当前位置:文档之家› 函数的插值与多项式近似计算

函数的插值与多项式近似计算

函数的插值与多项式近似计算
函数的插值与多项式近似计算

函数的插值与多项式近似计算

1. 实验描述

计算机中常常要用到库函数,sin(x),cos(x)和e x ,它们是用多项式逼近来计算的。常见的多项

式逼近方法有泰勒级数、拉格朗日逼近、牛顿多项式等。在求解不同的问题时,采用不同逼

近方法或同一种方法不同阶数都会对逼近结果造成影响。好的方法可以降低误差优化计算。

2. 实验内容

比较对函数f(x)=tan(x)的逼近:计算N=9的多项式计算及误差比较;

要求:1.用泰勒多项式逼近;

2.拉格朗日多项式逼近;

3.牛顿多项式逼近;

4.帕德逼近。

3. 实验结果及分析

泰勒多项式逼近:设f ∈C N+1[a,b],而x 0∈[a,b]是固定值。如果x ∈[a,b],则有

f x =P N x +E N (x )

其中P N x 为用来近似f x 的多项式:f x ≈P N x = f k x 0 k !N k =0

(x ?x 0)k 误差项E N (x )形如E N (x )=f N +1 c N +1 ! x ?x 0 N +1,c 为x 和x 0的某个值c =c x 。

令w=tan(x),则泰勒展开的9项式为:

P = x+1/3*x^3+2/15*x^5+17/315*x^7+62/2835*x^9

用泰勒展开逼近其绝对误差b=|F-P|,相对误差c=b/|F| 由图(1)得在区间从-1到1之间泰勒展式能很逼近tan (x ),误差基本为零。但随着x

的变化,绝对误差和相对误差都变大,失去逼近效果。

红线为tan (x ),蓝线为P

图(1)

绝对误差

相对误差

拉格朗日多项式逼近:设f ∈C N+1[a,b],且x 0,x 1,…,x N ∈[a,b]为N+1个节点。如果x ∈[a,b],

f x =P N x +E N (x )

其中P N x 是可以用于逼近f(x)的多项式:

f x ≈P N x = f (x k )L N ,k N

k =0

x

误差项E N (x )形如

E N (x )= x ?x 0 x ?x 1 … x ?x N f N +1 c N +1 !

c =c x 为区间[a,b]内的某个值。

在区间x ∈]-/2/2ππ??,

,之间取9点进行逼近,x 分别为取(-0.4:0.01:0.4)*pi 对应tan (x )值为: -3.0777 -1.4826 -0.8391 -0.4452 -0.1405 0.1405 0.4452 0.8391

1.4826 3.0777。拉格朗日主要是运用插值的方法进行逼近。令f=tan(x) 图(2)所示红线为tan(x)蓝线为P

图(2)

绝对误差b=| (f-U)|

相对误差c=|b/f|

牛顿多项式逼近:设P N x 是给出的牛顿多项式,并用来逼近函数f(x),即,

f x =P N x +E N (x )

如果f ∈C N+1[a,b],则对每个x ∈[a,b],对应的存在(a ,b )的数c=c(x),使得误差形如

E N (x )= x ?x 0 x ?x 1 … x ?x N f N +1 c N +1 !

(牛顿多项式:设x 0,x 1,…,x N ∈[a,b]为N+1个不同的数,存在唯一的至多N 次的多项式 P N x ,具有性质f x j =P N x j 其中j=0,1,…,N 该多项式的牛顿形式为

P N x =a 0+a 1 x +x 0 +?+a N x ?x 0 x ?x 1 … x ?x N

其中a k =f [x 0,x 1,…,x N ],k=0,1,2…,N 。)

选取区间x ∈]-/2/2ππ??,

,之间取9点进行逼近,先算出差伤表,再构造出牛顿多项式f=tan(x) ,得到下图图(3),其中红色为 tan(x),蓝色为F

图(3)

绝对误差b=| (f-F)|

相对误差c=|b/f|

帕德逼近:在区间[a,b]上f(x)的有理逼近是俩个N 和M 次多项式 P N x 和 Q M x 的分式,即

R N ,M x = P N x M

其中a ≤x ≤b ,又

P N x =p 0+p 1x +p 2x 2+?+p N x N (2)

Q M x =1+q 1x +q 2x 2+?+q M x M (3)

当 Q 0 x =1时,该逼近其实就是f(X)的麦克老林展开。而当R N ,M x 和 P N x 被同一常数除时 Q M x 不变。所以R N ,M x 有N +M +1个未知数。设f(X)是解析的,且有麦克老林展开

f x =a 0+a 1x +a 2x 2+?+a k x k +? (4)

差f(x) Q M x - P N x =z(x)表示为:

a j x j ∞j =0 q j x j M j =0 ? p j x j N j =0= c j x j ∞j =N +M +1 (5)

将式(5)左端乘开,并令k=0,1,…,N+M+1的x j 系数为0,可得到N+M+1阶线性方程解出各系数代入R N ,M x 得到。

令f=tan(x),得到下图其中红色为f ,蓝色为R

绝对误差b=| (f-P)|

相对误差c=b/| (f)|

4. 结论

四种方法都能的到比较理想的tan(x)的逼近,但随着n的增大,所得结果的误差会有较大的区别,如当x0=0时,n=9时,又得出的结果可知泰勒逼近的误差最大,其次是拉格朗日多项式逼近和牛顿多项式逼近,帕德逼近的结果最为接近。

附件(代码)

泰勒多项式逼近:

clear

n=input('input n:=')%输入阶数

z=input('input z:=')%输入x0的值

syms x

syms y

i=1;P=0;

h=tan(y);

for j=1:n

f(j)=diff(h,y,j); %tan(y)的j阶导数

end

for k=1:n

P=P+(f(k)/i)*((x-y)^k); %p(k)的推导公式

i=i*(k+1);

end

P=P+h; %得到n阶泰勒多项式

G=subs(P,y,z);pretty(G)

figure(1)

ezplot(G,[-pi/2,pi/2]),hold on

F=tan(x);

h=ezplot(F,[-pi/2,pi/2])

set(h,'Color','red');

b=abs(F-G)%绝对误差

pretty(b),figure(2)

ezplot(b,[-pi/2,pi/2])

c=b/abs(F) %相对误差

pretty(c),figure(3)

ezplot(c,[-pi/2,pi/2])

拉格朗日多项式逼近:

clear

syms x

F=0

y=linspace(-0.4*pi,0.4*pi,10);%选取X的初值

z=tan(y)

w=length(y);

for i=1:w

p=1;

for k=1:w

if k~=i

p=p*(x-y(k))/(y(i)-y(k));

end

end

P(i)=p;

end%构造拉格朗日逼近

P

for j=1:w

F=F+z(j)*P(j);%得出最终多项式

end

figure(1),

ezplot(F,[-pi,pi]),hold on

A=ezplot(tan(x),[-pi,pi])

set(A,'Color','red');

t=tan(x);

b=abs(t-F)%绝对误差

c=b/abs(t)%相对误差

figure(2),

ezplot(b)

figure(3)

ezplot(c)

牛顿多项式逼近:

clear

syms x

W=0

l=linspace(-0.4*pi,0.4*pi,10);%选取初值

y=tan(l);

f=tan(x);

n=length(l);

D=zeros(n,n);

D(:,1)=y';

for j=2:n

for k=j:n

D(k,j)=(D(k,j-1)-D(k-1,j-1))/(l(k)-l(k-j+1));

end

end

C=D(n,n);

for k=(n-1):-1:1

C=conv(C,poly(l(k)));

m=length(C);

C(m)=C(m)+D(k,k);

end%构造差商表

D

U(1)=x-l(1)

for i=2:n-1

U(i)=(x-l(i))*U(i-1);

end

P=D(1,1)

for i=2:n

P=P+D(i,i)*U(i-1);

end%得到牛顿多项式

P

figure(1),

ezplot(P,[-pi,pi]),hold on

h=ezplot(f,[-pi,pi])

set(h,'Color','red')

b=abs(f-P)%绝对误差

c=b/abs(f)%相对误差

figure(2),ezplot(b)

figure(3),ezplot(c)

帕德逼近:clear

syms x

R=(945*x-105*x^3+x^5)/(945-420*x^2+15*x^4);%帕德逼近R(5,4)

figure(1)

ezplot(R,[-pi,pi]),hold on

h=ezplot(tan(x),[-pi,pi])

set(h,'Color','red')

f=tan(x);

b=abs(f-R);%绝对误差

c=b/abs(f);%相对误差

figure(2),ezplot(b)

figure(3),ezplot(c)

拉格郞日插值法总结

拉格朗日插值公式 2008-04-26 20:58 一.线性插值(一次插值) 已知函数f(x)在区间[xk ,xk+1 ]的端点上的函数值yk =f(xk ), yk+1 = f(xk+1 ),求一个一次函数y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其几何意义是已知平面上两点(xk ,yk ),(xk+1 ,yk+1 ),求一条直线过该已知两点。 1. 插值函数和插值基函数 由直线的点斜式公式可知: 把此式按照yk 和yk+1 写成两项: 记 并称它们为一次插值基函数。该基函数的特点如下表: 从而 P1 (x) = yk lk (x) + yk+1 lk+1 (x) 此形式称之为拉格朗日型插值多项式。其中, 插值基函数与yk 、yk+1 无关,而由插值结点xk 、xk+1 所决定。一次插值多项式是插值基函数的线性组合, 相应的组合系数是该点的函数值yk 、yk+1 . 例1: 已知lg10=1,lg20=1.3010, 利用插值一次多项式求lg12的近似值。 解: f(x)=lgx,f(10)=1,f(20)=1.3010, 设 x0 =10 ,x1 =20 ,y0 =1 ,y1 =1.3010 则插值基函数为:

于是, 拉格朗日型一次插值多项式为: 故: 即lg12 由lg10 和lg20 两个值的线性插值得到,且具有两位有效数字(精确值lg12=1.0792). 二.二次插值多项式 已知函数y=f(x)在点xk-1 ,xk ,xk+1 上的函数值yk-1 =f(xk-1 ),yk =f(xk ), yk+1 =f(xk+1 ), 求一个次数不超过二次的多项式P2 (x), 使其满足, P2 (xk-1 )=yk-1 , P2 (xk )=yk , P2 (xk+1 )=yk+1 . 其几何意义为:已知平面上的三个点 (xk-1 ,yk-1 ),(xk ,yk ),(xk+1 ,yk+1 ), 求一个二次抛物线, 使得该抛物线经过这三点。 1.插值基本多项式 有三个插值结点xk-1 ,xk ,xk+1 构造三个插值基本多项式,要求满足: (1) 基本多项式为二次多项式;(2) 它们的函数值满足下表: 因为lk-1 (xk )= 0,lk-1 (xk+1 )=0, 故有因子(x-xk )(x-xk+1 ), 而其已经是一个二次多项式, 仅相差一个常数倍, 可设 lk-1 (x)=a(x-xk )(x-xk+1 ), 又因为 lk-1 (xk-1 )=1 ==> a(xk-1 -xk )(xk-1 -xk+1 )=1 得

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.–作为x的近似值一定具有6位有效数字,且其误差限。() 2.对两个不同数的近似数,误差越小,有效数位越多。() 3.一个近似数的有效数位愈多,其相对误差限愈小。()

4.用近似表示cos x产生舍入误差。 ( ) 5.和作为的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算的乘除法次数尽量少,应将该表达式改写 为; 2.–是x舍入得到的近似值,它有位有效数字,误差限 为,相对误差限为; 3.误差的来源是; 4.截断误差 为; 5.设计算法应遵循的原则 是。 三、选择题 1.–作为x的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x近似表示e x所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

四、计算题 1.,,分别作为的近似值,各有几位有效数字? 2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少? 3.利用等价变换使下列表达式的计算结果比较精确: (1), (2) (3) , (4) 4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。 5*. 采用迭代法计算,取 k=0,1,…, 若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。 练习题二 一、是非题 1.单点割线法的收敛阶比双点割线法低。 ( ) 2.牛顿法是二阶收敛的。 ( ) 3.求方程在区间[1, 2]内根的迭代法总是收敛的。( ) 4.迭代法的敛散性与迭代初值的选取无关。 ( ) 5.求非线性方程f (x)=0根的方法均是单步法。 ( ) 二、填空题

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

Lagrang插值多项式

第5章 实验四Lagrange 插值多项式 实验目的:理解Lagrange 插值多项式的基本概念,熟悉Lagrange 插值多项 式的公式及源代码,并能根据所给条件求出Lagrange 插值多项式,理解龙格现象。 5.1 Lagrange 插值多项式 Lagrange 插值多项式的表达式: 1,,2,1,) ()()(, )()(1 11 1+=--==∏ ∑+≠=+=n i x x x x x l x l y x L n i j j j i j i n i i i 。 其中)(x l i 被称为插值基函数,实际上是一个n 次多项式。)(x l i 的这种表示具有较好的对称性。公式具有两大优点:(1)求插值多项式,不需要求解线性方程组,当已知数据点较多时,此公式更能显示出优越性。(2)函数值可以用符号形式表示,数据点未确定的纵坐标可用多项式表示。 5.2 Lagrange 插值多项式源代码I % 功能: 对一组数据做Lagrange 插值 % 调用格式:yi=Lagran_(x,y,xi) % x,y 数组形式的数据表 % xi:待计算y 值的横坐标数组 % yi 用Lagrange 插值算出的y 值数组 function fi=Lagran_(x,f,xi) fi=zeros(size(xi)); np1=length(f); for i=1:np1 z=ones(size(xi)); for j=1:np1 if i~=j,z=z.*(xi-x(j))/(x(i)-x(j));end end fi=fi+z*f(i); end return

例5.1 已知4对数据(1.6,3.3),(2.7,1.22),(3.9,5.61),(5.6,2.94)。写出这4个数据点的Lagrange 插值公式,并计算出横坐标xi=[2.101,4.234]时对应的纵坐标。 解:4个数据点的Lagrange 插值公式为: ) 9.36.1(*)7.26.5(*)6.16.5() 9.3(*)7.2)(6.1(* 94.2) 6.59.3(*) 7.29.3(*)6.19.3() 6.5(*) 7.2(*)6.1(*9.3) 6.5 7.2(*)9.37.2(*)6.17.2() 6.5(*)9.3(*)6.1(*22.4) 6.56.1(*)9.36.1(*) 7.26.1() 6.5(*)9.3(*) 7.2(* 3.3)(3------+ ------+ ------+ ------=x x x x x x x x x x x x x L 清单5.1 clear x=[1.6, 2.7, 3.9, 5.6]; y=[3.3, 1.22, 5.61, 2.94]; xi=[2.101,4.234]; yi=Lagran_(x,y,xi); xx=1.5:0.05:6.5; yy=Lagran_(x,y,xx); plot(xx,yy,x,y,'o') 其结果为: yi = 1.0596 6.6457 x g (x ):-, d a t a p o i n t s :o 图5.1 插值多项式曲线图

多项式插值法和拉格朗日插值

多项式插值法和拉格朗日插值 教案一多项式插值法和拉格朗日插值 基本内容提要 1 多项式插值法的基本概念 2 插值多项式的存在性与唯一性分析 3 拉格朗日插值多 项式的构造及截断误差 4 截断误差的实用估计式 5 逐次线性插值法教学目的和要求 1 熟练掌握多项式插值法的基本概念 2 理解插值多项式的存在性与唯一性 3 掌握拉 格朗日插值法 4 掌握截断误差的估计方法 5 理解逐次线性插值法的基本思想,掌握Aitken逐次线性插值法 6 掌握运用拉格朗 日插值法处理问题的基本过程教学重点 1 拉格朗日插值基函数及拉格朗日插值多项式的构造 2 拉格朗日插值多项式的截断 误差分析 3 逐次线性插值法的基本思想教学难点 1 插值多项式存在唯一性条件的讨论分析 2 插值误差的分析与估计 3 Aitken逐次线性插值法的计算过程课程类型新知识理论课教学方法 结合提问,以讲授法为主教学过程 问题引入 实际问题中许多变量间的依赖关系往往可用数学中的函数概念刻画,但在多数情况下,这些函数的表达式是未知的,或者函数已知,但形式十分复杂。基于未知函数或复杂函数 的某些已知信息,如何构造这些函数的近似表达式?如何计算这些函数在其它点处的函数值?所构造的近似表达式与真实函数的误差是多少?插值理论与方法就是解决这些问题的 有效工具之一。 §2.1 多项式插值 2.1.1 基本概念 假设f(x)是定义在区间[a,b]上的未知或复杂函数,但已知该函数在点a≤x0 P(xi)=yi,i=0,1,2,L,n,即在给定点xi处,P(x)与f(x)是相吻合的。 (2.1) 把P(x)称为f(x)的插值多项式(函通常把上述x0 数), f(x)称为被插函数。[a,b]称为插值区间,条件(2.1)称为插值条件,并把 求P(x)的过程称为插值法。

多项式差值方法上机习题报告

计算方法多项式插值方法上机习题报告 (一)问题: 对Runge函数R(x)=1 1+x ,x∈[-5,5],利用下列条件做插值逼近,并与R(x)的图像进行比较. (1)用等距节点x i= -5 + i, i=0, 1, 2,…,10,绘出它的10次Newton插值多项式的图像; (2)用节点x i= 5cos(2i+1 42 π), i=0, 1, 2,…,20,绘出它的20次Lagrange插值多项式的图像; (3)用等距节点x i= -5 + i, i=0, 1, 2,…,10,绘出它的分段线性插值函数图像; (4)用等距节点x i= -5 + i, i=0, 1, 2,…,10,绘出它的分段三次Hermite插值函数的图像; (5)用等距节点x i= -5 + i, i=0, 1, 2,…,10,绘出它的三次自然样条插值函数的图像。(二)解决问题的算法 由于问题中已经明确了被插函数(Runge函数)及所用的插值方法,所以下面简单介绍一下各插值方法。 (1)Newton插值方法 对于被插函数,选取插值点(x1,f x1),…,(x n,f(x n)). 定义k阶插商(k≥1)为: f x i,x i+1,…,x i+k=f x i+1,x i+2,…,x i+k?f x i,x i+1,…,x i+k?1 i+k i . 此外,规定f(x)在节点x j上的0阶插商为f[x j]=f(x j). 定义函数: ωn (x)=(x-x0)(x-x1)…(x-x n). 则牛顿插值多项式为: N n(x)=f[x0]+f[x0,x1]ω0 (x)+…+f[x0,x1,…,x n]ωn-1 (x). 在具体的计算机实现过程中,可以使用一个二维数组,使得角标为(i, j)(i≤j+1)的位置存储f[x i-1,…,x j],从而得到牛顿插值多项式. (2)Lagrange插值方法 对于被插函数,选取n+1个插值节点并求出其函数值:(x0,f x0),…,(x n,f(x n)). 定义: l i x= x?x0…x?x i?1x?x i+1……(x?x n) x i?x0…x i?x i?1x i?x i+1……(x i?x n) . 则拉格朗日插值多项式为: p(x)=f x i?l i(x) n i=1 (3)分段线性插值方法 过被插函数上若干点(即插值点)做一条折线以近似一条曲线,就可以得到使用分段线性插值方法得到的插值曲线。其实现方式最为简单,不做过多介绍(即具体的函数形式不在此列出). (4)分段三次Hermite插值方法 设选取n+1个插值节点:x0,x1,…,x n,记被插函数f(x)在这些点的函数值与导数值

拉格朗日插值法理论及误差分析

浅析拉格朗日插值法 目录: 一、 引言 二、 插值及多项式插值的介绍 三、 拉格朗日插值的理论及实验 四、 拉格朗日插值多项式的截断误差及实用估计式 五、 参考文献 一、引言 插值在数学发展史上是个古老问题。插值是和拉格朗日(Lagrange )、牛顿(Newton )、高斯(Gauss )等著名数学家的名字连在一起的。在科学研究和日常生活中,常常会遇到计算函数值等一类问题。插值法有很丰富的历史渊源,它最初来源人们对天体研究——有若干观测点(我们称为节点)计算任意时刻星球的位置(插值点和插值)。现在,人们在诸如机械加工等工程技术和数据处理等科研都有很好的应用,最常见的应用就是气象预报。插值理论和方法能解决在实际中当许多函数表达式未知或形式复杂,如何去构造近似表达式及求得在其他节点处的值的问题。 二、插值及多项式插值 1、插值问题的描述 设已知某函数关系()y f x =在某些离散点上的函数值: 插值问题:根据这些已知数据来构造函数()y f x =的一种简单的近似表达式,以便于计算点,0,1,,i x x i n ≠= 的函数值()f x ,或计算函数的一阶、二阶导数值。 x 0x 0 y y 1 y 1 n y -n y 1 x 1 n x -n x

2、插值的几何意义 插值的几何意义如图1所示: 图1 3、多项式插值 3.1 基本概念 假设()y f x =是定义在区间,a b ????上的未知或复杂函数,但一直该函数在点01n a x x x b ≤<<<≤ 处的函数值01,,n y y y 。找一个简单的函数,例如函数 ()P x ,使之满足条件 (),0,1,2,, i P x y i n == (3.1) 通常把上述01n x x x <<< 称为插值节点,把()P x 称为()f x 的插值多项式,条件(3.1)称为插值条件,并把求()P x 的过程称为插值法。 3.2 插值多项式的存在性和唯一性 如果插值函数是如下m 次的多项式: 1 011()m m m m m P x a x a x a x a --=+++ 那么插值函数的构造就是要确定()m P x 表达式中的m+1个系数 011,,,m m a a a a - 。由于插值条件包含n+1独立式,只要m=n 就可证明插值函数多项式是唯一存在。 实际上,由n+1个插值条件可得

数值计算方法复习题2

习题二 1. 已知,求的二次值多项式。 2. 令求的一次插值多项式,并估计插值误差。 解:;,介于x和0,1决定的区间;,当时。 3. 给出函数的数表,分别用线性插值与二次插值求的近似值,并估计截断误差。0.54667,0.000470;0.54714,0.000029 4. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。 5. 已知,求及的值。1,0 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和的近似值。, 7. 已知函数的如下函数值表,解答下列问题(1)试列出相应的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 向后插值公式 8. 下表为概率积分的数据表,试问:1)时,积分2)为何值时,积分?。

9. 利用在各点的数据(取五位有效数字),求方程在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 12. 在上给出的等距节点函数表,用分段线性插值求的近似值,要使截断误差不超过,问函数表的步长h应怎样选取? 13. 将区间分成n等分,求在上的分段三次埃尔米特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值

误差限,故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近 似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式,

插值与多项式逼近的数组计算方法实验讲解

插值与多项式逼近的数组计算方法实验 郑发进 2012042020022 【摘要】计算机软件中经常要用到库函数,如) cos,x e,它们 (x (x sin,) 是用多项式逼近来计算的。虽然目前最先进的逼近方法是有理函数(即多项式的商),但多项式逼近理论更适于作为数值分析的入门课程。在已知数据具有高精度的情况下,通常用组合多项式来构造过给定数据点的多项式。构造组合多项式的方法有许多种,如线性方程求解、拉格朗日系数多项式以及构造牛顿多项式的方分和系数表。 关键字泰勒级数、拉格朗日插值法、牛顿插值法、帕德逼近 一、实验目的 1.通过具体实验,掌握泰勒级数、拉格朗日插值法、牛顿插值法、帕德逼近的编程技巧。 2.比较各插值方法的优劣并掌握。 二、实验原理 1.泰勒级数 在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。 如果在点x=x 具有任意阶导数,则幂级数 称为在点x 处的泰勒级数。 =0,得到的级数 在泰勒公式中,取x 称为麦克劳林级数。函数的麦克劳林级数是x的幂级数,那么这种展开

是唯一的,且必然与的麦克劳林级数一致。 2.拉格朗日插值法 如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。 在平面上有(x 1,y 1)(x 2,y 2)...(x n ,y n )共n 个点,现作一条函数f (x )使其图像经过这n 个点。 作n 个多项式p i (x),i=1,2,3...,n,使得 最后可得 3.牛顿插值法 插值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化, 这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 牛顿插值通过求各阶差商,递推得到的一个公式: 10121()()()()()()N N N N P x P x a x x x x x x x x --=+---- 牛顿插值与拉格朗日插值具有唯一性。 4.帕德逼近 它不仅与逼近论中其他许多方法有着密切的关系,而且在实际问题特别是许多物理问题中有着广泛的应用。设是在原点某邻域内收敛的、具有复系数的麦克劳林级数。欲确定一个有理函数,式中,使得前次方的系数为0,即使得 此处约定qk =0(k>n )。虽然所求得的Pm(z)和Qn(z)不惟一,但是比式却总是惟一的。有理函数称为F(z)的(m,n)级帕德逼近,记为(m/n)。由(m/n)所形成的阵列称为帕德表。

插值法习题及解答

一、填空题: 1. 满足()a a f x x =,()b b f x x =,()c c f x x =的拉格朗日插值余项为 。 答:()() ()()()3! a b c f R x x x x x x x ξ'''=--- 2.已知函数()f x 的函数值()()()()()0,2,3,5,6f f f f f ,以及均差如下 ()()()()()00,0,24,0,2,35,0,2,3,51,0,2,3,5,60f f f f f ===== 那么由这些数据构造的牛顿插值多项式的最高次幂的系数是 答: 1 二、选择题 1. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()110l x = D . ()00l x =1,()111l x = 答:D 2.. 已知等距节点的插值型求积公式 ()()35 2 k k k f x dx A f x =≈∑?,那么3 k k A ==∑( ) A .1 B. 2 C. 3 D. 4 答:C 3.过点(x 0,y 0), (x 1,y 1),…,(x 5,y 5)的插值多项式P(x)是( )次的多项式。 (A). 6 (B).5 (C).4 (D).3. 答:B 三、证明题 1. 设 f (x) = (x-1) (x-2) .证明对任意的x 有: f [1, 2, x)]= 1 证明:f [1, 2] = [f (1) – f (2)]/ (1 – 2) = [0 – 0]/ (-1) = 0, 对任意的x 有 F[2, x] = [f (2) – f (x)]/ (2 – x) = [0 – (x-1) (x-2)]/ (2 – x) = (x-1), 所以 f [1, 2, x] = [f (1, 2) - f (2, x)]/ (1 – x) = [0 - (x-1)]/ (1 – x) = 1 2.设 在 上具有二阶连续导数,且 ,求证:

插值多项式简介

在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,I.牛顿,J.-L.拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b]上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……xn 处的值是f [x0],……f(xn),要求估算f(x)在[a,b]中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0,C1,……Cn的函数类Φ(C0,C1,……Cn)中求出满足条件P(xi)=f(xi)(i=0,1,…… n)的函数P(x),并以P()作为f()的估值。此处f(x)称为被插值函数,c0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……Cn)称为插值函数类,上面等式称为插值条件,Φ(C0,……Cn)中满足上式的函数称为插值函数,R(x)= f(x)-P(x)称为插值余项。当估算点属于包含x0,x1……xn 的最小闭区间时,相应的插值称为内插,否则称为外插。 多项式插值这是最常见的一种函数插值。在一般插值问题中,若选取Φ为n次多项式类,由插值条件可以唯一确定一个n次插值多项式满足上述条件。从几何上看可以理解为:已知平面上n+1个不同点,要寻找一条n次多项式曲线通过这些点。插值多项式一般有两种常见的表达形式,一个是拉格朗日插值多项式,另一个是牛顿插值多项式。 埃尔米特插值对于函数f(x),常常不仅知道它在一些点的函数值,而且还知道它在这些点的导数值。这时的插值函数P(x),自然不仅要求在这些点等于f(x)的函数值,而且要求P(x)的导数在这些点也等于f(x)的导数值。这就是埃尔米特插值问题,也称带导数的插值问题。从几何上看,这种插值要寻求的多项式曲线不仅要通过平面上的已知点组,而且在这些点(或者其中一部分)与原曲线“密切”,即它们有相同的斜率。可见埃尔米特插值多项式比起一般多项式插值有较高的光滑逼近要求。 分段插值与样条插值为了避免高次插值可能出现的大幅度波动现象,在实际应用中通常采用分段低次插值来提高近似程度,比如可用分段线性插值或分段三次埃尔米特插值来逼近已知函数,但它们的总体光滑性较差。为了克服这一缺点,一种全局化的分段插值方法——三次样条插值成为比较理想的工具。见样条函数。 三角函数插值当被插函数是以2π为周期的函数时,通常用n阶三角多项式作为插值函数,并通过高斯三角插值表出。 插值(Interpolation),有时也称为“重置样本”,是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩。有些相机使用插值,人为地增加图像的分辨率。插值:用来填充图像变换时像素之间的空隙。 如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请编辑词条 贡献者(共4名): zy19842006、laner6810、明明我心521、lewuyang 问题的描述与基本概念

回归、插值、逼近、拟合的区别

回归、插值、逼近、拟合的区别 1、回归:一般指线性回归,是求最小二乘解的过程。在求回归前,已经假设所有型值点同时满足某一曲线方程,计算只要求出该方程的系数 2、多项式插值:用一个多项式来近似代替数据列表函数,并要求多项式通过列表函数中给定的数据点。(插值曲线要经过型值点。)离散的点 3、多项式逼近:为复杂函数寻找近似替代多项式函数,其误差在某种度量意义下最小。(逼近只要求曲线接近型值点,符合型值点趋势。)连续的函数 4、多项式拟合:在插值问题中考虑给定数据点的误差,只要求在用多项式近似代替列表函数时,其误差在某种度量意义下最小。离散的点 注意: 表列函数:给定n+1个不同的数据点(x0,y0),(x1,y1)...,(xn,yn),称由这组数据表示的函数为表列函数。 逼近函数:求一函数,使得按某一标准,这一函数y=f(x)能最好地反映这一组数据即逼近这一表列函数,这一函数y=f(x)称为逼近函数 插值函数:根据不同的标准,可以给出各种各样的函数,如使要求的函数y=f(x)在以上的n+1个数据点出的函数值与相应数据点的纵坐标相等,即yi=f(x1)(i=0,1,2....n)这种函数逼近问题称为插值问题,称函数y=f(x)为数据点的插值函数,xi称为插值点。 插值和拟合都是函数逼近或者数值逼近的重要组成部分 他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的 目的,即通过"窥几斑"来达到"知全豹"。 简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。 而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。 从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。

计算方法习题

《计算方法》练习题一 练习题第1套参考答案 一、填空题 1. 14159.3=π的近似值3.1428,准确数位是( 2 10- )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( ))((!2) (b x a x f --''ξ )。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P (5 2 )。 4.乘幂法是求实方阵(按模最大 )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( ]0,2[-)。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε(C )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2)(,则=]3,2,1[f ( A )。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( C ) . A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有(B )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( C ). A .)(h o B.)(2 h o C.)(3 h o D.)(4 h o 三、计算题 1.求矛盾方程组:??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 22122122121)2()42()3(),(--+-++-+=x x x x x x x x ?, 由 0,021=??=??x x ? ?得:?? ?=+=+96292321 21x x x x , 解得14 9 ,71821== x x 。

插值和拟合区别

插值和拟合区别 运输1203黎文皓通过这个学期的《科学计算与数学建模》课程的学习,使我掌握了不少数学模型解决实际问题的方法,其中我对于插值与拟合算法这一章,谈一谈自己的看法可能不是很到位,讲得不好的地方也请老师见谅。 首先,举一个简单的例子说明一下这个问题。 如果有100个平面点,要求一条曲线近似经过这些点,可有两种方法:插值和拟合。 我们可能倾向于用一条(或者分段的多条)2次、3次或者说“低次”的多项式曲线而不是99次的曲线去做插值。也就是说这条插值曲线只经过其中的3个、4个(或者一组稀疏的数据点)点,这就涉及到“滤波”或者其他数学方法,也就是把不需要90多个点筛选掉。如果用拟合,以最小二乘拟合为例,可以求出一条(或者分段的多条)低次的曲线(次数自己规定),逼近这些数据点。具体方法参见《数值分析》中的“线性方程组的解法”中的“超定方程的求解法”。经过上面例子的分析,我们可以大致的得到这样一个结论。插值就是精确经过,拟合就是逼近。 插值和拟合都是函数逼近或者数值逼近的重要组成部分。他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律目的,即通过"窥几斑"来达到"知全豹"。 所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调

整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。 而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。 从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。 不过是插值还是拟合都是建立在一定的数学模型的基础上进行的。多项式插值虽然在一定程度上解决了由函数表求函数的近似表达式的问题,但是在逼近曲线上有明显的缺陷,很可能不能很好的表示函数的走向,存在偏差,在实际问题中我们往往通过函数近似表达式的拟合法来得到一个较为准却的表达式。

计算方法练习题与答案

练习题与答案练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–作为x的近似值一定具有6位有效数字,且其误差限 4 10 2 1 - ? 。 () 2.对两个不同数的近似数,误差越小,有效数位越多。 ( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。 ( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。 ( )

和作为π的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算 ()()23 34912111y x x x =+ -+ ---的乘除法次数尽量少,应将该表 达式改写为 ; 2.* x =–是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3.误差的来源是 ; 4.截断误差为 ; 5.设计算法应遵循的原则 是 。 三、选择题 1.* x =–作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是 在时间t 内的实际距离,则s t s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

数值分析实验报告-插值,逼近

实验报告:函数逼近&插值多项式补充 问题1:对于给函数21()1+25f x x = ,取点21 cos 22 k k x n π+=+,k 取0,1,…,n 。n 取10或20。试画出拟合曲线并打印出方程,与第二章计算实习题2的结果进行比较。 问题2:对于给函数2 1 ()1+25f x x = 在区间[-1,1]上取x i =-1+0.2i (i=0,1,2,…,10),试求3次曲线拟合,试画出拟合曲线并打印出方程,与第二章计算实习题2的结果进行比较。 实验目的:通过编程实现牛顿插值方法和函数逼近,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章、第三章相关内容。 实验内容: (1)问题1:

这里我们可以沿用实验报告一的代码,对其进行少量修改即可。 当n=10时,代码为: clear all clc k=0:10; n=length(k); x1=cos((2*k+1)/2/n*pi); y1=1./(1+25.*x1.^2); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i); end syms P P=sum(p);

数值计算方法复习题2

习题二 1. 已知 ,求的二次值多项式。 2. 令 解:; ,介于x和0,1决定的区 间内;,当时。 的数表,分别用线性插值与二次插值求 3. 给出函数 ,试利用拉格朗日余项定理写出以为节点的三次 4. 设 插值多项式。 ,求及的值。1,0 5. 已知 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算 , 的如下函数值表,解答下列问题(1)试列出相应 7. 已知函数 的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 解:向前插值公式

向后插值公式 8. 下表为概率积分 的数据表,试问:1)时, 积分 在各点的数据(取五位有效数 9. 利用 字),求方程 在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 上给出的等距节点函数表,用分段线性插值求 12. 在 的近似值,要使截断误差不超过 取? 13. 将区间 分成n等分,求在上的分段三次埃尔米 特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限 ,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限, 故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法 求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式, 令因 得

16、若,求和 解:由均差与导数关系 于是 17、若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 18、求证 解:只要按差分定义直接展开得 19、已知的函数表

Lagrange插值多项式

宁夏师范学院数学与计算机科学学院 《数值分析》实验报告 实验序号:1实验项目名称:Lagrange插值多项式

end L(k,:)=V; end C=y*L 五、实验结果与数据处理 1.(1)清单: >> clear >> clf >> x=[1,2,2.5]; >> y=x+2./x; >> [C,L]=lagran(x,y); C = 0.4000 -1.2000 3.8000 >> xx=[1.5,1.2]; >> yy=polyval(C,xx) yy = 2.9000 2.9360 (2)清单 >> clear,clf >> x=[0.5,1,3,5]; >> y=x+2./x; >> [C,L]=lagran(x,y); C = -0.2667 2.5333 -6.3333 7.0667 >> xx=[1.5,1.2]; >> yy=polyval(C,xx) yy = 2.3667 2.6539 2. 清单: >> x=0:pi/16:pi/2; >> y=x.*sin(x); >> [C,L]=lagran(x,y); C = Columns 1 through 8 -0.0001 -0.0003 0.0089 -0.0005 -0.1663 -0.0001 1.0000 -0.0000 Column 9 >> xx=0:pi/16:pi/2; >> yy=polyval(C,xx); >> plot(xx,yy,'b',x,y,'.') >> hold on >> a=polyfit(x,y,4)

>> grid on 六、分析与讨论 通过本次的实验,我初步掌握了 综合运用专业及基础知识,解决实际数学问题的能力,运行过程中有几处错误,但照提示改过就出结果了。 七、教师评语

拉格朗日多项式插值

拉格朗日多项式插值法浅析 摘要 拉格朗日插值多项式是一种最常见的多项式插值法,也是一种最常用的逼近工具。“学以致用 ”是每一门学科都致力追求的境界,数学自然也不例外。下面,探讨拉格朗日插值法的基本原理、如何构造拉格朗日多项式、拉格朗日多项式的误差界,并用 MATLAB 程序来实现这一数学算法的自动化,为复杂的分析研究提供了一条数学算法的捷径。 【关键词】:拉格朗日多项式 算法实现 MATLAB 在科学研究和实际的工程设计中,几乎所有的问题都可以用)(x f y =来表示其某种内在规律的数量关系。但理想化的函数关系在实际工程应用中是很难寻找 的,对于那些没有明显解析式的函数关系表达式则只能通过实验观察的数据,利用多项式对某一函数的进行逼近,使得这个逼近函数能够反映)(x f 的特性,而且利用多项式就可以简便的计算相应的函数值。例如我们不知道气温随日期变化的具体函数关系,但是我们可以测量一些孤立的日期的气温值,并假定此气温随日期变化的函数满足某一多项式。这样,利用已经测的数据,应用待定系数法便可以求得一个多项式函数f (x )。应用此函数就可以计算或者说预测其他日期的气温值。一般情况下,多项式的次数越多,需要的数据就越多,而预测也就越 准确。当然,构造组合多项式方法比较多,如线性方程求解、拉格朗日系数多项式以及构造牛顿多项式的分段差分和系数表等等,这里只对拉格朗日多项式插值法进行深入探讨。 一、拉格朗日多项式插值算法基本原理 函数)(x f y =在区间[a,b]上有定义,在是[ a,b]上取定的 N + 1个互异节点, 且在这些点处的函数值)(0x f , )(1x f ,…,)(n x f 为已知, 即 yi =f (xi ) , (N i ...1,0=),若存在一个和)(x f 近似的函数)(x P N ,满足 )()(i i N x f x P = (N i ...1,0=) (1) 则称 φ(x) 为 f (x) 的一个插值函数, 点i x 为插值节点,(1)称为插值条件, 区间[a,b]称为插值区间, 而误差函数)()(x P x f E N N -=称为插值余项。即是求一个不超过N 次多项式0111...)(a x a x a x a x P N N N N N ++++=-- (N i ...1,0=) 满足 )()(i i N x f x P = (N i ...1,0=)

相关主题
文本预览
相关文档 最新文档