有机电致发光器件简介
- 格式:ppt
- 大小:18.80 MB
- 文档页数:22
1. 电致发光(EL):发光材料在电场作用下,受到电流和电场的激发而发光的现象,是一个将电能直接转化为光能的一种发光过程(非热转换即不是通过热辐射实现的)。
2. FED,PDP,LCD都存在问题,不能满足时代需求,所以研究更为高效的有机电致发光器件(OLED)。
OLED特点:材料选择有机物,高分子,因而选择范围宽;驱动电压低;发光亮度和发光效率高,发光视角宽,相应速度快;器件可弯曲,不受尺寸限制,分辨率高等。
3. 基态:分子的稳定态即能量最低状态;激发态:被激发后,分子的电子排布不遵循构造原理。
激发态分子内的物理失活:辐射跃迁和非辐射跃迁。
而辐射跃迁:释放光子而从高能激发态失活到低能基态的过程。
导致电子运动轨道界面减少;在势能面上跃迁是垂直发生的。
4. 有机半导体:在外电场作用下,电子和空穴在LUMO和HOMO间的跳跃产生电流。
而掺杂半导体中的载流子浓度大于本征半导体(电子和空穴浓度相同),所以导电性更好5. 直流注入式有机电致发光:在有机EL器件的两端电机上加上直流电源,通电后发光器件受电激发的作用而发光的现象。
过程:载流子注入,载流子传输,电子和空穴碰撞形成激子(激子是彼此束缚在一起的电子和空穴对),激子辐射退激发发出光子。
6. 单线态激子是总自旋为0的激发状态;注入的电子和空穴形成的单线态和三线态激子的比例正比于其状态数,有机电致发光的量子效率最大为25%;Forster能量转移:能量从主体向掺杂材料的传递方式,能在较远距离内实现,为单线态激子;Dexter能量转移:只能在紧邻分子间实现,为三线态激子。
7. 单层器件:单层有机薄膜被夹在ITO阴极和金属极之间,形成的是单层有机电致发光器件。
但是单层器件的载流子的注入不平衡,器件发光效率低。
三层器件是目前OLED中最常用的一种。
在实际的器件中,在发光层往往采用掺杂的方式提高器件性能8. 器件制备过程:刻蚀好的ITO玻璃—清洗—臭氧/氧等离子体处理—基片置于真空腔体—抽真空—蒸发沉积有机薄膜和阴极—取出器件并封装—测试表征9. 有机小分子发光器件通常用真空蒸发沉积的方法制备构成器件的薄膜,整个过程要在真空腔内完成(真空度高于10^-4Pa)。
摘要OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、低电压直流驱动、工作温度范围宽、易于实现柔性显示和3D 显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。
同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。
本文将系统介绍OLED的发展背景、发展史、制备及应用,介绍了有机电致发光器件(OLED) 的结构和发光机理。
典型的传统OLED是生长在透明的阳极例如ITO玻璃上的,发射出来的光是由最底层衬底透出,这使得它与其他电子元件如硅基显示驱动器的集成变得非常复杂。
因此,理想的做法是研发一种OLED,其光的发射由器件顶部的透明电极透出。
重点介绍一种具有阴极作为底层接触层,阳极ITO薄膜作为顶部电极的表面发射型或者说有机“反转”的LED(OILED)。
介绍了该器件的制备工艺,对该OILED的I一V特性及EL谱进行了测试,发现与传统的OLED相类似,而工作电压有所升高,效率一定程度上降低。
为了进一步改善器件性能,我们对器件增加了保护层(PL),研究了PL对OILED器件性能的影响。
最后概述了器件的技术进展和应用前景, 并展望了未来OLED 发展的方向。
关键词:有机电致发光器件,有机反转电致发光器件,发光机理,保护层(PL),阳极ITO 薄膜AbstractOLED has a solid state, self-luminous, high contrast, ultra-thin, low power consumption, viewing angle, fast response, low-voltage DC drive, the operating temperature range, easy to implement many of the advantages of flexible displays and 3D displays future20 years of the most "money scene" of the newdisplay because OLED has a large-area film, low power consumption, and other fine features, so an ideal plane light source, also has broad application prospects in the future of energy saving lighting in the area. In this paper, the systematic introduction of OLED development background, history of the development, preparation and application, the structure of the organic electroluminescent devices (OLED) and the luminescence mechanism.Typical traditional OLED is growth in transparent anode ITO glass, for example, the light is emitted by bottom gives fully substrate, this makes it and other electronic components such as that the integration of the silica based drive become very complex. Therefore, the ideal way is developing a OLED, its light emission from the top of the device gives fully transparent electrodes. Focuses on a cathode as the bottom contact layer, the anode of ITO films as the top electrode surface emission or organic LED of the "reverse" (OILED). Of the device preparation process, the OILED I-V characteristics and EL spectra of the test, found that similar to the conventional OLED, the working voltage was increased efficiency to a certain extent on the lower. To further improve the device performance of the device to increase the protective layer (PL), PL OILED device performance. Finally an overview of the technical progress and prospects of the device, and looked to the future OLED, the direction of development.Keywords:Organic Electroluminescent Devices,Organic reverse electroluminescent devices, Luminescence mechanism,Protective layer (PL), the anode of ITO films.目录摘要 (I)Abstract........................................................... I I 目录.............................................................. I II 1.绪论.. (1)1.1课题背景 (1)1.2 OLED技术的发展概况 (2)1.2.1 全球OLED发展史 (4)1.2.2 中国OLED发展状况 (5)1.2.3 OLED的应用 (6)1.2.3 OLED的制备 (6)2.有机电致发光器件 (8)2.1 引言 (8)2.2 有机电致发光器件 (8)2.3 有机电致发光器件的结构 (9)2.4 OLED发光机理 (10)2.5 我国发展OLED产业存在的问题及发展趋势 (13)2.5.1 存在的问题 (13)2.5.2 发展趋势 (14)2.6 结论及建议 (14)3.有机反转电致发光器件 (16)3.1 引言 (16)3.2 器件制备工艺 (17)3.2.1 基片的清洗及表面处理 (17)3.2.2 阴极的蒸镀 (17)3.2.3 有机层的成膜 (18)3.2.4 阳极的溅射 (18)/ PVK:TPD/PTCDA/ITO结构的有机反转电致发光器件的研究3.3 Si/Al/Alq3 (19)3.3.1 OILED的I一V特性及亮度测试 (19)3.4 保护层(PL)对器件性能的影响 (26)3.4.1 PL厚度对器件j一V特性的影响 (26)的影响 (28)3.4.2 PL对器件的最大驱动电流Im ax的影响 (28)3.4.3 PL对器件外量子效率qe3.4.4 PL对EL发射谱的影响 (29)3.4.5 顶电极(阳极)面积对载流子注入效率的影响 (30)3.4.6 PL层对器件最表面状态的影响 (31)4.OLED与OILED的特性及存在的问题 (32)4.1 与目前占主流地位的CRT及LCD技术相比,OLED与OILED具有以下更多的优点: (32)4.2 与OLED相比OILED的不同 (34)4.3 OLED与OILED 急待解决的问题和未来发展趋势 (34)结论 (37)5.致谢 (38)6.参考文献: (39)1.绪论1.1课题背景信息显示是信息产业的核心技术之一, 而信息显示技术及显示器件多种多样, 到目前为止,有四种发光物理机制完全不同的固态场致发光形式。
利⽤有机⼩分⼦为发光材料制成的有机电致发光器件(OLED)利⽤有机⼩分⼦为发光材料制成的有机电致发光器件(OLED)有机电致发光(0LE)就是指有机材料在电流或电场的激发作⽤下发光的现象。
根据所使⽤的有机电致发光材料的不同,⼈们有时将利⽤有机⼩分⼦为发光材料制成的器件称为有机电致发光器件,简称OLED;⽽将利⽤⾼分⼦作为电致发光材料制成的器件称为⾼分⼦电致发光器件,简称PLED。
有机电致发光器件特点:⼀:结构简单,体积⼩,重量轻,成本低,易进⾏⼤规模、⼤⾯积⽣产,具有超薄、⼤⾯积、便于携带、平板显⽰等特点⼆:主动发光,视⾓范围⼤,接近于180° ;响应速度快,图像稳定,图像刷新率⽐液晶显⽰器快100倍~1000倍;发光效率⾼,亮度⼤,可实现全⾊显⽰。
三:有机材料的机械性能好,易加⼯成各种形状;可以采⽤树脂作为基板。
四:驱动电压低,能耗低,能与半导体集成电路的电压相匹配,使⼤屏幕平板显⽰的驱动电路容易实现。
五:全固态结构,抗震性能好,因⽽可以适应巨⼤的加速度和剧烈振动等恶劣环境。
有机电致发光期间的结构⽰意图:⽬前,在实现彩⾊的三种主要颜⾊(红、绿、蓝)的有机电致发光器件中,红光和绿光器件发展得较为成熟,⽽蓝光器件与之相⽐还存在着较⼤差距,制约了全彩⾊显⽰的发展。
因为有机发光材料中,蓝光材料的能带间隙要求⽐较宽;同时由于能隙较⼤,容易受杂质影响,使发光效率和⾊纯度可能因此降低。
第⼀,对蓝⾊有机电致发光器件的特性进⾏了研究。
采⽤新型的蓝⾊有机⼩分⼦发光材料2P9PPF和DPPPF作为发光层,利⽤真空镀膜机制备了单层和多层结构的有机电致发光器件并且研究了其电学和发光特性。
通过对器件结构进⾏优化和各功能层的研究,研制出性能⽐较优异的蓝⾊有机电致发光器件。
器件的最⾼亮度和效率分别达到了19885 cd/m2 (13 V)和3.08 cd/A (9V),启动电压为3.5V, EL光谱峰值和1931CIE⾊坐标分别为460 nm和(0.18, 0.19)(12 V)。
有机电致发光器件OLED技术介绍摘要:有机电致发光器件(OLED)具有效率高、亮度高、驱动电压低、响应速度快以及能实现大面积光电显示等优点,因其在平板显示和高效照明领域具有极大的应用前景而引起广泛关注,也是21世纪首选的绿色照明光源之一。
虽然目前平板显示市场主流产品仍为LCD,OLED仍存在问题,但技术的发展与突破将必将会使OLED在未来大放异彩。
关键词:有机电致发光,OLED技术,OLED材料一、OLED简介OLED (Organic Light Emitting Display,有机电致发光显示,又称“有机EL显示”)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。
其原理是用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。
根据这种发光原理而制成显示器被称为有机发光显示器,也叫OLED显示器。
二、OLED发光原理有机电致发光属于载流子双注入型发光器件,所以又称为有机发光二级管。
其发光的机理一般认为如下:在外加电压的作用下,电子从阴极注入到有机物的最低空轨道(LUMO),而空穴则由阳极注入到有机物的最高占据轨道(HOMO)。
载流子在有机分子薄膜中的迁移被认为是跳跃运动和隧穿运动,并认为这两种运动是在能带中进行。
当电子和空穴在某一复合区复合后,形成分子激子,激子在有机固体薄膜中不断做自由扩散运动,并以辐射或无辐射的方式失活。
当激子由激发态以辐射跃迁的方式回到基态时,我们就观测到电致发光现象。
而发射光的颜色则是由激发态到基态的能级差所决定的。
有机电致发光过程通常由以下几个阶段完成:1)载流子的注入。
在外加电场的条件下,电子和空穴分别从阴极和阳极向夹在电极之间的有机功能薄膜层注入;2)载流子的迁移。