有机电致发光器件简介ppt课件
- 格式:ppt
- 大小:18.80 MB
- 文档页数:90
有机电致发光器件OLED技术介绍有机电致发光器件OLED(Organic Light Emitting Diode)是一种新型的发光器件技术,由有机材料制成。
OLED技术结合了有机材料的特性和发光器件的的特性,可以在不需要背光的情况下发出颜色丰富、亮度较高的光。
它具有响应快、发光效率高、能耗低等优点,因此在显示技术领域具有广阔的应用前景。
OLED技术是基于有机材料中的发光现象。
有机材料是一种由碳元素构成的化合物,具有很强的光致发光特性。
与传统的LED器件相比,OLED器件不需要外部的背光源,而是利用有机材料自身的特性直接发光,因此OLED器件可以制作得非常薄,达到几个纳米的厚度。
OLED器件由四个不同的部分组成:一层有机发光层、两层电极和一层衬底层。
其中,有机发光层是OLED器件的最关键部分,它薄至仅几纳米,通过在该层中注入电荷,有机分子发生电致发光现象。
电荷分为正电荷和负电荷,它们在有机发光层内重组,释放出能量并发出光。
有机发光层的材料通常采用芳香族化合物以及有机金属配合物等。
OLED的工作原理是由电流经过电极进入有机发光层时,电流携带着电子和正孔进入有机发光层,电子和正孔在该层中相遇并发生复合。
在复合的过程中,电荷之间的能量被释放成光能,发出可见光。
而且,由于电荷可以自由运动,OLED器件具有快速的响应速度,可以实现高频率的图像刷新,扩大了其在电视和显示器领域的应用。
OLED技术具有许多优势。
首先,它可以制造出非常薄、灵活的器件。
由于有机材料可以制造成非常薄的膜,因此OLED显示器可以做到薄如蝉翼,并且可以弯曲、折叠,实现更灵活的设计。
其次,OLED器件具有高亮度和鲜艳的颜色。
由于OLED器件可以直接发光,而不需要背光源,因此可以实现更高的亮度,并且颜色更加鲜艳,对比度更高。
此外,OLED 器件的发光效率也比传统的LED器件高,能耗更低。
最后,OLED器件具有非常快速的响应速度。
由于电荷在有机材料中的运动速度非常快,因此OLED器件可以实现高频率的图像刷新,不会出现拖影现象。
OLED有机电致发光材料与器件摘要本文概述了OLED的发展简史,并简单介绍了OLED有机电致发光器件的基本结构与发光机理。
此外,还对比了OLED与PLED,这两种系列材料只是材料特性和成膜方法不同,本质上却无异。
相较于LCD,OLED具有很大优势,但仍面临寿命短等技术瓶颈。
随着研发力度的加大,其技术瓶颈将会被逐渐解决,可以预见在未来的显示市场,OLED必将是绝对主流产品。
关键词:有机电致发光器件;OLED显示器OLED (Organic Light Emitting Device)全名叫做有机电致发光器件,是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。
其原理是用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。
根据这种发光原理而制成显示器被称为有机发光显示器,也叫OLED显示器[1]。
1.OLED有机电致发光显示器件的发展简史1963年New York University的Pope[2]等第一次发现有机材料单晶蒽的电致发光现象。
1982年Vincett[3]的研究小组制备出厚度0.6 蒽的薄膜,并观测到电致发光。
1987年Kodak公司的邓青云等采用了夹层式的多层器件结构,开创了有机电致发光的新的时代[4]。
1990年,英国剑桥大学Cavendish实验室的Burroghes[5]等人首次采用共轭聚合物聚对苯撑乙烯(PPV,polyphenylene vinylene)制作了高分子发光二极管,简化了制备工艺,开辟了发光器件的又一个新领域—聚合物薄膜电致发光器件。
1997年,Princeton Univ. Forrest S R的小组发现磷光的有机电致发光材料,使得有机电致发光器件的内量子效率可能到达100%。
摘要OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、低电压直流驱动、工作温度范围宽、易于实现柔性显示和3D 显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。
同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。
本文将系统介绍OLED的发展背景、发展史、制备及应用,介绍了有机电致发光器件(OLED) 的结构和发光机理。
典型的传统OLED是生长在透明的阳极例如ITO玻璃上的,发射出来的光是由最底层衬底透出,这使得它与其他电子元件如硅基显示驱动器的集成变得非常复杂。
因此,理想的做法是研发一种OLED,其光的发射由器件顶部的透明电极透出。
重点介绍一种具有阴极作为底层接触层,阳极ITO薄膜作为顶部电极的表面发射型或者说有机“反转”的LED(OILED)。
介绍了该器件的制备工艺,对该OILED的I一V特性及EL谱进行了测试,发现与传统的OLED相类似,而工作电压有所升高,效率一定程度上降低。
为了进一步改善器件性能,我们对器件增加了保护层(PL),研究了PL对OILED器件性能的影响。
最后概述了器件的技术进展和应用前景, 并展望了未来OLED 发展的方向。
关键词:有机电致发光器件,有机反转电致发光器件,发光机理,保护层(PL),阳极ITO 薄膜AbstractOLED has a solid state, self-luminous, high contrast, ultra-thin, low power consumption, viewing angle, fast response, low-voltage DC drive, the operating temperature range, easy to implement many of the advantages of flexible displays and 3D displays future20 years of the most "money scene" of the newdisplay because OLED has a large-area film, low power consumption, and other fine features, so an ideal plane light source, also has broad application prospects in the future of energy saving lighting in the area. In this paper, the systematic introduction of OLED development background, history of the development, preparation and application, the structure of the organic electroluminescent devices (OLED) and the luminescence mechanism.Typical traditional OLED is growth in transparent anode ITO glass, for example, the light is emitted by bottom gives fully substrate, this makes it and other electronic components such as that the integration of the silica based drive become very complex. Therefore, the ideal way is developing a OLED, its light emission from the top of the device gives fully transparent electrodes. Focuses on a cathode as the bottom contact layer, the anode of ITO films as the top electrode surface emission or organic LED of the "reverse" (OILED). Of the device preparation process, the OILED I-V characteristics and EL spectra of the test, found that similar to the conventional OLED, the working voltage was increased efficiency to a certain extent on the lower. To further improve the device performance of the device to increase the protective layer (PL), PL OILED device performance. Finally an overview of the technical progress and prospects of the device, and looked to the future OLED, the direction of development.Keywords:Organic Electroluminescent Devices,Organic reverse electroluminescent devices, Luminescence mechanism,Protective layer (PL), the anode of ITO films.目录摘要 (I)Abstract........................................................... I I 目录.............................................................. I II 1.绪论.. (1)1.1课题背景 (1)1.2 OLED技术的发展概况 (2)1.2.1 全球OLED发展史 (4)1.2.2 中国OLED发展状况 (5)1.2.3 OLED的应用 (6)1.2.3 OLED的制备 (6)2.有机电致发光器件 (8)2.1 引言 (8)2.2 有机电致发光器件 (8)2.3 有机电致发光器件的结构 (9)2.4 OLED发光机理 (10)2.5 我国发展OLED产业存在的问题及发展趋势 (13)2.5.1 存在的问题 (13)2.5.2 发展趋势 (14)2.6 结论及建议 (14)3.有机反转电致发光器件 (16)3.1 引言 (16)3.2 器件制备工艺 (17)3.2.1 基片的清洗及表面处理 (17)3.2.2 阴极的蒸镀 (17)3.2.3 有机层的成膜 (18)3.2.4 阳极的溅射 (18)/ PVK:TPD/PTCDA/ITO结构的有机反转电致发光器件的研究3.3 Si/Al/Alq3 (19)3.3.1 OILED的I一V特性及亮度测试 (19)3.4 保护层(PL)对器件性能的影响 (26)3.4.1 PL厚度对器件j一V特性的影响 (26)的影响 (28)3.4.2 PL对器件的最大驱动电流Im ax的影响 (28)3.4.3 PL对器件外量子效率qe3.4.4 PL对EL发射谱的影响 (29)3.4.5 顶电极(阳极)面积对载流子注入效率的影响 (30)3.4.6 PL层对器件最表面状态的影响 (31)4.OLED与OILED的特性及存在的问题 (32)4.1 与目前占主流地位的CRT及LCD技术相比,OLED与OILED具有以下更多的优点: (32)4.2 与OLED相比OILED的不同 (34)4.3 OLED与OILED 急待解决的问题和未来发展趋势 (34)结论 (37)5.致谢 (38)6.参考文献: (39)1.绪论1.1课题背景信息显示是信息产业的核心技术之一, 而信息显示技术及显示器件多种多样, 到目前为止,有四种发光物理机制完全不同的固态场致发光形式。
有机电致发光器件工作原理1.1 有机材料的电子跃迁过程有机电致发光的发光机理:在外电场作用下,空穴和电子分别注入到有机材料中,在有机层中相遇复合形成激子,释放出能量,同时将能量传递给有机发光材料的分子,使其从基态跃迁到激发态,由于激发态很不稳定,受激分子发生辐射跃迁从激发态回到基态产生发光现象。
一般将有机物质分子的状态分为基态与激发态。
基态是指分子的稳定态,即能量最低状态,其分子中的电子的排布完全遵从能量最低原理,泡利不相容原理和洪特规则。
激发态是指物质分子受到光或其他的辐射使其能量达到一个更高的值时,变为一个不稳定的状态,被激发后称分子处于激发态。
通常将分子的不稳定的存在状态用单重态S表示,基态单重态用S0表示,三重激发态用T1表示。
当有机分子被激发时,分子处于激发单重态,依据它们能量的高低表示为S1、S2、S3。
在电致发光的过程中,单重态激子和三重态激子被认为是同时产生的。
其中荧光是电子从最低单重激发态到基态的跃迁发光,这种现象又称为电致荧光。
电子从最低三重态回到基态的跃迁产生的发光称为磷光。
但在室温下,从最低三重激发态回到基态的电子跃迁产生的发光是极微弱的,其能量绝大部分以热的形式损失掉了,所以这个过程被认为是无辐射过程。
图1.1为有机材料分子内部电子的主要跃迁过程:a过程:从S0—S1、S2是在外界激励下发生跃迁;f过程:从S1—S0是以辐射的形式发射了光子产生了荧光;P过程:从T1—S0是一个辐射跃迁的磷光发光;从S2—S1是通过内转换过程(IC);从S1—T1是通过系间内转换过程(ISC),且S1发生了自旋反转;从S2—S0是辐射跃迁的荧光发光。
图1.1 电致发光能级图1.2有机电致发光器件的结构有机电致发光器件常见的器件结构:OLED器件多采用夹层式三明治结构:由一薄而透明具有半导体性质的铟锡氧化物(ITO玻璃)透明电极为正极与低功函数的金属为阴极如同三明治般将有机材料层夹在其中,有机材料层包括发光层(EML)、空穴传输层(HTL)、与电子传输层(ETL)。
有机电致发光元件 一、有机电致发光元件是什么? 1、说到有机电致发光元件,很多人可能会觉得有点陌生。咱们平时见到的电视、手机屏幕、甚至一些高端显示器上,很多时候都在用这种技术。它是由有机材料构成的,而“电致发光”呢,就是通过电流的刺激,让这些材料发光。听起来是不是有点像魔法?其实说到底,这就是一种通过电能转化为光能的过程。有机电致发光元件(OLED)就是把这些有机化合物的特性发挥到极致,产生了亮眼的效果。 2、其实它也不是什么新鲜玩意儿,早在上个世纪90年代,这项技术就开始萌芽了。那时,科学家们发现,某些有机材料在电流通过时会发光,于是,大家开始钻研如何利用这些材料制造出可以发光的元件,最终有了OLED的雏形。可以说,OLED技术的出现,真是让显示技术进入了一个全新的时代。尤其是今天,OLED已经变得无处不在。像电视、手机、平板、智能手表这些电子产品,它们的屏幕大多都在使用这种技术,给我们带来了超乎想象的视觉享受。 3、说到OLED的好处,你肯定会觉得不可思议。它比传统的LCD屏幕更加轻薄,几乎可以做到“纸薄”无感,视觉效果也特别棒,颜色饱和度高,黑色更黑,亮度更加鲜明。由于它的发光原理是通过有机材料直接发光,所以不需要背光源,整个屏幕就能更薄、更灵活。这就像你拿到一款新手机,拿着它的屏幕看视频,那种“哇哦”的感觉,不仅仅是清晰的画面,更多的是那种炫丽的光彩让你心跳加速。 二、有机电致发光元件的工作原理 1、要弄懂OLED是怎么发光的,得从它的结构说起。其实很简单,OLED的基本组成部分就是一层又一层的薄膜,通常是有机材料制成的。这些有机薄膜被夹在两个电 极之间。简单来说,当电流通过时,这些电极开始工作,电流传递给有机材料,激发它们发光。这就像是给一个懒懒的朋友打了个鸡血,他立马就能精神焕发,发出光彩来。 2、有机电致发光元件的发光是通过“电子”和“空穴”的相遇而产生的。你可以把“电子”想象成调皮的小孩,而“空穴”就是一个寻找朋友的孤单小伙伴。当这两个角色碰面时,它们就像是一对好朋友,碰撞后会释放出能量,最终变成了我们所看到的光。这种能量释放的过程,不但让OLED屏幕更加节能,而且在显示效果上也特别有优势。比如,它能准确地展现细腻的色彩,白天黑夜都能清晰可见。 3、最神奇的是,OLED的颜色可以精准控制,甚至可以显示出纯净的黑色,因为它的每一个像素点都是独立发光的,不像传统的LCD屏幕需要背光源。所以,OLED的黑色就像是深邃的夜空,令人沉醉。它的响应速度特别快,画面切换时没有拖影,这对于爱看动作片或者打游戏的人来说,简直就是一大福音。换句话说,OLED让画面更真实,色彩更鲜活,能让我们感受到身临其境的感觉。 三、有机电致发光元件的应用前景 1、提到OLED的应用,最先想到的肯定是电视和手机屏幕了。如今,越来越多的高端电视品牌都开始采用OLED屏幕,给用户带来了视觉上的革命。OLED电视的画质,简直能让你觉得自己坐在电影院里,色彩鲜艳,层次分明。你看一部电影的时候,画面中的每一个细节都像是活了过来,特别是那些暗部,黑得深邃又不失细节。你是不是已经迫不及待想买一台OLED电视了? 2、而在手机行业,OLED的表现更是出色。大家都知道,智能手机的屏幕几乎是每天都要对着的东西,OLED在这方面的优势显而易见。屏幕的色彩更加真实,视角更广,显示效果更细腻。OLED还能更好地节省电池电量,特别是在使用深色背景时,屏 幕发光的部分会少,电池就会省得更多。你不妨想想,当你早上醒来,手机屏幕上的那一抹清新的色彩,是不是比LCD屏幕的那种“苍白无力”更让你心情愉悦? 3、OLED的未来不止这些。随着技术的不断进步,OLED有可能进入更多领域,像汽车显示屏、可穿戴设备、甚至未来的折叠屏手机。你可以想象一下,未来你戴上一个