采用循环叠加经验模态分解的去噪算法
- 格式:pdf
- 大小:274.48 KB
- 文档页数:5
经验模态分解定义经验模态分解是一种常用的信号处理方法,用于将信号分解成不同频率成分的方法。
它在多个领域中得到广泛应用,如音频处理、图像处理、语音识别等。
经验模态分解的基本思想是将信号分解成一组本征模态函数(Intrinsic Mode Functions,简称IMF),这些IMF是具有不同频率和振幅的振动模式。
这些IMF可以近似地表示原始信号,每一个IMF都是单调且没有残差的。
通过将信号分解成多个IMF,可以更好地理解信号的特性和结构。
经验模态分解的具体步骤如下:1. 将原始信号进行局部极大值和局部极小值的插值,得到信号的上包络线和下包络线。
2. 计算信号的均值(上包络线加下包络线的平均值)。
3. 将信号减去均值,得到去趋势的信号。
4. 判断去趋势的信号是否为IMF,如果是则停止分解,否则进行以下步骤。
5. 对去趋势的信号进行极值点的插值,得到上包络线和下包络线。
6. 重复步骤2-5,直到得到的信号满足IMF的定义。
经验模态分解的优点是可以适应非线性和非平稳信号的分析,能够提取信号中的重要特征。
它还可以用于去除噪声、降低数据的维度、提取特征等应用。
在音频处理中,经验模态分解可以用于音乐和语音信号的特征提取和降噪。
通过分解得到的IMF,可以提取音乐中的节奏、旋律等特征,也可以用于语音识别中的语音特征提取和语音降噪。
在图像处理中,经验模态分解可以用于图像的分割、去噪和特征提取等。
通过分解得到的IMF,可以提取图像中的纹理、边缘等特征,也可以用于图像去噪和图像分割等应用。
在语音识别中,经验模态分解可以用于语音信号的特征提取和去噪。
通过分解得到的IMF,可以提取语音信号中的共振峰、声调等特征,也可以用于去除语音信号中的噪声和干扰。
经验模态分解是一种有效的信号处理方法,可以用于多个领域中的特征提取、降噪等应用。
它的优点是适应性强,能够提取信号中的重要特征。
随着信号处理技术的不断发展,经验模态分解在各个领域中的应用将会越来越广泛。
间隔阈值的多元经验模态分解电磁信号去噪
随着现代工业智能化的逐步发展,电磁信号在工业领域中的重要性越来越显著。
然而,由于工业生产中存在各种噪声干扰,电磁信号常常受到干扰而难以准确获取。
为了处理这类问题,一种新型的信号处理方法——多元经验模态分解(MEMD)在近年来备受关注并应用于各种领域。
在这种方法中,间隔阈值法被广泛运用于信号去噪,能够有效地提高信号的精度。
所谓多元经验模态分解,是指将原始信号分解成若干个本征模函数,每个本征模函数的频率不同,能够有效地描述原始信号的局部特征。
而间隔阈值法作为MEMD中的一种信号去噪方法,能够过滤掉本征模函数中的噪声成分。
这种方法的实现方式是设置一个特定阈值,将小于该阈值的本征模函数视为噪声,然后将其去除。
由于该方法仅仅去除了低幅度的噪声信号,因此不会对信号的主要信息造成影响,能够有效地提高信号的噪声抑制效果。
综上所述,多元经验模态分解结合间隔阈值法是一种可行的电磁信号去噪方法,能够有效地提高信号的精度和抗干扰能力,具有广泛的应用前景。
经验模态分解(emd) 方法划分层序摘要:1.经验模态分解(EMD)简介2.EMD方法在划分层序中的应用3.具体实施步骤与案例分析4.总结与展望正文:一、经验模态分解(EMD)简介经验模态分解(Empirical Mode Decomposition,简称EMD)是一种自适应的信号分解方法,由Norden E.Huang等人于1998年首次提出。
该方法主要通过对信号进行局部均值拟合,将原始信号分解为多个本征模态函数(Intrinsic Mode Functions,简称IMFs)。
本征模态函数代表了信号在不同时间尺度上的特征,从而实现了信号的时频分析。
二、EMD方法在划分层序中的应用1.地质勘探:EMD方法在地质勘探领域具有广泛应用,如地层划分、岩性识别等。
通过对地震、测井等原始信号进行经验模态分解,可以获取各个本征模态函数,进一步分析地层的结构和成分。
2.工程监测:在工程领域,EMD方法可用于结构健康监测、故障诊断等。
例如,对桥梁、建筑物等结构物的振动信号进行经验模态分解,可以识别出结构的损伤程度和位置。
3.生物医学:EMD方法在生物医学领域也有广泛应用,如心电信号分析、脑电信号分析等。
通过对生物信号进行经验模态分解,可以获取有价值的信息,有助于疾病的诊断和治疗。
4.金融分析:EMD方法在金融领域也有显著的应用,如股票价格预测、汇率预测等。
通过对金融时间序列数据进行经验模态分解,可以分析市场的波动特征,为投资者提供参考。
三、具体实施步骤与案例分析1.数据预处理:对原始信号进行去噪、滤波等预处理,以消除信号中的噪声和干扰。
2.经验模态分解:利用EMD方法将预处理后的信号分解为多个本征模态函数。
3.划分层序:根据本征模态函数的特性,对信号进行分层。
例如,可以按照频率、能量等特征将本征模态函数划分为不同层次。
4.分析与诊断:对划分的层次进行进一步分析,提取有价值的信息,实现信号的诊断和分析。
案例分析:以地质勘探为例,经验模态分解可以应用于地震信号的处理,划分出不同频率的本征模态函数。
基于经验模态分解的大地电磁资料人文噪声处理蔡剑华;汤井田;王先春【摘要】将经验模态分解(Empiricalmodedecomposition,EMD)方法应用到大地电磁资料的人文噪声处理中,根据人文噪声的不同来源和特征,提出基于EMD 的时空滤波器或硬(软)阈值对噪声进行抑制的方法。
给出经验模态分解去噪方法的原理和步骤,并对实测大地电磁信号中常见的脉冲干扰、矩形干扰和周期正弦噪声等人文干扰进行消噪处理。
研究结果表明:本文提出的噪声改正方法是有效的,突出了有用信号的信息,改善了受干扰大地电磁数据的质量。
%The empirical mode decomposition (EMD) method was applied to eliminate the human noise of magnetotelluric(MT) data. Considering the statistic feature and different sources of human noise, some methods using the time-space filters or threshold method to suppress the noise were proposed based on EMD. The principle and steps of method were given, and some human noises, such as impulse jamming, rectangle disturbing and sine wave noise, were processed for the actual MT data. The results show that noise has successfully suppressed and the useful information about MT data is enchanced. The quality of MT data is improved greatly.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2011(042)006【总页数】5页(P1786-1790)【关键词】经验模态分解;大地电磁信号;人文噪声;去噪【作者】蔡剑华;汤井田;王先春【作者单位】湖南文理学院物理与电子科学系,湖南常德,415000;中南大学地球科学与信息物理工程学院,湖南长沙,410083;中南大学地球科学与信息物理工程学院,湖南长沙,410083;湖南文理学院物理与电子科学系,湖南常德,415000【正文语种】中文【中图分类】P631在电磁探测方法中,人文噪声严重地影响了阻抗响应参数的稳定估计。
基于经验模态分解和小波阈值的冲击信号去噪苏秀红;李皓【摘要】冲击信号是非线性的并且容易受到噪声污染;为研究冲击信号去噪的问题,针对经验模态分解(Empirical Mode Decomposition,EMD)去噪和小波阈值去噪方法存在的不足,提出了基于EMD的小波阈值去噪方法;单纯的EMD去噪方法会在去除高频噪声的同时压制高频的有效信息;EMD与小波阈值去噪相结合,利用连续均方误差准则确定含噪较多的高频固有模态函数(IntrinsicModeFunction,IMF),对高频IMF分量进行小波阈值去噪,以分离并保留这些分量中的有效信息,同时保持低频IMF分量不变;对模拟数据和实际冲击信号进行去噪处理,结果表明,基于EMD 的小波阈值去噪方法的去噪效果优于单纯的EMD去噪方法和小波阈值去噪方法.【期刊名称】《计算机测量与控制》【年(卷),期】2017(025)001【总页数】6页(P204-208,220)【关键词】小波阈值;经验模态分解;冲击信号;去噪【作者】苏秀红;李皓【作者单位】中国工程物理研究院总体工程研究所,四川绵阳 621900;中国工程物理研究院总体工程研究所,四川绵阳 621900【正文语种】中文【中图分类】O322;TN911.7军用产品及其部件在运输、发射、飞行、使用的过程中都会受到机械冲击的作用。
因此在产品的研制过程中,冲击试验是必不可少的考核项目。
冲击试验包括爆炸分离、跌落等试验项目,主要考核产品的结构特性、评定产品对于冲击环境的适应性。
实际的冲击试验现场环境比较恶劣,为了保证试验的安全性,记录仪器到测试用传感器之间一般存在一定距离,实际冲击信号采集过程中易受试验环境和测试系统的影响,测试信号中混杂噪声的情况不可避免,这会影响振动信号的特征提取。
因此,如何去除冲击信号中的噪声,提高测试数据的可靠性和准确性,是冲击信号分析研究的基础。
希尔伯特黄变换是Huang提出的一种时频分析方法[1],它是一种自适应的时频分析方法,不需要事先选定基函数,可根据信号的局部时变特征进行自适应的时频分解,具有很好的时频分辨率,因此非常适合于非平稳信号的分析。
集合经验模态分解集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)是EMD的一种改进方法,其最大的优点就是克服了EMD模态混叠的现象。
01模态混叠模态混叠顾名思义就是不同模态的信号混叠在一起,具体来说一般有两种情况:①不同时间尺度的信号出现在了同一个IMF中;②相同时间尺度的信号出现在了不同的IMF中。
下图就是一种明显的模态混叠现象:(图中所表示的是某一个IMF,能比较明显地看出大约在0~300这个范围内信号的时间尺度与300~350这个范围内信号的时间尺度明显不同)02EEMD算法为了抑制EMD的模态混叠现象,法国的Handrin等人用高斯分布的白噪声对原始信号进行去噪,再将去噪后的信号进行EMD,提出了基于噪声辅助分析的改进EMD方法,即集合经验模态分解。
EEMD本质是一种叠加高斯白噪声的多次经验模态分解,其主要利用了高斯白噪声频率均匀分布的统计特性。
进行EEMD时,首先要将原始信号复制为多份,在每一份信号中加入同等幅值的随机白噪声来改变信号的极值点特性;其次,对改变后的信号进行EMD得到对应的IMF;最后,对多次EMD得到的相应IMF进行总体平均来抵消加入的白噪声,从而有效抑制模态混叠的产生。
EEMD算法如下所示:03小tips值得注意的是,EEMD不像EMD那么“自动化”,EMD分解时无需输入参数,而EEMD分解时需要人为地输入参数,主要的参数有两个,分别是:噪声参数(一般是引入的随机白噪声的标准差),以及分解次数(其决定了最后消除白噪声影响的力度)。
有时当我们在复现别人论文时会发现,我们选取的信号、噪声参数和分解次数与原论文都一模一样,但是为什么经过EEMD分解出来的IMF与原论文却不一样呢。
当出现这一现象时,先不要急着怀疑自己,这种现象主要是因为EEMD算法本身导致的。
具体来说,是因为引入的高斯白噪声具有随机性,EEMD中每次EMD 分解的信号也就具有随机性。
基于ICA算法的集合经验模态分解去噪方法周先春;嵇亚婷;孙文荣【期刊名称】《软件》【年(卷),期】2014(000)007【摘要】针对非线性非平稳信号的去噪问题,提出了一种基于独立分量分析(Decomposition Components Analysis,简称ICA)算法的集合经验模态分解去噪方法。
首先利用白噪声辅助数据分析方法——集合经验模态分解(Ensemble Empirical Mode Decomposition,简称EEMD)有效的抑制了经验模态分解(Empirical Mode Decomposition,简称EMD)中存在的端点效应和模态混叠现象,然后利用ICA算法对含噪信号经过EEMD分解后的有限个固有模态函数(Intrinsic Mode Function,简称IMF)进行去噪处理,有效的分离出若干个有效的语音信号分量,并对其进行语音重构,最后与小波阈值去噪方法进行比较,通过仿真可以看出,该方法对于信号去噪较为理想。
%In order to focus on the denoise of Nonlinear nonstationary signals, we first use the white noise assisted data analysis called EEMD (ensemble empirical mode decomposition) based on the ICA (decomposition Components Analysis) to suppress the end effect and effect and aliasing which appear in the empirical mode decomposition in the process of empirical mode decomposition(EMD). And then, we use ICA to denoise the noise signals which have been decomposed by EEMD into IMF, and we can efficiently decompose some effective speech signals components and reconstructthem. Finally, compared with the waved threshold method, the effect of this solution is ideal.【总页数】6页(P13-17,22)【作者】周先春;嵇亚婷;孙文荣【作者单位】南京信息工程大学电子与信息工程学院,江苏南京210044;南京信息工程大学电子与信息工程学院,江苏南京210044;南京信息工程大学电子与信息工程学院,江苏南京210044【正文语种】中文【中图分类】TN912.3【相关文献】1.基于完全集合经验模态分解和排列熵的局部放电信号的小波包去噪方法 [J], 高佳程;田蕴卿;朱永利;郑艳艳2.基于互补集合经验模态分解法的变压器局部放电信号去噪方法 [J], 潘云;张晓星;张英;张倩3.音乐数据库的基于内容检索及一种基于ICA算法的按调查询系统的提出 [J], 许镜远;顾君忠4.采用集合经验模态分解和改进阈值函数的心电自适应去噪方法 [J], 尹丽; 陈富民; 张琦; 陈鑫5.基于OPTICS聚类和改进双边滤波的点云去噪方法 [J], 钟志鹏;张建州;梁彪因版权原因,仅展示原文概要,查看原文内容请购买。