非对称弯曲 1.2梁的计算简图 梁的计算简图可用梁的轴线表示 梁的支座按其对梁在荷载作用平面的约束情况,通常可简化为以下三种基本形式 ①固定端 这种支座使梁的端截面既不能移动,也不能转动 对梁端截面有3 个约束,相应地,就有3 个支反力,即水平支反力F Rx ,铅垂支反力F Ry 和支反力偶矩M R ②固定铰支座 这种支座限制梁在支座处沿平面内任意方向的移动,而不限制梁绕铰中心转动,相应地,就有2 个支反力,即水平支反力F Rx 和铅垂支反力F Ry ③可动铰支座 这种铰支座只限制梁在支座处沿垂直于支承面的支反力F R 如果梁具有1 个固定端,或具有1 个固定铰支座和1 个可动铰支座 则其3 个支反力可由平面力系的3 个独立的平衡方程求出,这种梁称为静定梁 工程上常见的三种基本形式的静定梁,分别称为简支梁、外伸梁和悬臂梁 梁的支反力数目多于独立的平衡方程的数目,此时仅用平衡方程就无法确定其所有的支反力,这种梁称为超静定梁 梁在两支座间的部分称为跨,其长度称为梁的跨长 常见的静定梁大多是单跨的 2.梁的剪力和弯矩·剪力图和弯矩图 2.1梁的剪力和弯矩 为计算梁的应力和位移,应先确定梁在外力作用下任一横截面上的内力 当作用在梁上的全部外力(包括荷载和支反力)均为已知时,用截面法即可求出其内力 梁的任一横截面m-m,应用截面法沿横截面m-m 假想地吧梁截分为二 可得剪力F S ,弯矩M 剪力和弯矩的正负号规定 dx 微段有左端向上右端向下的相对错动时,横截面m-m 上的剪力F 为正,反之为负 S dx 微段的弯曲为向下凸,即该段的下半部纵向受拉时,上半部纵向受压时,横截面上的弯矩为正,反之为负 为简化计算,梁某一横截面上的剪力和弯矩可直接从横截面任意一侧梁上的外力进行计算,即

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

资料分析报告笔记整理好

资料分析笔记整理 一.资料分析基础概念与解题技巧 1.资料分析核心运算公式 2.资料分析常用基本概念 3.资料分析速算技巧 二.资料分析高频高点梳理 1.ABR类问题 2.比重类问题 资料分析基础概念与解题技巧 一、基期、本期 基期,表示的是在比较两个时期的变化时,用来做比较值(基准值)的时期,该时期的数值通常作为计算过程中的除数或者减数; 本期,相对于基期而言,是当前所处的时期,该时期的数值通常作为计算过程中的被除数或者被减数。 【注】和谁相比,谁做基期。 二、增长量、增长率(增长速度、增长幅度) 增长量,表示的是本期与基期之间的绝对差异,是一绝对值。 增长率,表示的是末期与基期之间的相对差异,是一相对值。 增长率=增长速度(增速)=增长幅度(增幅) 【注】在一些“最值”比较题的题干表述中,经常出现“增加(长)最多”和“增加(长)最快”,我们需要注意,前者比较的是增长量,而后者则比较的是增长率。 三、同比、环比 同比和环比均表示的是两个时期的变化情况,但是这两个概念比较的基期不同。同比,指的是本期发展水平与历史同期的发展水平的变化情况,其基期对应的是历史同期。 环比,指的是本期发展水平与上个统计周期的发展水平的变化情况,其基期对应的是上个统计周期。 【注】环比常出现在月份、季度相关问题。 四、公式运用与练习 资料分析的考察离不开对于两个时期的数值的比较,由此得出四个概念,

即基期(A),本期(B),增长率(R),增长量(X)。 增长量=基期量*增长率=本期量-基期量=本期量-本期量/1+增长率 增长率=增长量/基期量=(本期量-基期量)/基期量=本期量/基期量-1 本期=基期+增长量=基期+基期*增长率=基期*(1+增长率) 基期=本期-增长量=本期/1+增长率 【习题演练】 【例一】2012年1-3月,全国进出口总值为8593.7亿美元,同比增长7.3%,其中:出口4300.2亿美元,增长7.6%;进口4293.6亿美元,增长6.9%。3月当月,全国进出口总值为3259.7亿美元,同比增加216亿美元,其中:出口1656.6亿美元,增长135.4亿美元;进口1603.1亿美元,增长5.3%。 1、2011年一季度,全国进出口总值约为多少? 2、2012年一季度,全国出口额同比增长多少? 3、2011年三月份,全国进出口总值约为多少? 4、2012年三月份,全国出口总值同比增速约为多少? 【注】进出口相关问题,为资料分析中的一个易错点,注意题目中进出口、进口、出口的表述,注意进出口量与进出口额的不同,理解顺差、逆差的含义 出口-进口=顺差,反之则是逆差 2、资料分析常用基本概念 一、百分数、百分点 百分数,表示的是将相比较的基期的数值抽象为100,然后计算出来的数值,用“%”表示,一般通过数值相除得到,在资料分析题目常用在以下情况:(1)部分在整体中所占的比重;(2)表示某个指标的增长率或者减少率。 百分点,表示的是增长率、比例等以百分数表示的指标的变化情况,一般通过百分数相减得到,在资料分析题目常用在以下情况:(1)两个增长率、比例等以百分数表示的数值的差值;(2)在A拉动B增长几个百分点,这样的表述中。【例1】2010年,某省地区生产总值达到6835.7亿元,比去年同期增长14.9%。其中,第一产业增加值为483.5亿元,比去年同期增长25.8%,第二产业增加值为2985.6亿元,同比增长12.5%。 1、2010年,该省第一产业增加值占地区生产总值的比重为()。A.12.63% B.12.63个百分点 C.7.07% D.7.07个百分点 2、2010年,该省第一产业增加值同比增速比第二产业增加值增速高()。A.13.3% B.13.3个百分点 C.14.3% D.14.3个百分点 二、倍数、翻番 倍数,指将对比的基数抽象为1,从而计算出的数值。 翻番,指数量的加倍,如:如果某指标是原来的2倍,则意味着翻了一番,是原来的4倍,则意味着翻了两番,依此类推。所用的公式为:末期/基期=2n,即翻了n番。 【注】注意“超过N倍”“是xx的N倍”两种说法的区别。超过N倍,说明是基数的N+1倍。

材料科学基础考研经典题目doc资料

材料科学基础考研经 典题目

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18.为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19.在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样 条件下,单相固溶体合金凝固的形貌又如何?分析原因

公务员考试行测资料分析状元笔记

2017年公务员考试行测资料分析状元笔记通用阅读——上看标题,下看注释,中间看时间,单位(重点) 1文字性材料——难的是阅读(结构阅读是重点) 文字性材料阅读结构和中心 结构几段落——总分和并列—并列部分找中心词(圈点标点,括号标结构,圈标中心词)无结构小段,就仔细阅读,创造结构(圈点标点,标点暗示结构,括号标结构,圈标中心词)无结构大段,就直接读题—找两个关键词——区分性(平均气温),明显性(符号数字字母,例如括号,摄氏度,顿号之类的)——2007年底比2007年更合适 多个题目涉及同一个关键词的,可以一起做 2表格型材料——难的是计算 阅读横标目和纵标目 分清合计和项目和地区 3图形型材料——难的是理解 饼状图——看周围类别名称(包括大小的排名要心中有印象) 柱状趋势图——看横轴和纵轴(要注意两个纵轴的分别对应柱状和点) 柱状分两种:一种是绝对值(高低差异),一种是比例(高低相同,柱状分几个部分) 4统计术语(不是重点) 增长率是属于后一年(所以第一年的增长率是算不出来的) 前一年的总量=后一年除以(1+增长率)后一年除以(1-增长率) 增长率的对比(很容易会出隔两年的总量,倒推2次):增长率增长或降低了5个百分点(直接加减) 乘以2看成除以5 乘以5看成除以2 乘以25看成除以4 除以125看成乘以8 同比是与上一年的同一期相比较 环比是挨着的相同时间段相比较 同比和环比:如果有注释按注释为准 今年5月份环比=今年4月份 今年5月份同比=去年5月份 5统计性数据的要素——时间和单位(重点) 1时间表述(陷阱)——对时间很敏感 1.计算的年份不一样 2.计算的时间段不一样 2单位表述(陷阱)——对单位很敏感 1.饼状图有单位,就不是百分比 相比较的数据的单位不一样(注意是百分号还是千分号。年利率往往用百分,月利率用千分之) 2.计算的单位不一样 下列选项一定正确和一定错误的题目是最难的,可以放在最后做。

材料力学读书笔记刘鸿文第四版

1.??? 2.??? 3.?? 学习好资料欢迎下载 第一章绪论 材料力学基本任务 强度(抵抗破坏) 刚度(抵抗变形) 稳定性(维持平衡) 变形固体的基本假设 连续性 均匀性 各向同性 外力及其分类 表面力(分布力集中力)作用方式 体积力 ?? 4.静载 动载(交变、周期、冲击) 内力、变形与应变 时间变化 线应变切应变(角应变)1Pa=1N/m2MPa应力 5.杆件变形基本形式 ?拉伸与压缩 ?剪切 ?扭转 ?弯曲 第二章拉伸、压缩与剪切 1.轴力、轴力图 拉伸为正压缩为负 2.圣维南原理 离端界面约截面尺寸范围受影响 3.直杆拉伸或压缩时斜截面上的应力 α=0时,σ αmax =σ α=45°,τ αmax =σ/2 4.低碳钢的拉伸性能(铸铁、球墨铸铁) ?弹性阶段(塑形变形、弹性变形比例极限弹性极限胡克定律) ?屈服阶段 ?强化阶段 ?紧缩阶段(局部变形阶段) 塑性指标:伸长率δ(工程上的划分:>5%塑形材料<5%脆性材料)、断面收缩率ψ 卸载定律:应力应变按直线规律变化 冷作硬化:第二次加载时比例极限得到提高,但塑性变形和伸长率有所降低(利用:起重钢索、建筑钢筋常用冷拔工艺提高强度;某些零件喷丸处理使其表面塑形变形形成冷硬层提高表面强度克服:冷作硬化使材料变硬变脆难于加工易产生表面裂纹,工序之间安排退火) 碳素钢随含碳量的增加,屈服极限和强度极限相应提高,但伸长率降低。 铸铁拉伸因没有屈服现象,强度极限成为唯一强度指标。 材料力学性能主要指标:比例极限、屈服极限、强度极限、弹性模量、伸长率、断面收缩

) 率 5. ? ? 6. ? ? ? 7. 8. 学习好资料 欢迎下载 温度和时间对材料力学性能的影响 低温脆性 高温蠕变(松弛) 强度设计 失效(强度不足、刚度不足、稳定性不足 高温、腐蚀等环境 加载方式) 许用应力 强度校核、截面设计、许可载荷强度计算 安全因素选取的考虑因素(载荷、材料、重要性、计算精度、经济性…… 拉伸时横向缩短轴向伸长 泊松比 固体在外力作用下因变形而储存的能量 应变能(功能关系) 拉伸、压缩超静定问题 力学静力平衡方程+几何变形协调方程 温度应力、装配应力 应力集中 几何外形突然变化引起局部应力集中增大(圆弧过渡) 理论应力集中系数(塑形材料静载条件下可以不考虑 脆性材料较敏感 灰铸铁:内部缺 陷和不均匀性) 周期性载荷和冲击载荷应力集中非常危险

资料分析笔记整理样本

资料分析笔记整顿 一.资料分析基本概念与解题技巧 1.资料分析核心运算公式 2.资料分析惯用基本概念 3.资料分析速算技巧 二.资料分析高频高点梳理 1.ABR类问题 2.比重类问题 资料分析基本概念与解题技巧 一、基期、本期 基期,表达是在比较两个时期变化时,用来做比较值(基准值)时期,该时期数值普通作为计算过程中除数或者减数; 本期,相对于基期而言,是当前所处时期,该时期数值普通作为计算过程中被除数或者被减数。 【注】和谁相比,谁做基期。 二、增长量、增长率(增长速度、增长幅度) 增长量,表达是本期与基期之间绝对差别,是一绝对值。 增长率,表达是末期与基期之间相对差别,是一相对值。 增长率=增长速度(增速)=增长幅度(增幅) 【注】在某些“最值”比较题题干表述中,经常浮现“增长(长)最多”和“增长(长)最快”,咱们需要注意,前者比较是增长量,而后者则比较是增长率。 三、同比、环比 同比和环比均表达是两个时期变化状况,但是这两个概念比较基期不同。 同比,指是本期发展水平与历史同期发展水平变化状况,其基期相应是历史同期。

环比,指是本期发展水平与上个记录周期发展水平变化状况,其基期相应是上个记录周期。 【注】环比常出当前月份、季度有关问题。 四、公式运用与练习 资料分析考察离不开对于两个时期数值比较,由此得出四个概念, 即基期(A),本期(B),增长率(R),增长量(X)。 增长量=基期量*增长率=本期量-基期量=本期量-本期量/1+增长率 增长率=增长量/基期量=(本期量-基期量)/基期量=本期量/基期量-1 本期=基期+增长量=基期+基期*增长率=基期*(1+增长率) 基期=本期-增长量=本期/1+增长率 【习题演习】 【例一】1-3月,全国进出口总值为8593.7亿美元,同比增长7.3%,其中:出口4300.2亿美元,增长7.6%;进口4293.6亿美元,增长6.9%。3月当月,全国进出口总值为3259.7亿美元,同比增长216亿美元,其中:出口1656.6亿美元,增长135.4亿美元;进口1603.1亿美元,增长5.3%。 1、一季度,全国进出口总值约为多少? 2、一季度,全国出口额同比增长多少? 3、三月份,全国进出口总值约为多少? 4、三月份,全国出口总值同比增速约为多少? 【注】进出口有关问题,为资料分析中一种易错点,注意题目中进出口、进口、出口表述,注意进出口量与进出口额不同,理解顺差、逆差含义 出口-进口=顺差,反之则是逆差 2、资料分析惯用基本概念 一、百分数、百分点 百分数,表达是将相比较基期数值抽象为100,然后计算出来数值,用“%”表

材料力学笔记

材料力学(土)笔记 第三章 扭 转 1.概 述 等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算 等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用 其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解 对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解 2.薄壁圆筒的扭转 设一薄壁圆筒的壁厚δ远小于其平均半径0r (10 r ≤ δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示 由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力 考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子 在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线 薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。 相对扭转角:圆筒两端截面之间相对转动的角位移,用?来表示 圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等 由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得 ?=?A T r dA τ 由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分 ?==A r A dA δπ0 2 为圆筒横截面面积,引进π2 00r A =,从而得到 δ τ02A T = 由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角?之间的关系式,式子中r 为薄壁圆筒的外半径 γ?γsin /==l r 当外力偶矩在某一范围内时,相对扭转角?与外力偶矩e M (在数值上等于T )之间成正比 可得τ和r 间的线性关系为 γτG = 上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=

材料科学基础笔记

第一章材料中的原子排列 第一节原子的结合方式 1 原子结构 2 原子结合键 (1)离子键与离子晶体 原子结合:电子转移,结合力大,无方向性和饱和性; 离子晶体;硬度高,脆性大,熔点高、导电性差。如氧化物陶瓷。 (2)共价键与原子晶体 原子结合:电子共用,结合力大,有方向性和饱和性; 原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。如高分子材料。 (3)金属键与金属晶体 原子结合:电子逸出共有,结合力较大,无方向性和饱和性; 金属晶体:导电性、导热性、延展性好,熔点较高。如金属。 金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。 (3)分子键与分子晶体 原子结合:电子云偏移,结合力很小,无方向性和饱和性。 分子晶体:熔点低,硬度低。如高分子材料。 氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O (4)混合键。如复合材料。 3 结合键分类 (1)一次键(化学键):金属键、共价键、离子键。 (2)二次键(物理键):分子键和氢键。 4 原子的排列方式 (1)晶体:原子在三维空间内的周期性规则排列。长程有序,各向异性。 (2)非晶体:――――――――――不规则排列。长程无序,各向同性。 第二节原子的规则排列 一晶体学基础 1 空间点阵与晶体结构 (1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。图1-5 特征:a 原子的理想排列;b 有14种。 其中: 空间点阵中的点-阵点。它是纯粹的几何点,各点周围环境相同。 描述晶体中原子排列规律的空间格架称之为晶格。 空间点阵中最小的几何单元称之为晶胞。 (2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。 特征:a 可能存在局部缺陷;b 可有无限多种。 2 晶胞图1-6 (1)――-:构成空间点阵的最基本单元。 (2)选取原则: a 能够充分反映空间点阵的对称性; b 相等的棱和角的数目最多; c 具有尽可能多的直角; d 体积最小。 (3)形状和大小 有三个棱边的长度a,b,c及其夹角α,β,γ表示。 (4)晶胞中点的位置表示(坐标法)。 3 布拉菲点阵图1-7 14种点阵分属7个晶系。 4 晶向指数与晶面指数 晶向:空间点阵中各阵点列的方向。 晶面:通过空间点阵中任意一组阵点的平面。 国际上通用米勒指数标定晶向和晶面。

材料科学基础考研经典题目教学内容

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18. 为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19. 在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样条件下,单相 固溶体合金凝固的形貌又如何?分析原因 答:正的温度梯度指的是随着离开液—固界面的距离Z 的增大,液相温度T 随之升高的情况,即0>dZ dT 。在这种条件下,纯金属晶体的生长以接近平面状向前推移,这是由于温度梯度是正的,当界面上偶尔有凸起部分而伸入温度较高的液体中时,它的生长速度就会减慢甚至停止,周围部分的过冷度较凸起部分大,从而赶上来,使凸起部分消失,这种过程使液—固界面保持稳定的平面形状。固溶体合金凝固时会产生成分过冷,在液体处于正的温度梯度下,相界面前沿的成分过冷区呈现月牙形,其大小与很多因素有关。此时,成分过冷区的特性与纯金属在负的温度梯度下的热过冷非常相似。可以按液固相界面前沿过冷区的大小分三种情况讨论:⑴当无成分过冷区或成分过冷区较小时,界面不可能出现较大的凸起,此时平界面是稳定的,合金以平面状生长,形成平面晶。⑵当成分过冷区稍大时,这时界面上凸起的尖部将获得一定的过冷度,从而促进了凸起进一步向液体深处生长,考虑到界面的力学平衡关系,平界面变得不稳定,合金以胞状生长,形成胞状晶或胞状组织。⑶当成分过冷区较大时,平界面变得更加不稳定,界面上的凸起将以较快速度向液体深处生长,形成一次轴,同时在一次轴的侧向形成二次轴,以此类推,因此合金以树枝状生长,最终形成树枝晶。 20. 纯金属晶体中主要的点缺陷类型是什么?试述它们可能产生的途径? 答:纯金属晶体中,点缺陷的主要类型是空位、间隙原子、空位对及空位与间隙原子对等。产生的途径:⑴依靠热振动使原子脱离正常点阵位置而产生。空位、间隙原子或空位与间隙原子对都可由热激活而形成。这种缺陷受热的控制,它的浓度依赖于温度,随温度升高,其平衡态的浓度亦增高。⑵冷加工时由于位错间有交互作用。在适当条件下,位错交互作用的结果能产生点缺陷,如带割阶的位错运动会放出空位。⑶辐照。高能粒子(中子、α粒子、高速电子)轰击金属晶体时,点阵中的原子由于粒子轰击而离开原来位置,产生空位或间隙原子。 21. 简述一次再结晶与二次再结晶的驱动力,并如何区分冷热加工?动态再结晶与静态再结晶后的组 织结构的主要区别是什么? 答:一次再结晶的驱动力是基体的弹性畸变能,而二次再结晶的驱动力是来自界面能的降低。再结晶温

粉笔资料分析听课笔记(整理版)

粉笔资料分析听课笔记(整理版)一、常用分数、百分数、平方 1 3=33.3% 1 4=25% 1 5=20% 1 6=16.7% 1 7=14.3% 1 8=12.5% 1 9=11.1% 1 10=10% 1 11=9.1% 1 12=8.3% 1 13=7.7% 1 14=7.1% 1 15=6.7% 1 16=6.3% 1 1.5=66.7% 1 2.25=44% 1 2.5=40% 1 3.5=28.6% 1 4.5=22% 1 5.5=18.2% 1 6.5=15.4% 1 7.5=13.3% 1 8.5=11.8% 1 9.5=10.5% 1 10.5=9.5% 1 11.5=8.7% 1 12.5=7.8% 1 13.5=7.4% 1 14.5=6.9% 1 15.5=6.5% 1 16.5=6.1% 22=2 32=942=1652=2562=3672=4982=64 92=81 102=100112= 121122=144132=169 142=196152=225 162=256 172=289182=324192=361202=400212=441 222=484232=529 242=576252 =625 262=676272=729 282=784292=841 二、截位直除速算法 三、其他速算技巧 1、一个数×1.5,等于这个数本身加上这个数的一半。 2、一个数×1.1等于这个数错位相加. 3、一个数×0.9等于这个数错位相减. 4、一个数÷5,等于这个数乘以2,乘积小数点向前移1位。

5、一个数÷25,等于这个数乘以4,乘积小数点向前移2位。 6、一个数÷125,等于这个数乘以8,乘积小数点向前移3位。 7、比较类:①分母相同,分子大的大;分子相同,分母小的大。 ②分子大分母小>分子小分母大。③当分母大分子大,分母小分子小时,看分母与分母的倍数,分子与分子的倍数,谁倍数大听谁的,谁小统统看为1,再比较。 四、统计术语 1、基期:相对于今年来说,去年的就是基期。 2、现期:相对于去年来说,今年的就是现期。 3、基期量:相对于今年来说,去年的量就是基期量。 4、现期量:相对于去年来说,今年的量就是基期量。 5、增长量:现期量和基期量的差值,就是增长量。 6、增长率:增长量与基期量的比值,就是增长率。 7、倍数:A 是B 的多少倍;A 为B 的多少倍,等于增长率加1。 辨析:A 比B 增长了500%,那么就是A 比B 增长(多)5倍,A 是B 的6倍。 8、比重:A 占B 的比重,A 占B 为多少;都等于 A B 。 A 占B 的比重比C 的比重为:A B - C B 。 9、平均数:在一组数据中所有数据之和再除以数据的个数。 10、同比:同比看年,今年与去年同期比。 11、环比:环比看尾,“年”“月”“日”等。

武汉理工大学《材料力学》考试复习重点笔记

考试复习重点资料(最新版) 资料见第二页 封 面 第1页

材料力学笔记 §1-1材料力学的任务 1.几个术语 ·构件与杆件:组成机械的零部件或工程结构中的构件统称为构件。如图1-1a 所示桥式起重机的主梁、吊钩、钢丝绳;图1-2所示悬臂吊车架的横梁AB,斜杆CD都是构件。实际构件有各种不同的形状,所以根据形状的不同将构件分为:杆件、板和壳、块体.

杆件:长度远大于横向尺寸的构件,其几何要素是横截面和轴线,如图1-3a 所示,其中横截面是与轴线垂直的截面;轴线是横截面形心的连线。 按横截面和轴线两个因素可将杆件分为:等截面直杆,如图1-3a、b;变截面直杆,如图1-3c;等截面曲杆和变截面曲杆如图1-3b。 板和壳:构件一个方向的尺寸(厚度)远小于其它两个方向的尺寸,如图1-4a 和b所示。 块体:三个方向(长、宽、高)的尺寸相差不多的构件, 如图1-4c所示。在本教程中,如未作说明,构件即认为是 指杆件。 ·变形与小变形:在载荷作用下,构件的形状及尺寸发生变化称为变形,如图1-2所示悬臂吊车架的横梁AB,受力后将由原来的位置弯曲到AB′位置,即产生了变形。 小变形:绝大多数工程构件的变形都极其微小,比构件本身尺寸要小得多,以至在分析构件所受外力(写出静力平衡方程)时,通常不考虑变形的影响,而仍可以用变形前的尺寸,此即所谓“原始尺寸原理”。如图1-1a所示桥式起重机主架,变形后简图如图1-1b所示,截面最大垂直位移f一般仅为跨度l 的l/1500~1/700,B支撑的水平位移Δ则更微小,在求解支承反力R A 、R B 时, 不考虑这些微小变形的影响。

材料科学基础精彩试题库(内附部分自己整理问题详解)

《材料科学基础》试题库 一、选择 1、在柯肯达尔效应中,标记漂移主要原因是扩散偶中 __C___。 A、两组元的原子尺寸不同 B、仅一组元的扩散 C、两组元的扩散速率不同 2、在二元系合金相图中,计算两相相对量的杠杆法则只能用于 __B___。 A、单相区中 B、两相区中 C、三相平平线上 3、铸铁与碳钢的区别在于有无 _A____。 A、莱氏体 B、珠光体 C、铁素体 4、原子扩散的驱动力是 _B____。 A、组元的浓度梯度 B、组元的化学势梯度 C、温度梯度 5、在置换型固溶体中,原子扩散的方式一般为 __C___。 A、原子互换机制 B、间隙机制 C、空位机制 6、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为 _B____。 A、肖脱基缺陷 B、弗兰克尔缺陷 C、线缺陷 7、理想密排六方结构金属的c/a为 __A___。 A、1.6 B、2×√(2/3) C、√(2/3) 8、在三元系相图中,三相区的等温截面都是一个连接的三角形,其顶点触及 __A___。 A、单相区 B、两相区 C、三相区 9、有效分配系数Ke表示液相的混合程度,其值围是 _____。(其中Ko是平衡分配系数) A、1

材料力学读书笔记 第四版

第一章 绪论 1. 材料力学基本任务 ? 强度(抵抗破坏) ? 刚度(抵抗变形) ? 稳定性(维持平衡) 2. 变形固体的基本假设 ? 连续性 ? 均匀性 ? 各向同性 3. 外力及其分类 ? 表面力(分布力 集中力) ? 体积力 ? 静载 ? 动载(交变、周期、冲击) 4. 内力、变形与应变 线应变 切应变(角应变) 1Pa=1N/m 2 MPa 应力 5. 杆件变形基本形式 ? 拉伸与压缩 ? 剪切 ? 扭转 ? 弯曲 第二章 拉伸、压缩与剪切 1. 轴力、轴力图 拉伸为正 压缩为负 2. 圣维南原理 离端界面约截面尺寸范围受影响 3. 直杆拉伸或压缩时斜截面上的应力 α=0时,σαmax =σ α=45°,ταmax =σ/2 4. 低碳钢的拉伸性能 (铸铁、球墨铸铁) ? 弹性阶段(塑形变形、弹性变形 比例极限 弹性极限 胡克定律) ? 屈服阶段 ? 强化阶段 ? 紧缩阶段(局部变形阶段) 塑性指标:伸长率δ(工程上的划分:>5%塑形材料 <5%脆性材料)、断面收缩率ψ 卸载定律:应力应变按直线规律变化 冷作硬化:第二次加载时比例极限得到提高,但塑性变形和伸长率有所降低(利用:起重钢索、建筑钢筋常用冷拔工艺提高强度;某些零件喷丸处理使其表面塑形变形形成冷硬层提高表面强度 克服:冷作硬化使材料变硬变脆难于加工易产生表面裂纹,工序之间安排退火) 碳素钢随含碳量的增加,屈服极限和强度极限相应提高,但伸长率降低。 铸铁拉伸因没有屈服现象,强度极限成为唯一强度指标。 材料力学性能主要指标:比例极限、屈服极限、强度极限、弹性模量、伸长率、断面收缩率 作用方式 时间变化

材料科学基础知识点汇总

材料科学基础知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

金属学与热处理总结 一、金属的晶体结构 重点内容: 面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶格类型 fcc(A1) bcc(A2) hcp(A3) 间隙类型 正四面体 正八面体 四面体 扁八面体 四面体 正八面体 间隙个数 8 4 12 6 12 6 原子半径r A a 4 2 a 4 3 2 a 间隙半径r B ( ) 4 23a - ()4 22a - ( )4 35a - ()4 32a - ( )4 26a - ( ) 2 12a - 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据 T R k ?∝1可知当过冷度T ?为零时临界晶核半径R k 为无穷大,临界形核功(2 1T G ?∝?)也为无穷大。临界晶 核半径R k 与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加

材料科学基础经典复习题与答案

第七章回复再结晶,还有相图的容。 第一章 1.作图表示立方晶体的()()()421,210,123晶面及[][ ][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。 4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3 Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。 5.当CN=6时+Na 离子半径为0.097nm ,试问: 1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少? 6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的 (100),(110)及(111)平面上12mm 中各有多少个原子。 8. 石英()2SiO 的密度为2.653Mg/m 。试问: 1) 13 m 中有多少个硅原子(与氧原子)? 2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)? 9.在800℃时1010个原子中有一个原子具有足够能量可在固体移动, 而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。 11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。 1) 有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么? 2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。 12.设图1-19所示立方晶体中的滑移面ABCD 平行于晶体的上、下底面。晶体中有一条位错线de fed ,段在滑移面上并平行AB ,ef 段与滑

相关主题
文本预览
相关文档 最新文档