当前位置:文档之家› 光纤通道在纵联保护中的应用

光纤通道在纵联保护中的应用

光纤通道在纵联保护中的应用
光纤通道在纵联保护中的应用

光纤通道在纵联保护中的应用

青海电力调度中心 蔡 杰

摘 要 随着通信技术的发展,光纤作为一种性能价格比合理、抗干扰能力强的通信介质已在各领域得到广泛应用。在电力系统,纵联差动保护的通道一直是保护装置能否正确动作的主要瓶颈之一,光纤与保护通道结合构成的光纤通道可以提高通道的可靠性。该文结合青海电力系统高压线路纵联保护的实际状况,分析了光纤通道与纵联保护配合的几种方式,提出应用过程中存在的一些问题,认为各专业之间的协调、配合是解决问题的有效途径。

关键词 光纤通道;纵联保护;通信介质;应用

中图分类号:T M773 文献标识码:E 文章编号:1006-6357(2004)06-0038-03

近几年由于西部电网与全国电网在330kV电压等级的连接,输电半径扩大,导致电网结构增强,网际间的高压线路对继电保护的要求也越来越高。当系统发生故障时,必须要求有选择性地快速切除故障线路和决不能发生保护拒动或误动的现象。因此,全线速动的纵联保护对高压电网的稳定运行起着重要的作用。

高压线路纵联保护主要是依赖于通道将线路两端的保护装置测量信息进行交换,通过交换信息的变化量以区别是区内故障,还是区外故障。根据交换信息的方式,目前在青海电网运行的纵联保护主要分为:(1)闭锁式,(2)允许式,(3)远方跳闸式,(4)电流差动保护。相应的通道类型主要有:专用载波(专用收发信机),复用载波,复用微波,专用光纤,复用光纤等方式,其中专用载波通道的运行情况比较差,主要是抗误动能力较差,运行中曾多次发生因收信间断而造成的保护误动事故;而复用载波通道情况稍好;但也存在抗干扰能力差的问题。随着通信技术的发展,在纵联保护通道的选用上,已经由原来的单一载波通道变为现在的载波、微波、光纤等多种通道方式。光纤通道与继电保护相结合所形成的全线速动纵联保护将在电网中得到越来越广泛的应用。

1 光纤通道的特性分析

光纤通道技术是基于用光导纤维作为传输介质的一种通信手段,相对于其他传统通道(如:载波、微波等)具有如下特点:

(1)传输质量高,误码率低,一般在10-10以下。这种特点使得光纤通道很容易满足继电保护对通道所要求的“透明度”,使收端所看到的信息与发端原始信息完全一致。

(2)光的传输频率高,频带宽,因此光纤传输的信息量大,可使线路两端保护装置尽可能多地交换信息,从而大大提高继电保护动作的正确性和可靠性。

(3)抗干扰能力强。由于光信号可以有效地防止雷电、系统故障时产生的电磁干扰,所以光纤通道不存在传统通道的抗干扰问题。

但是,由于目前光纤技术发展的限制,光缆的抗外力破坏能力较差,当采用直埋或空中架设时,易于受到外力破坏,形成机械损伤。若采用架空地线复合光缆(OPG W),则可以有效地防止类似事件的发生。

2 光纤通道与纵联保护配合的几种方式纵联保护采用光纤通道,主要有以下几种方式:

(1)专用光纤保护。光纤通道与纵联保护(如:WX B211C、LFP2901A、LFP2902C)配合构成专用光纤纵联保护。通常采用允许式,即在光纤通道上传输允许信号和直跳信号。此种方式,需要专用光纤接口(如:FOX240),使用单独的专用光芯。

优点:可避免与其他装置的联系(包括通信专业的设备),减少信号的传输环节,增加使用的可靠性。

缺点:光芯利用率降低(与复用比较),保护人员维护通道设备没有优势,若在带路操作时,必须进行本路保护与带路保护光芯的切换,操作不便,

83供 用 电第21卷第6期2004年12月

并且光纤接头经多次的拨插,极易造成损坏。

(2)复用光纤保护。光纤通道与纵联保护(如:SE L2321、LFP902C、CS L101、WXH211C、7S D522等保护)配合构成复用光纤纵联保护。通常采用允许式,保护装置发出的允许信号和直跳信号需要经音频接口传送给复用设备,然后经复用设备上光纤通道。

优点:接线简单,利于运行维护。可方便进行带路电信号切换,提高了光芯的利用率。

缺点:中间环节增加,且带路切换设备在通信室,不利于运行人员巡视检查,通信设备有问题则会影响到保护装置的运行。

(3)光纤纵联电流差动保护。光纤通道首先得到应用的是模拟式的光纤纵联电流差动,但随着大规模集成电路的应用,正逐步被数字式电流差动广泛替代。目前,在青海电网运行的纵联电流差动保护有:LFP2943A、LFP2931C(南瑞)等保护装置。采用的通道有复用光纤和专用光纤两种方式。

鉴于光纤纵联电流差动保护原理简单,应用前景广泛,对通道依赖性强,以下着重阐述光纤纵联电流差动保护的应用。

3 应用中存在的若干问题及相应措施常用的电流差动原理较简单,通过计算线路两侧电流的差值来判别区内或区外故障。即:(1)区外故障时,故障电流为穿越性电流,两侧电流的差值为零。(2)区内故障时,故障电流由线路两侧流向故障点,差值为两侧故障电流之和。

在实际应用中,330kV电压等级以上系统的保护多要求采用分相电流差动保护方式,它是把本侧的三相电流采样值传送到对侧,进行同步比较,从而计算出电流差值,经逻辑判断后选择跳闸与否。在动作特性上,均采用比例制动原理,只是各家的制动特性不一样,有两段式,也有三段式。从设备运行的角度,对实际存在的一些问题阐述如下:

3.1 保护之间的连接问题

纵联电流差动保护与通信设备的连接有自身的特点,并不同于常规保护。常规保护传输的允许信号、直跳信号等可以说传输的是命令,是一种单一的数字量;而纵联电流差动保护传输是多组数字量,是把本侧的三相电流采样值进行模数转换传送到对侧,对侧在反模数转换后进行同步比较,从而计算出故障区间的电流差值,经逻辑判断后做出跳闸与否的选择。针对这个特点,纵联电流差动保护必须采用特殊的连接方式与设备,通常有以下几种:

(1)直接相连方式。

a)保护装置具有光接口,装置与装置之间通过光纤直接相连。此种方式可靠性高。当采用850nm波长的光纤设备与多模光纤配合使用时,具有经济性好且易于实现的特点。但由于光纤衰耗偏大(相对1300nm波长),传输距离一般不超过10km,所以在几km的短线路上经常采用。

b)在保护装置之间,通过双绞线或同轴电缆,依照G703同向接口协议,进行电接口直接相连的方式。要求保护具有电接口,但这种方式抗干扰能力差,而且数字量不宜进行长距离的传输。所以,一般不使用这种方式。

(2)复用方式。

a)保护装置电接口通过双绞线或同轴电缆,与通信PC M设备64kbps接口直接相连。在现场,通常保护室与通信室较远,而且数字信号直接在电缆中传输极易受干扰,所以,这种方式很少采用。

b)保护装置光接口通过光纤与光电转换设备相连,然后光电转换设备与通信PC M复用设备64kbps接口依照G703协议进行连接。由于光信号抗干扰能力强,可以用于变电站内保护室与通信室之间的连接,可以很方便地进行电信号的切换。所以,这种方式被广泛地采用。

3.2 同步问题

在复用接口与通信设备连接时,大部分接口均支持G703同向方式(也有些设备要求提供反向接口)。为了满足64kbps数据通道收发数据同步复接的要求,必须采用主从时钟方式,否则将因时钟不同步而造成滑码,保护装置反映出的就是CRC校验码告警。在某些保护装置中,对接口没有要求,但时钟必须设为主从方式,因为两端保护装置在计算差流时,必须保证同步,否则差流的计算容易造成误差。

有一些纵联电流差动保护装置内部,有多种通道连接方式选择,如:光纤直联方式、经光电转换进64kbps接口等。这些方式均需采用跳线进

93

2004年第6期供 用 电

行切换,否则也会造成两侧装置计算差流的不同步。在实际运行中,曾发生过这种情况:维护人员更换备用插件时,由于未对跳线进行核对,造成保护装置CRC校验误码增加,甚至达到告警定值,这也是由于数据不同步造成的。

3.3 差动CT断线的判别

对于电流纵差保护来说,CT断线的判别是很重要的一个功能,若处理不当,就有可能造成保护误动。现运行的所有纵差保护中,有如下方式可以解决差动CT断线的判别问题:一种是引入另一个CT或同一CT的不同绕组,与本身CT进行比较(如:零序电流),若不一致则为CT断线,闭锁保护;若一致则为系统故障,开放保护。另一种是利用通道来交换线路两侧的零序电流量值,判别方法同上;还有利用检测电压变化率或零序电压闭锁保护等。

以上几种方式中,利用通道比较两端的零序电流的方式比较好,它充分利用了光纤通道的优势,又减少了外部的接线,简化了装置。而对于采用电压变化量来闭锁、开放保护的方式,由于造成电压波动的因素太多,如:投切电抗器、电容器,发电机调整无功等,而且高阻接地时,电压的变化量并不大,所以国产保护中还没有用电压变化量来开放保护的方式。

3.4 光缆与保护配合问题

根据青海电网调度规程:330kV线路不允许无纵联保护运行。即:当线路的两套纵联保护因故退出时,必须停运此线路。因此,在光纤与纵联保护的配合上,不允许同一线路的两套纵联保护使用一条光缆。为防止因光缆出现问题造成线路停运,对于双回线路,允许每条线路的其中一套可以共用一条光缆,而另一套则必须使用其他光缆或通道。

收稿日期:2004年7月21日

蔡杰 青海电力调度中心

青海西宁市新宁路14号 810008

(上接第37页)

电的各项工作,并制订相应的节电方案,共度缺电难关。

2.6 做好缺电情况下的优质服务,努力做到限电不限真情,缺电不缺服务

按照“限电不限真情,缺电不缺服务”的原则,在加强有序用电调控的同时,努力做好优质服务。海曙供电局在开通客户电费短信服务系统的基础上,开通了限电客户短信服务系统,用户只要提出申请,即可免费享受限电提前一天通知的服务;改变以前停电公告只讲线路名称的模糊状况,推出详细的具体停电地点和具体停电用户名称,使广大电力用户能获得自己的停电信息,及时安排生产和生活。

2.7 缺电不忘保供电,做好特殊时期的保供电服务

海曙供电局根据每项保供电任务的内容和特点,从保障外部电力供应和加强用户内部配电管理两个方面入手,采取灵活多样的手段,确保电力安全可靠供应。今年以来,已成功完成各类保供电17余次,有力地维护了宁波市改革开放新形象。特别是今年在拉闸限电过程中,部分重要双电源用户因操作不当引起短时停电,供电部门都第一时间赶到现场,确保这些重要用户的供电。在夏季用电高峰期间,加强24小时事故抢修力量,随时准备以最快速度排除用户的电力故障。

通过上述措施,在当时高温的极端困难情况下,尽力做到停机不停线,辖区负荷基本维持在21万kW左右,同最高负荷预测29.5万kW相比,整整下降了8万kW左右;并且,通过有序调控,日最低负荷从6万kW上升到10万kW,削峰填谷达到预期要求,用电负荷率得到极大提高,有序用电取得阶段性成果。

收稿日期:2004年9月27日

邵伟明 宁波电业局海曙供电局

宁波市开明街341号 315000

04供 用 电2004年第6期

220kV线路光纤通道测试作业指导书

贵州华电毕节热电有限公司 220kV线路专用光纤通道定检测试 作业指导书 批准: 审核: 编制: 2014年09月

一、适用范围: 本作业指导书适用于220kV线路保护光纤通道定检测试作业。 二、引用标准: 1、《电力安全动作规程》(发电厂和变电站电气部分)DL 408-1991 2、《继电保护和电网安全自动装置检验规程》GB/T 14285—2006 3、《继电保护和电网安全自动装置检验规程》DL/T 995—2006 4、《中国南方电网通信管理暂行规定》(南方电网调【2003】10号) 5、《中国南方电网安全自动装置管理规定》(南方电网调【2004】7号) 6、《南方电网电力调度数据网络管理办法》(调通【2005】2号) 7、《南方电网通信网络生产应用接口技术规范》(调通【2007】18号) 三、作业条件及作业现场要求 1、工作区间与带电设备的安全距离应符合《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的要求。 2、作业现场应有可靠的试验电源,且满足试验要求。 3、检验对象处于停运状态,现场安全措施完整、可靠。 4、保持现场工作环境整洁。 四、作业人员要求 1、所有作业人员必须身体健康,精神状态良好。 2、所有作业人员必须掌握《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的相关知识,并经考试合格。 3、所有作业人员应有触电急救及现场紧急救火的常识。 4、本项检验工作需要作业人员2—3人。其中工作负责人1人,工作班成员1—2人。 5、工作负责人应由从事继电保护现场检验工作3年以上的专业人员担任,必须具备工作负责人资格,熟练掌握本作业程序和质量标准,熟悉工作班成员的技术水平,组织并合理分配工作,并对整个检验工作的安全、技术等负责。 6、工作班成员应由从事继电保护现场检验工作半年以上的专业人员担任,必须具备必要的继电保护知识,熟悉本作业指导书,能掌握有关试验设备、仪器仪表的使用。 五、作业前准备工作: 1、开始工作前一天,准备好作业所需设备、仪器、仪表和工器具。主要仪器设备和工器具见下表。 主要仪器设备和工器具 序号名称数量规格备注 1 继电保护光纤通道测试仪1台ZY64520 有效期内 2 尾纤适量 3 数字万用表1只4位半有效期内 4 工具箱1套0.2级,0.5—2A 各种检修工具齐全 2、开始作业前一天,准备好图纸及资料,且图纸及资料应符合现场实际情况。具体图纸、资料见下表。 检验所需图纸资料 序号资料名称单位数量

变压器纵联差动保护

第四节变压器纵联差动保护 一、变压器纵联差动保护的原理 纵联差动保护是反应被保护变压器各端流入和流出电流的相量差。对双绕组变压器实现纵差动保护的原理接线如下图所示。 为了保证纵联差动保护的正确工作,应使得在正常运行和外部故障时,两个二次电流相等,差回路电流为零。在保护范围内故障时,流入差回路的电流为短路点的短路电流的二次值,保护动作。应使 或 结论: 适当选择两侧电流互感器的变比。 纵联差动保护有较高的灵敏度。 二、变压器纵联差动保护在稳态情况下的不平衡电流及减小不平衡电流的措施 在正常运行及保护范围外部短路稳态情况下流入纵联差动保护差回路中的电流叫稳态不平衡电流I bp。 1.由变压器两侧电流相位不同而产生的不平衡电流 思考:由于变压器常常采用Y,dll的接线方式, 因此, 其两侧电流的相位差30o。此时,如果两侧的电流互感器仍采用通常的接线方式,则二次电流由于相位不同,会有一个差电流流入继电器。如何消除这种不平衡电流的影响?

解决办法:通常都是将变压器星形侧的三个电流互感器接成三角形,而将变压器三角形侧的三个电流互感器接成星形。 2.由两侧电流互感器的误差引起的不平衡电流 思考:变压器两侧电流互感器有电流误差△I,在正常运行及保护范围外部故障时流入差回路中的电流不为零,为什么? 为什么在正常运行时,不平衡电流也很小? 为什么当外部故障时,不平衡电流增大? 原因:电流互感器的电流误差和其励磁电流的大小、二次负载的大小及励磁阻抗有关,而励磁阻抗又与铁芯特性和饱和程度有关。 当被保护变压器两侧电流互感器型号不同,变比不同,二次负载阻抗及短路电流倍数不同时都会使电流互感器励磁电流的差值增大。 减少这种不平衡电流影响的措施: (1)在选择互感器时,应选带有气隙的D级铁芯互感器,使之在短路时也不饱和。 (2)选大变比的电流互感器,可以降低短路电流倍数。 (3)在考虑二次回路的负载时,通常都以电流互感器的10%误差曲线为依据,进行导线截面校验,不平衡电流会更小。最大可能值为: 3.由计算变比与实际变比不同而产生的不平衡电流 思考:两侧的电流互感器、变压器是不是一定满足 或的关系? 原因:很难满足上述关系。 减少这种不平衡电流影响的措施: 利用平衡线圈W ph来消除此差电流的影响。 假设在区外故障时,如下图所示,则差动线圈中将流过电流(),由它所产生的磁势为W cd()。为了消除这个差动电流的影响,通常都是将平衡线圈W ph接入二次电流较小的一侧,应使 W cd()=W ph 4.带负荷调变压器的分接头产生的不平衡电流 思考:在电力系统中为什么采用带负荷调压的变压器会产生不平衡电流?

输电线路纵联保护中光纤通信的应用

输电线路纵联保护中光纤通信的应用 发表时间:2018-08-16T16:49:38.460Z 来源:《电力设备》2018年第13期作者:胡念恩 [导读] 摘要:为了在电网或者电气设备发生故障,或出现影响电网正常运行的异常情况时能及时切除故障,消除异常情况,保证电网的正常运行,就需要电力系统继电保护与安全自动装置发挥作用。 (西北民族大学电气工程学院甘肃兰州 730124) 摘要:为了在电网或者电气设备发生故障,或出现影响电网正常运行的异常情况时能及时切除故障,消除异常情况,保证电网的正常运行,就需要电力系统继电保护与安全自动装置发挥作用。因此本文主要介绍继电保护中的输电线路纵联保护中光纤通信的应用。 关键词:输电线路纵联保护;信息交换;光纤通信 1.输电线路纵联保护 1.1纵联保护的概念 电力系统的稳定运行与国民的生产生活有着密不可分的关系,为保证电力系统的正常运行,就需要加装电力系统继电保护装置,目前在输电线路中运用最多的是纵联保护。研究和实践表明,利用线路两侧的电气量可以快速、可靠地区分本线路内部任意点短路与外部短路,达到有选择、快速地切除全线路任意点短路的目的。为此需要将线路一侧电气量信息传到另一侧去,安装于线路两侧的保护对两侧的电气量同时比较、联合工作,也就是说在线路两侧之间发生纵向的联系,以这种方式构成的保护称之为输电线路的纵联保护[1]。 输电线路纵联保护一般构成如图1所示。图中TV为电压互感器,TA为电流互感器,它们分别获取本端的电压、电流,两端的保护根据不同的保护原理分别从中提取用来比较的电气量特征,通过通信设备将本端电气量特征传送到对端,并接收来自对端的电气量特征,将两端的电气量特征进行比较,如果满足动作条件则本端断路器跳开,并发送信号告知对端;若不符合动作条件则不会动作。 图1输电线路纵联保护结构框图 1.2输电线路纵联保护两侧信息的交换 在电力系统中输电线路的纵联保护需要相应通道和通信设备进行信息交换与传递,目前常用的通信方式有:导引线通信、电力线路载波通信、微波通信、光纤通信,利用以上通信方式构成的保护分为导引线纵联保护、电力线路载波纵联保护、微波纵联保护、光纤纵联保护[2]。 2.光纤通信 光纤通道由于其在性能和经济上的优势,逐渐成为目前在输电线路纵联保护中最常用的通信通道。 2.1光纤通信的组成 在这里以点对点单向光纤通信系统为例,图2是示意图。 图2 单向点对点光纤通信系统 2.1.1光发射机 使用光发射机可以把电信号转变为光信号进行传输。光发射机也称光发送器,包含电调制器和光调制器。一般是由铝石钕榴石激光器或砷镓铝二极管或者砷化镓发光二极管构成。发光二极管的寿命很长,能达到百万小时左右,所以是简单便宜但又可靠的光电转换元件。 2.1.2光纤 光导纤维简称光纤,是一种由玻璃或塑料制成的纤维。主要是由保护和加强光纤机械强度的包层和传输光信号的光芯组成。因其具有抗干扰能力强、节约金属材料、不易受潮、通道容量大、无感应性能等特点,所以被广泛应用于通信方面。 2.1.3中继器 信号经过光纤传输后会有一定程度的衰减,这个时候就需要用中继器对衰减信号进行放大。常用的中继器有全光中继器和光-电-光中继器,可以根据不同的需求选择相应的继电器对信号进行处理。 2.1.4光接收机 通过光纤传过来的是光信号,光接收机对接收到的光信号进行处理,将光信号转变成电信号,通常是由接收光信号的光探测器和处理信号的电解调节器组成。 2.2 继电保护中光纤通信的应用方式 光芯通信在继电保护中的通信方式主要有专用光纤通信方式和复用光纤通信方式。 2.2.1专用光纤通信方式 在继电保护光纤通信中有一种专门负责传输继电保护信息,不传输其他信息的通道,这种传输方式称为专用光纤通信方式。这种通信方式使用的光纤的光芯经过融纤技术的处理,直接连接继电保护设备的接口,没有经过任何其它中间设备,保证了其通信的可靠性。因此这种通信方式具有简单可靠、便于管理等特点。但是这种方式受到光的接发距离和敷设专用光纤费用等因素的限制,其通信距离通常限于

KV线路光纤差动保护原理

首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。 但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。纵联保护的通道一般有以下几种类型: 1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号; 2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输; 3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道; 4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。 差动保护 差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。

中文名 差动保护 外文名 Differential protection 目录 1.1概述 2.2原理 3.3技术参数 4.?环境条件 1.?工作电源 2.?控制电源 3.?交流电流回路 4.?交流电压回路 5.?开关量输入回路 1.?继电器输出回路 2.4功能 3.5主要措施 4.6缺点 概述编辑

电流差动保护是继电保护中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。 差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,上位机报警保护出口动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。 原理编辑 差动保护

光纤差动保护

光纤差动保护 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。 当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。 2 对通信系统的要求 光纤电流差动保护借助于通信通道双向传输电流数据,供两侧保护进行实时计算。其一般采用两种通信方式:一种是保护装置以64Kbps/2Mbps速率,按

ITU-T建议G.703规定于数字通信系统复用器的64Kbps/2Mbps数据通道同向接口,即复用PCM方式;另一种是保护装置的数据通信以64Kbps/2Mbps速率采用专用光纤芯进行双向传输,即专用光纤方式。(详见图3) 光纤电流差动保护要求线路两侧的保护装置的采样同时、同步,因此时钟同步对光纤电流差动保护至关重要。当电流差动保护采用专用光纤通道时,保护装置的同步时钟一般采用"主-从"方式,即两侧保护中一侧采用内部时钟作为主时钟,另一侧保护则应设置成从时钟方式。设置为从时钟侧的保护装置,其时钟信号从对侧保护传来的信息编码中提取,从而保证与对侧的时钟同步。当采用复用PCM方式时,复用数字通信系统的数据通道作为主时钟,两侧保护装置均应设置为从时钟方式,即均从复用数字通信系统中提取同步时钟信号:否则保护装置将无法与通信系统数据通道进行复接。

纵联保护原理

纵联保护原理 线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。而普通的反应线路一侧电量的保护不能做到全线速动。纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。是属于直接比较两侧电量对纵联保护。目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。 先了解一下纵联差动保护: 为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。 输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连

接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路. 纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。 高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。安工作原理的不同可分为两大类:方向高频保护和相差高频保护。 光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。光纤通信广泛采用PCM调制方式。这总保护发展很快现在一般的变电站全是光纤的了经济又安全。

几种型号的分相电流差动保护的异同

几种常见型号的分相电流差动保护的比较 本文将对目前工区范围内常见的几种分相电流差动的保护原理,装置结构、日常运行操作等方面做一个简要的介绍和比较,从而找出其共性和不同之处,为日常运行工作提供参考。 1. 分相电流差动的基本原理 1) 基本原理 保护通过通讯通道把一端的带有时标的电流信息数据传送到另一端,各侧保护利用本地和对侧电流数据按相将同一时刻的电流值进行差动电流计算,比较两端的电流的大小与相位,以此判断出是正常运行、区内故障还是区外故障。 以母线指向线路为正方向,根据基尔霍夫电流定律,在不考虑电容电流和CT 采样误差的情况下:正常运行或区外故障时一侧电流由母线流向线路,为正值,另一侧电流由线路流向母线,为负值,两电流大小相同,方向相反,所以0M N I I += ,差流元件不动作。区内故障时两侧实际短路电流都是由母线流向线路,和参考方向一致,都是正值,差动电流会很大,满足差动方程,差流元件动作。 2) 与相差高频在原理上的区别 相差高频保护是比较被保护线路两侧电流相位的高频保护。当两侧故障电流相位相同时保护被闭锁,两侧电流相位相反时保护动作跳闸。 两者区别在于相差高频不比较电流值只比较相位,分相电流差动同时比较两侧的电流幅值和相位。 3) 保护的通道 分相电流差动保护需要将线路两端的电流信息进行比较,应此要有专门的通道来传输这些电流信息,目前保护通道主要有载波通道与光纤通道。由于光纤通道具有可靠性好,传输信息量大的优点,因此分相电流差动保护均使用光纤通道。 光纤通道分为两种:一种为复用通道,另一种为专用通道。 专用光纤通道:专用纤芯方式相对比较简单,运行的可靠性也比较高 ,220kV 及以下线路光纤保护多采用专用纤芯方式 复用光纤通道:两地之间通过通信网通信。由于通信网是复用的,所以需要用通信设备进行信号的复接。多用于500kV 长距离输电线路。 2. 分相电流差动保护的优势 与高频距离、相差高频等纵联保护相比分相电流差动主要有以下优点: A. 分相电流的差动保护中只要引入电流量就能实现故障判别,而无需引入电压量。因 而在原理上得到了很大的简化。 B. 分相电流差动保护中只对电流值进行测量计算,不对故障距离阻抗进行计算,因此 提高了耐过渡电阻的能力。 C. 分相电流差动保护中只要对两端电流差值和相位进行测量计算就能明确选出故障 相,故障选相变得非常容易,而这在其它保护方法中是难点。 D. 分相电流差动保护不受系统振荡影响。在系统振荡时两端电流方向与正常时相同, 相位的摆动完全一致,即使在系统振荡时发生故障,保护装置也能根据两端电流相位变化正确动作。

纵联保护原理

纵联保护原理?我们先来瞧一下反映一侧电气量变化得保护有什么不足? 对于反映单侧电气量变化得M侧保护来说,它无法区分就是本侧线路末端故障还就是下级线路始端故障。所以在保护整定上要将它瞬时段得保护范围限制在全线得70%~80%左右,也即反映单侧电气量变化得保护不能瞬时切除本线路全长内得故障。 因此,引入了纵联保护,纵联保护就是综合反映线路两侧电气量变化得保护,对本线路全长范围内得故障均能瞬时切除。 为了使保护能够做到全线速动,有效得办法就是让线路两端得保护都能够测量到对端保护得动作信号,再与本侧带方向得保护动作信号比较、判定,以确定就是否为区内故障,若为区内故障,则瞬时跳闸。这样无论在线路得任何一处发生故障,线路两侧得保护都能瞬时动作跳闸。快速性、选择性都得到了保证。?在构成保护上,就是将对侧对故障得判断量传送到本侧,本侧保护经过综合判断,来决定保护就是否应该动作。有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障就是否在本线路正方向得判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等) 一、实现纵联保护得方式: 1、闭锁式:也就就是说收不到高频信号就是保护动作与跳闸得必要条件。一般应用于超范围式纵联保护(所谓超范围即两侧保护得正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。 ? 2、允许式:也就就是说收到高频信号就是保护动作与跳闸得必要条件。一般应用于超范围式纵联保护(所谓欠范围即两侧保护得正方向保护范围均超过本线路全长得50%以上,但没有超出本线路全长);高频信号采

纵联差动保护原理

一、发电机相间短路的纵联差动保护 将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部故障时,I1与I2反向流入,KD的电流 为1 1 TA I n -2 2 TA I n = 1 I'- 2 I'≈0 ,故KD不会动作。当在保护 区内K2点故障时,I1与I2 同向流入,KD的电流为: 1 1 TA I n +2 2 TA I n = 1 I'+ 2 I'=2k TA I n 当2k TA I n 大于KD的整定值时,即 1 I'-(3) max max / unb st unp i k TA I K K f I n =≠ 0 ,KD动作。这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2k TA I n ≥I set ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA的误差增大,再加上短路电流中非周期分量的影响,Iunb增大,一般外部短路电流越大,Iunb就可能越大,其最大值可达: .min .min.min () brk brk op ork brk op I I I K I I I > ≥≤+ 式中:Kst——同型系数,取0.5; Kunp——非周期性分量影响系数,取为1~1.5; fi ——TA的最大数值误差,取0.1。 为使KD在发电机正常运行及外部故障时不发生误动作,KD的动作值必须大于最大平衡电流Iunb.max,即Iop=KrelIunb.max (Krel为可靠系数,取1.3)。Iunb.max越大,动作值Iop就越大,这样就会使保护在发电机内部故障的灵敏度降低。此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg

继电保护光纤通道管理规定

500kV系统继电保护光纤通道管理规定 一.总则 1.为加强继电保护光纤通道管理,进一步提高继电保护光纤通道可靠性,制定本规定。 2.本规定主要依据《继电保护和安全自动装置技术规程》(GB/T 14285-2006)、《线路保护及辅助装置标准化设计规范》(Q/GDW 161-2007)、《继电保护和电网安全自动装置检验规程》(DL/T 995—2006)和《光纤通道传输继电保护信息通用技术条件》等制定。 3.本规定适用于500kV继电保护光纤通道的调度、设计、基建、运行维护等。220千伏及以下系统可参照执行。 二.专业管理职责划分 1.专用纤芯方式 1.1保护用光纤直接由龙门架接续盒引出到线路保护装置的,接续盒至保护装置的光缆由继电保护专业负责维护。通信专业协助进行光纤的测试及熔接工作。 1.2保护用光纤由通信机房光配线架(ODF)引出到线路保护装置的,通信专业与继电保护专业以光配线架为分工界面。龙门架接续盒至通信机房光配线架的光缆及光配线架由通信专业负责维护。光配线架至保护装置的光缆由继电保护专业负责维护,通信专业协助进行光纤的测试及熔接工作。 2.复用接口方式 保护装置复用通道以配线架(数字配线架或音频配线架)作为继电保护专业和通信专业的分工界面。继电保护接口设备(保护用光电转换器)至配线架间的电

缆由保护专业维护,配线架和复用通信设备及其连接线由通信专业负责维护,继电保护接口设备由继电保护专业负责维护。 3.传输保护信号的光缆、数字电缆、音频电缆在通信侧各配线架的接线或改线方案由通信专业、继电保护专业的双方负责人签字确认,接线由通信专业人员负责。接线时,继电保护专业人员应到场配合。 三.管理规定和技术要求 1.对于配置双套光纤差动保护的线路,要求至少一套光纤差动保护使用双通道。 2.线路两套光纤纵联保护通道应使用两条完全独立的路由。 3.采用复用光纤通道的线路两侧继电保护设备,其使用的继电保护接口设备应采用同型号、同版本的产品。 4.采用2M方式传输的继电保护业务通道不得设置通道保护方式。 5.对于主干线光纤网络长度小于30km且建设有OPGW光缆的线路,宜优先采用专用纤芯作为保护通道。 6.对于传输继电保护信息的迂回光纤通道,迂回路由的站点应在500kV、220kV系统OPGW光纤通信骨干环网上。 7.传输保护的迂回光纤通道,通道传输收发延时应相同,且单向传输延时不得超过10ms,所经过的站点不宜超过6个站点,迂回所经线路长度不宜超过 1000km。 8.继电保护通道中任一设备故障,不应造成多于6条线路的一套主保护信号同时中断。

纵联保护原理

纵联保护原理 我们先来看一下反映一侧电气量变化的保护有什么不足? 对于反映单侧电气量变化的M侧保护来说,它无法区分是本侧线路末端故障还是下级线路始端故障。所以在保护整定上要将它瞬时段的保护范围限制在全线的70%~80%左右,也即反映单侧电气量变化的保护不能瞬时切除本线路全长内的故障。 因此,引入了纵联保护,纵联保护是综合反映线路两侧电气量变化的保护,对本线路全长范围内的故障均能瞬时切除。 为了使保护能够做到全线速动,有效的办法是让线路两端的保护都能够测量到对端保护的动作信号,再与本侧带方向的保护动作信号比较、判定,以确定是否为区内故障,若为区内故障,则瞬时跳闸。这样无论在线路的任何一处发生故障,线路两侧的保护都能瞬时动作跳闸。快速性、选择性都得到了保证。 在构成保护上,是将对侧对故障的判断量传送到本侧,本侧保护经过综合判断,来决定保护是否应该动作。有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障是否在本线路正方向的判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等) 一、实现纵联保护的方式: 1、闭锁式:也就是说收不到高频信号是保护动作和跳闸的必要条件。一般应用于超范围式纵联保护(所谓超范围即两侧保护的正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。 2、允许式:也就是说收到高频信号是保护动作和跳闸的必要条件。一般应用于超范围式纵联保护(所谓欠范围即两侧保护的正方向保护范围均超过本线路全长的50%以上,但没有超出本线路全长);高频信号

采用收发不同频率,即双频制。 3、直跳式:也就是说收到高频信号是保护跳闸的充分必要条件。一般应用于欠范围式纵联保护。 4、差动式:也就是说将对侧电气量转化为数字信号传送到本侧进行直接计算 二、故障时允许式信号、闭锁式信号的特点 闭锁式信号主要在非故障线路上传输 允许式信号主要在故障线路上传输 所以说,对于闭锁信号可以利用电力线路相-地通道构成闭锁式保护;而允许信号由于主要在故障线路上传输,则只能采用相-相通道或者是复用载波、复用微波、专用光纤通道。 三、闭锁式纵联保护原理

光纤差动保护原理分析

光纤差动保护原理分析 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。

当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。

对于光纤分相电流差动保护而言,其差动保护一般采用如图2所示的双斜率制动特性,以保证发生穿越故障时的稳定性。图中,Id 表示差动电流,Ir表示制动电流,K1、K2分别表示不同的制动斜率。 采用这样的制动特性曲线,可以保证在小电流时有较高的灵敏度,而在电流大时具有较高的可靠性,即当线路末端发生区外故障时,因电流互感器发生饱和产生传变误差,此时采用较高斜率的制动特性更为可靠。 由于线路两侧电流互感器的测量误差和超高压线路运行时产生 的充电电容电流等因素,差动保护在利用本地和对侧电流数据按相进行实时差电流计算时,其值并不为零,也即存在一定的不平衡电流。光差动保护必须按躲过此电流值进行整定,这也是在上面所示的图2中最小差电流整定值Isl不为零的原因所在。如何躲过该不平衡电流对差动保护的影响,不同类型的保护装置其采用的整定方法也不尽相同,一般采用固定门坎法进行整定,即将在正常运行中保护装置测量到的差电流作为被保护线路的纯电容电流,并将该电流值乘以一系数(一般为2-3)作为差动电流的动作门坎。 当差动元件判为区内故障发出跳闸命令时,除跳开线路本侧断路器外,还借助于光纤通道向线路对侧发出联跳信号,使得对侧断路器快速跳闸。 2 对通信系统的要求

光纤纵联电流差动保护通道异常

1概述 光纖縱聯電流差動保護是近年來發展相當快的輸電線路保護之一,它借助光纖通道傳送輸電線路兩端的資訊,以基爾霍夫電流定律為依據,能簡單、可靠地判斷出區內、區外故障。對於線路保護來說,分相電流差動保護具有天然的選相能力和良好的網路拓撲能力,不受系統振盪、非全相運行的影響,可以反映各種類型的故障,是理想的線路主保護。光纖通信與輸電線無直接聯繫,不受電磁干擾的影響,可靠性高,通信容量大。光纖縱聯電流差動保護既利用了分相電流差動的良好判據,又克服了傳統導引線方式的種種缺陷,具有其他保護無以比擬的優勢,因此,近年來國內外各大公司均加強在該領域的研 究開發,各自相繼推出了此類保護產品。 就光纖縱差保護的應用環境來說,隨著國家電力工業的發展,通訊技術的日新月異,光纜及光纖設備費用的急劇下降,光纖通訊網在電力系統的架設越來越普遍。如廣東目前已建成了光纜1300km,SDH (Synchronous Digital Hierarchy)站點30多個,以珠江三角洲為中心的SDH自愈環電力光纖網路。目前,許多地方都把發展光纖通信主幹網作為電力通信的發展方向和重要任務,這都為繼電保護所需要的穩定、可靠的數位化資訊傳輸通道創造了有利條件。在光纖網路敷設的光纜中,除提供數據共用光纖通道介面,滿足數據通信、寬頻多媒體、圖像資訊等的需求外,還提供了繼電保護專用的纖芯,這為高壓輸電線的電流縱聯差動保護提供了複用光纖通道(與SDH共用的數

據通道)和專用光纖通道(利用光纖網路中繼電保護用纖芯構成)。另外,由於光纖電流差動保護簡單、可靠,不受線路運行方式的影響,在城網和短輸電線路中大量採用。如上海電網已把採用光纖分相電流縱差保護作為電網繼電保護“十五”規劃的一個重要配置原則來執行,目前已投運和即將投運的光纖電流差動保護達194套。因城網中輸電線大多較短,光纖芯直接接入不需附加複接設備,管理也較方便,故在城網中光纖電流差動保護以專用光纖通道方式為多。 光纖傳輸通道的穩定與否是光纖縱聯差動保護正確工作的基礎,一旦光纖傳輸通道發生故障,光纖縱聯差動保護將不能正常工作。實際上,為提高保護裝置的可靠性,當光纖傳輸通道發生故障時,保護裝置會將電流縱聯差動保護自動退出。光纖通道的可靠性雖然較高,但也有損壞的可能性,如光纜斷芯、熔纖品質不好、光纖跳線接頭鬆動、光纖受潮或接頭積灰導致損耗增大等。如1999年6月7日,塘鎮站到機場站的2158/2159兩條220kV線路光纖保護告警,故障原因是:線路龍門架上OPGW(Optical Fiber Composition Ground Wire)與站內普通光纜接線盒由於雨天受潮引起一束光纖(4根芯)衰耗增大。2000年7月20日,吳涇第二發電廠到長春站4410線的兩套光纖差動保護均通道告警,原因是該線OPGW光纜中有幾芯熔接品質不好,光纖調換到備用芯後恢復正常。 考慮光纖資訊傳輸通道有可能損壞,為保證高壓輸電線的安全運行,作為主保護的縱差保護不致由於通道故障而退出運行,確實有必要為同一套縱差保護裝置配置備用光纖通道。不論採用專用光纖通道

保护光纤通道测试报告.

附件2 保护光纤通道测试报告 线路名称: 电压等级: 测试地点: 测试单位:单位盖章 测试日期:

编写人: 参与测试人员: 审查: 核定: - I -

一、测试条件 阴大雾大雨 二、设备情况 1、现场运行设备 64kbps2Mbps专用光纤 注:1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如FOX-41A、GXC-01、CSY-102A等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信号转换为G.703规约2M电信号的装置,如MUX-2M、GXC-64/2M、CSY-186A等。 2、保护装置使用的64kbps采用G.703同向数字接口或2Mbps透明传输接口,SDH的2Mbps 通道再定时功能不用,此项工作由通信人员负责。 2、试验仪器

三、保护通道构成 备注:以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。 四、差动保护光纤通道测试 4.1专用光纤方式

(A)配有光纤接线盒的专用光纤通道连接图 (B)未有光纤接线盒的专用光纤通道连接图 图1 差动保护专用光纤通道连接示意图 4.1、保护装置及保护通信接口装置发光功率和接收功率测试 测试目的:测试保护装置和光纤接口的发光功率以及接收功率。 测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率——保护装置的发光功率和保护装置收信端(RX)尾纤的光功率——保护装置接收到的光功 率。 测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。 测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。 2、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立

电动机纵联差动保护

电动机纵联差动保护 一、比率制动差动保护 (1)电动机二次额定电流 1 n TA I n =? (2)差动保护最小动作电流 I s =K rel (·K cc ·K er +Δm )I n ap K K rel ——可靠系数,取K rel =2 ap K ——外部短路切除引起电流互感器误差增大的系数(非周期分量系数)=2 ap K K cc ——同型系数,电流互感器同型号时取K cc =0.5,不同型号时K cc =1 K er ——电流互感器综合误差取K er =0.1 Δm ——通道调整误差,取Δm =0.01~0.02 I s =2 (2×0.5×0.1+0.02)I n =0.24 I n 一般情况下,取I s =(0.25~0.35)I n ,当不平衡电流较大时,I s =0.4I n (3)确定拐点电流I t 有些装置中拐点电流是固定的,如I t = I n ;当拐点电流不固定时可取I t = (0.5~0.8)I n (4)确定制动特性斜率s 按躲过电动机最大起动电流下差动回路的不平衡电流整定 最大起动电流I st ·max 下的不平衡电流I umb ·max 为 I umb ·max =(·K cc ·K er +Δm ) I st ·max ap K =2,K cc =0.5,K er =0.1,Δm=0.02,I st ·max =K st I n (取I st =10) ap K I umb ·max =(2×0.5×0.1+0.02)10I n =1.2I n 比率制动特性斜率为 t n st s umb rel I I K I I K s ??= ?max K rel =2,当I s =0.3 I n ,I t =0.8 I n ,K st =7 2 1.20.30.3470.8n n n n I I s I I ×?==? 一般取s =0.3~0.5 (5)灵敏系数计算 电动机机端最小两相短路电流为 (2)1 2K L I x x = ?′+ x ′- 电动机供电系统处最小运行方式时折算到S B 基准容量的系统阻抗标幺值 U B - 电动机供电电压级的平均额定电压U B =6.3(10.5)kV X L - 电动机供电电缆折算到S B 基准容量的阻抗标幺值 制动电流(2)res TA 2K I I n =相应的动作电流为

纵联差动保护

6.2 纵联差动保护 6.2.1 基本原理 6.2.1.1 定义 差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。 6.2.1.2 基本原理 变压器纵差保护是按照循环电流原理构成的 变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA 1、TA 2之间的范围)外故障时,流入差动继电器中的电流为零,即2?'I -2? ''I =0,保证纵差保护不动作。但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。 (a) 双绕组变压器正常运行时的电流分布 (b) 三绕组变压器内部故障时的电流分布 (图6.4 变压器纵差保护原理接线图) 在图6.4(a )双绕组变压器中,变压器两侧电流1?'I 、1?''I 同相位,所以电流互感器TA 1、TA 2二次的电流2?'I 、2?''I 同相位,则2?'I -2?''I =0的条件是2?'I =2? ''I ,即 2?'I =2?''I = 11i n I ?'=21i n I ? '' (6.1) 即 12i i n n =1 1?? '''I I =T K (6.2) 式中,1i n 、2i n ——分别为TA 1、TA 2的变比; T K ——变压器的变比。 若上述条件满足,则当变压器正常运行或纵差保护区外故障(以下简称“区外故障”或“区内故障”)时,流入差动继电器的电流为 K I ?=2?'I -2? ''I =0 (6.3) 当区内故障时,2?''I 反向流出,则流入差动继电器的电流为

光纤通信差动保护

洛阳理工学院 毕业设计(论文)任务书 填表时间:2015年 1 月20 日(指导教师填表) 学生姓名徐文昂专业 班级 B110404 指导教 师 张玉柱 课题 类型 工程 设计 题目基于光纤通信的电力线路差动保护设计 主要研究目标(或研究内容) 1. 研究光纤电流差动保护的原理及故障分量电流差动保护原理与差动保护的配置,影响差动保护灵敏度的因素; 2. 研究光纤电差动保护的各种通信方式以及实现的方法; 3. 研究光纤电流差动保护装置硬件的实现; 4. 掌握差动保护的的一般设计步骤,完成差动保护的基本设计方案。 课题要 求、主要任务及数量(指图纸规格、张数,说明书页数、论文字数等)1. 撰写设计说明书一份,着重阐明设计任务与依据,各部分的设计原则、方法、设计方案与成果,必要的数据、步骤、表格、插图等,并力求论证充分、简明通顺、条理清晰、逻辑性强。 2. 电气图应用计算机绘图,所用图形符号、文字符号及制图方法等均应遵从国家规定,且力求比例适当,图面正确、整洁、美观。 3. 外文文献翻译。 进度计划第1 - 2 周研究课题内容,查找资料,完成开题报告。 第3 - 5 周学习熟悉差动保护的一般设计步骤。 第6- 8 周掌握差动保护的系统构成,确定差动保护一般设计方案。第9- 11 周设计方案运行及修正其中问题。 第12-13周撰写毕业设计说明书及英文翻译。 第14周按照要求修改毕业设计说明书并准备答辩。 主要参考文献[1]李雅杰景伟梁玉山REL-561型线路光纤分相电流差动保护运行分析[J]黑龙江电力,2004,26 [2]庞海燕郭超腾.光纤电流差动保护及其相关问题研究[J].机电信息,2012 [3] 王志亮.光纤保护通道故障处理方法[J] 电力系统通信,2011,31 [4]李瑞生.光纤电流差动保护与通道试验技术[M]北京:中国电力出版社,2006. 指导教师签字:系主任签字:年月日

线路光纤保护联调方案

光纤差动保护联调方案 摘要:光纤电流差动保护是高压和超高压线路主保护的发展趋势。根据光纤分相电流差动保护的基本原理,详细阐述了光纤电流差动保护联调方案,其中包括检查两侧电流及差流、模拟线路空充时故障或空载时发生故障、模拟弱馈功能以及模拟远方跳闸功能。同时分析了光纤电流差动保护定检中存在的危险点,并提出了相应对策。 关键词:光纤分相电流差动:联调;充电;弱馈;远方跳闸 0 引言 近年来,随着通信技术的发展和光缆的使用,光纤分相电流差动保护作为线路的主保护之一得到了越来越广泛的应用。而且这种保护在超高压线路的各种保护中,具有原理简单,不受系统振荡、线路串补电容、平行互感、系统非全相、单侧电源等方式的影响,动作速度快,选择性好,能可靠地反应线路上各种类型故障等突出优点。目前由于时问、地域、通信等条件限制,继电人员常常无法密切配合进行两侧纵联差动保护功能联调,造成联调项目简化,甚至省略的现象时有发生,这样极为不利于继电人员对保护功能的细致了解,因此本文将结合南瑞RCS一931和四方CSC一103型光纤差动保护装置简要说明两侧差动保护联调的试验步骤。 数字电流差动保护系统的构成见图1。 M N 图1电流差动保护构成示意图 上图中M、N为两端均装设CSC-103高压线路保护装置,保护与通信终端设备间采用光缆连接。保护侧光端机装在保护装置的背板上。通信终端设备侧由本公司配套提供光接口盒CSC-186A/CSC-186B。 1 光纤分相电流差动保护基本原理光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,各侧保护利用本侧和对侧电流数据按相进行差动电流计算。 动作电流(差动电流)为: I D=│(ìM-ìMC)+( ìN-ìNC)│ 制动电流为:I B=│(ìM-ìMC)-( ìN-ìNC)│ 比例制动特性动作方程为: ID﹥ICD ID﹥K*IB 式中:IM、IN分别为线路两侧同名相相电流,IMC、INC为实测电容电流,并以由母线流向线路为正方向;ICD为差动保护动作门槛;K为比例制动系数,一般K<1。线路内部故障时,两侧电流相位相同,动作电流远大于制动电流,保护动作;线路正常运行或区外故障时,两侧电流相位反向,动作电流为零,远小于制动电流,保护不动作。南瑞公司的RCS

相关主题
文本预览
相关文档 最新文档