当前位置:文档之家› 模拟电子正弦波发生器课程设计

模拟电子正弦波发生器课程设计

模拟电子正弦波发生器课程设计
模拟电子正弦波发生器课程设计

课程设计任务书

1 课程设计的目的

《电子技术基础课程设计》是学习理论课程之后的实践教学环节。目的是通过解决比较简单的实际问题,巩固和加深在《电子技术基础》课程中所学的理论知识和实验技能。训练学生综合运用学过的电子技术基础知识,在教师指导下完成查找资料,选择、论证方案,设计电路并仿真,分析结果,撰写报告等工作。使学生初步掌握电子电路设计的一般方法步骤,通过理论联系实际提高和培养学生分析、解决实际问题的能力和创新能力,为后续课程的学习、毕业设计和毕业后的工作打下一定的基础。

2 设计方案论证

设计思路

正弦波发生电路采用RC串并联式正弦波振荡电路,电路结构如图1所示,图中

,为变阻器,其最大阻值为。该电路由两部分组成,即放大电路和选频网络。为由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点。而则由组成,她们对放大电路形成正反馈,并具有选频作用。图1中、和、正好形成一个四臂电桥,电桥由放大电路的输出电压供电,另外两个对角顶点分别接到放大电路的同相和反相输入端,故RC串并联式正弦波振荡电路又称桥式正弦波振荡电路。

图1 RC串并联式正弦波振荡电路

RC串并联选频网络

图1虚线框所表示的RC串并联选频网络具有选频作用

选频网络的输入电压为,输出电压为,则

整理可得

令,代入上式,得

于是有

根据以上两个式子画出的幅频特性和相频特性如图2所示

(a)幅频特性(b)相频特性

图2 RC串并联网络的频率特性

由图2可以看出,当

或者

时,幅频相应的幅值最大,即

而相频响应的相位角为零,即

所以,只有频率为的信号被选通,且的幅值最大,是的幅值的,同时和同相位,呈纯阻性。而对于其它频率信号迅速衰减,说明RC串并联网络

确实具有选频特性。

RC串并联式正弦波振荡电路分析

如图1所示RC串并联式正弦波振荡电路,在a点断开,并加入输入信号,因为放大电路为同相比例运算电路,输出电压与输入电压是同相位,即;而RC 串并联网络作为正反馈网络和选频网络,当满足时,有,且。

由此可见,当时,有,电路满足自激振荡的相位条件。若放大倍数的电压放大倍数,则有,此时电路又满足自激振荡的幅值条件。因此,该振荡电路对频率为的信号可以产生自激振荡,输出频率为的正弦信号,且:

为使上述电路能够起振,在振荡电路未工作时应满足起振条件,应该使放

大电路的电压放大倍数,为此应合理地选择电阻。由于放大电路为同相比例运算电路,则

但是如果选择过大,又会使振荡电路输出波形失真。由图1可以看出电阻和在电

路中引入了电压串联负反馈,负反馈系数为

改变和阻值的大小可以调节负反馈深度。越小,负反馈深度越深,放大电路的电压放大倍数越小,如果不能满足,则振荡电路不能起振;反之,越大,负反馈越弱,电压放大倍数越大,如果输出波形的幅度太大,会使输出波形产生明显失真。因此,应通过调整和的阻值,使振荡电路产生比较稳定而失真较小的正弦波。

参数计算

本设计中,频率,由以上分析可知

在本设计中,为了方便,可取

元件选择

根据上述计算,可选择以下元件作为本设计的实验元件

其它的元件可根据需要选择如下

,,频率计,失真仪,万用表,示波器,集成运算电路。

3 电路的仿真

NI Multisim 10 软件简介

NI Multisim 10是美国国家仪器公司(NI,National Instruments)最新推出的Multisim 最新版本。目前美国NI公司的EWB的包含有电路仿真设计的模块Multisim、PCB设计软件Ultiboard、布线引擎Ultiroute及通信电路分析与设计模块Commsim 4个部分,能完成从电路的仿真设计到电路版图生成的全过程。Multisim、Ultiboard、Ultiroute 及Commsim 4个部分相互独立,可以分别使用。 Multisim、Ultiboard、Ultiroute

及Commsim 4个部分有增强专业版、专业版、个人版(Personal)、教育版、学生版和演示版等多个版本,各版本的功能和价格有着明显的差异。

NI Multisim 10用软件的方法虚拟电子与电工元器件,虚拟电子与电工仪器和仪表,实现了“软件即元器件”、“软件即仪器”。NI Multisim 10是一个原理电路设计、电路功能测试的虚拟仿真软件。

NI Multisim 10的元器件库提供数千种电路元器件供实验选用,同时也可以新建或扩充已有的元器件库,而且建库所需的元器件参数可以从生产厂商的产品使用手册中查到,因此也很方便的在工程设计中使用。

NI Multisim 10可以设计、测试和演示各种电子电路,包括电工学、模拟电路、数字电路、射频电路及微控制器和接口电路等。可以对被仿真的电路中的元器件设置各种故障,如开路、短路和不同程度的漏电等,从而观察不同故障情况下的电路工作状况。在进行仿真的同时,软件还可以存储测试点的所有数据,列出被仿真电路的所有元器件清单,以及存储测试仪器的工作状态、显示波形和具体数据等。

NI Multisim 10 软件的使用

在利用NI Multisim 10软件进行电路仿真时,可按照下面的步骤依次进行:

从放置菜单选择元器件或者从工具栏上选择元器件;

放置好元器件之后,连线,鼠标指针停留在元件管脚上单击就可以将导线引出来了,到要连接到的管脚再次单击就可以将导线画好;

画好导线之后,选择万用表或者示波器等仪器仪表连接到适当的位置;

选择合适的数值对各个元件赋值

点击运行就可以仿真了,单击按钮,进行设置和观察仿真结果。

电路的仿真

在完成以上操作之后,就可以对电路进行仿真了,本设计中,由以上计算可知当

时电路才会起振,即电路才会起振。为此在仿真时可使的阻值在72%附近变化。完成以上操作之后,在仿真软件上可以看到如图3这样的电路图:

图3 NI Multisim 10仿真电路图

4 仿真结果及误差分析

仿真结果

点击运行仿真按钮开始仿真,先将变阻器的阻值调的略微高一点,使电路起振,然后将变阻器阻值比例调至72%,可得到以下实验数据:

万用表读数:

频率计读数:

失真仪读数:%

详细结果如图4、图5、图6、图7。

图4 万用表读数

图5 频率计读数

图6 失真仪读数

图7 示波器示波结果图

误差分析

在仿真模拟的过程中,变阻器每变化1%,其阻值变化500Ω,其存在的误差也非常大;万用表有内阻,也会存在误差;是一个无理数,在本设计中是按照来计算的,这也对实验造成了误差。

5 设计心得与体会

在这次电子技术的课程设计中,我学习到了一款新的软件——Multisim10,经过查阅我知道了Multisim在电子行业的CAD软件中,他排在众多EDA软件的前面,它具有原理图设计、印刷电路板(PCB)、设计层次原理图设计、报表制作、电路仿真以

基于DSP的正弦波信号发生器

第1章 绪论 1.1 DSP 简介 数字信号处理(Digital Signal Processing ,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。在过去的二十多年时间里,信号处理已经在通信等领域得到极为广泛的应用。 图一是数字信号处理系统的简化框图。此系统先将模拟信号转换为数字信号,经数字信号处理后,再转换成模拟信号输出。其中抗混叠滤波器的作用是将输入信号 x(t)中高于折叠频率的分量滤除,以防止信号频谱的混叠。随后,信号经采样和A/D 转换后,变成数字信号x(n)。数字信号处理器对x(n)进行处理,得到输出数字信号 y(n),经D/A 转换器变成模拟信号。此信号经低通滤波器,滤除不需要的高频分量, 最后输出平滑的模拟信号y(t)。 图1.1 数字信号处理系统简化框图 数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。 抗混叠 滤波器 A/D 数字信号处理 D/A 低通滤波器 x(n) y(n) x(t) y(t)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

C语言实验报告《函数》

C语言实验报告《函数》 C语言实验报告《函数》 学号: __________ 姓名: __________ 班级: __________ 日期: __________ 指导教师: __________ 成绩: __________ 实验四函数 一、实验目的 1、掌握函数定义、调用和声明的方法 2、掌握实参和形参之间的传递方式 3、函数的嵌套调用 二、实验内容 1、写一个函数,将两个字符串连接。(习题 8. 6) 2、编写一个函数,由实参传来一个字符串,统计此字符串中字母、数字、空格和其他字符的个数,在主函数中输入字符串以及输出上述的结果。(习题 8.9)

3、请将实验三中的实验内容三改正后,再改写成函数形式(排序部分)。物理实验报告·化学实验报告·生物实验报告·实验报告格式·实验报告模板 三、实验步骤与过程 四、程序调试记录 一、实验目的 1.观察植物细胞有丝分裂的过程,识别有丝分裂的不同时期。 初步掌握制作洋葱根尖有丝分裂装片的技能。 3.初步掌握绘制生物图的方法。 二、实验原理在植物体中,有丝分裂常见于根尖、茎尖等分生区细胞,高等植物细胞有丝分裂的过程,分为分裂间期和分裂期的前期、中期、后期、末期。可以用高倍显微镜观察植物细胞的有丝分裂的过程,根据各个时期细胞内染色体(或染色质)的变化情况,识别该细胞处于有丝分裂的哪个时期,细胞核内的染色体容易被碱性染料着色。 三、材料用具洋葱根尖、显微镜、载玻片、盖玻片、滴管、镊子、培养皿、铅笔、质量分数为15%的盐酸、体积分数为95%的酒精、质量分数为0.01gml的龙胆紫(或紫药水) 四、实验过程(见书P39) 1.洋葱根尖的培养(提前3—4天) 2.解离: 5min 3.漂洗: 10min 4.染色: 5min

基于DSP设计正弦信号发生器

基于DSP设计正弦信号发生器 一.设计目的 设计一个基于DSP的正弦信号发生器 二.设计内容 利用基于CCS开发环境中的C54X汇编语言来实现正弦信号发生装置。三.设计原理 一般情况,产生正弦波的方法有两种:查表法和泰勒级数展开法。查表法是使用比较普遍的方法,优点是处理速度快,调频调相容易,精度高,但需要的存储器容量很大。泰勒级数展开法需要的存储单元少,具有稳定性好,算法简单,易于编程等优点,而且展开的级数越多,失真度就越小。本文采用了泰勒级数展开法。一个角度为θ的正弦和余弦函数,可以展开成泰勒级数,取其前5项进行近似得: 式中:x为θ的弧度值,x=2πf/fs(fs是采样频率;f是所要发生的信号频率。 正弦波的波形可以看作由无数点组成,这些点与x轴的每一个角度值相

对应,可以利用DSP处理器处理大量重复计算的优势来计算x轴每一点对应的y的值(在x轴取N个点进行逼近)。整个系统软件由主程序和基于泰勒展开法的SIN子程序组成,相应的软件流程图如图。

三.总体方案设计 本设计采用TMS320C54X系列的DSP作为正弦信号发生器的核心控制芯片。 通过计算一个角度的正弦值和余弦值程序可实现正弦波,其步骤如下: 1.利用sinx和cosx子程序,计算0°~45°(间隔为0.5°)的正弦和余弦值 2.利用sin(2x)=2sin(x)cos(x)公式,计算0°~90°的正弦值(间隔为1°) 3.通过复制,获得0°~359°的正弦值 4.将0°~359°的正弦值重复从PA口输出,便可得到正弦波 四.软件操作 DSP 集成开发环境 CCS是 Code Composer Studio 的缩写,即代码设计工作室。它是 TI 公司推出的集成可视化 DSP 软件开发工具。DSP CCS 内部集成了以下软件工具:◆ DSP 代码产生工具(包括 DSP 的 C 编译器、汇编优化器、汇编器和链接器)◆ CCS 集成开发环境(包括编辑、建立和调试 DSP 目标程序)◆ 实时基础软件 DSP/BIOS (必须具有硬件开发板)◆ RTDX、主机接口和 API(必须具有硬件开发板)在 CCS 下,用户可以对软件进行编辑、编译、调试、代码性能测试(profile)和项目管理等工作。CCS 可以提供如下功能:◆ 设置断点◆ 在断点处自动修改窗口◆ 观察变量◆ 观察和编辑存储器和寄存器◆ 利用测试点使数据流在目标系统和文件之间流动◆ 观察调用堆栈◆ 观察图形信号◆ 代码性能测试(profiling)◆ 观察反汇编和 C 指令执行◆ 提供 GEL (通用扩展语言)语言。此语言能增加一个函数或功能到 CCS 菜单中来完成用户自己设定的任务,是扩展 CCS 功能的专用语言。使用 CCS,可以加速 DSP 的开发进程,是 DSP 开发应用的得力助手。这里以 C54x DSP 的 CCS 3.1 为例介绍正弦波的产生。 利用 CCS 集成开发环境,用户可以在一个开发环境下完成工程定义、程序编辑、编译链接、调试和数据分析等工作环节。 1.创建工程(project)文件 选择Project→New,在“Project”文本框中键入将要创建的工程项目名,本例工程项目名为“sin”

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

c语言实验报告

C语言实验报告 说明 1,所有程序均用VC6.0编译运行,文件名命名为姓名+日期,因为实验存在补做,所以并不是按照日期先后排列的。 2,为了使截图清晰,手动将运行窗口由“黑底白字”改为了“白底黑字”。 实验2 数据类型、运算符和表达式 一、实验目的: (1)掌握C语言数据类型,熟悉如何定义一个整型、字符型、实型变量、以及对它们赋值的方法。 (2)学会使用C的有关算术运算符,以及包含这些运算符的表达式,特别是自加(++)和自减(――)运算符的使用。 (3)掌握C语言的输入和输出函数的使用 (4)进一步熟悉C程序的编辑、编译、连接和运行的过程。 三、程序调试与问题解决: (1)输人并运行下面的程序 #include void main() { char c1,c2; c1='a'; c2='b'; printf("%c %c\n",c1,c2); } ○1运行此程序。 ○2在上面printf语句的下面再增加一个printf语句。

printf("%d %d\n",c1,c2); 再运行,并分析结果。 输出结果如图,编译成功,无错误。 ○3将第3行改为 int c1,c2; 再运行,并分析结果。 ○4再将第4、5行改为 c1=a; c2=b; 再运行,并分析结果。 a,b没有定义,编译报错。 ○5再将第4、5行改为 c1=‘’a‘’; c2=‘’b‘’; 再运行,并分析结果。 ○6再将第4、5行改为 c1=300; c2=400; 再运行,并分析结果。 以字符型输出时,输出的将是300,400对应的字符。 (2)输人并运行教材第3章习题3. 6给出的程序 #include main () { char c1='a',c2='b',c3='c',c4='\101',c5='\116';

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

游戏C语言实验报告

嘉应学院计算机学院 实验报告 课程名称: C程序设计 开课学期: 2015—2016学年第1学期 班级:计算机1505 指导老师:陈广明 设计题目:游戏2048 学生姓名(学号):第3组:钟瞻宇

目录 一、实验目的和要求 .................................................................................................................................................... 二、实验环境、内容和方法 ........................................................................................................................................ 三、程序设计 ................................................................................................................................................................ 四、源代码 .................................................................................................................................................................... 五、调试与运行结果.................................................................................................................................................... 六、总结........................................................................................................................................................................

基于DSP的信号发生器设计..

基于DSP的信号发生器设计设计题目:正弦信号发生器 专业班级电科11级-1班 学号 311108001417 学生姓名王博 指导教师王科平

摘要 正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。 目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵,而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。 目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵,而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。

目录 一、概述 (3) 二、系统设计 (4) 2.1 总体方案 (4) 2.2正弦波信号发生器 (4) 三、硬件设计 (5) 3.1硬件组成部分 (5) 3.2控制器部分 (6) 3.4人机接口部分 (7) 四、软件设计 (8) 4.1流程图 (8) 4.2 正弦信号发生器程序清单 (9) 五、总结 (14) 参考文献 (14)

EDA实验 函数信号发生器

EDA设计实验 题目:函数信号发生器 作者: 所在学院:信息科学与工程学院 专业年级: 指导教师: 职称: 2011 年 12 月 11 日

函数信号发生器 摘要:函数信号发生器在生产实践和科技领域有着广泛的应用。本设计是采用了EDA技术设计的函数信号发生器。此函数信号发生器的实现是基于VHDL语言描述各个波形产生模块,然后在QuartusⅡ软件上实现波形的编译,仿真和下载到Cyclone芯片上。整个系统由波形产生模块和波形选择模块两个部分组成。最后经过QuartusⅡ软件仿真,证明此次设计可以输出正弦波、方波、三角波,锯齿波,阶梯波等规定波形,并能根据波形选择模块的设定来选择波形输出。 关键字:函数信号发生器;Cyclone;VHDL;QuartusⅡ 引言: 函数信号发生器即通常所说的信号发生器是一种常用的信号源,广泛应用于通信,雷达,测控,电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格要求的电信号设备是最普通、最基本也是应用最广泛的电子仪器之一,几乎所有电参量的测量都要用到波形发生器。随着现代电子技术的飞速发展,现代电子测量工作对函数信号信号发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波性,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度、及分辨率高等。本文基于

EDA设计函数信号发生器,并产生稳定的正弦波、方波、锯齿波、三角波、阶梯波。 正文: 1、Quartus II软件简介 1)Quartus II软件介绍 Quartus II 是Alera公司推出的一款功能强大,兼容性最好的EDA工具软件。该软件界面友好、使用便捷、功能强大,是一个完全集成化的可编程逻辑设计环境,具有开放性、与结构无关、多平台完全集成化丰富的设计库、模块化工具、支持多种硬件描述语言及有多种高级编程语言接口等特点。 Quartus II是Altera公司推出的CPLD/FPGA开发工具,Quartus II提供了完全集成且与电路结构无关的开发包环境,具有数字逻辑设计的全部特性,包括:可利用原理图、结构框图、VerilogHDL、AHDL和VHDL完成电路描述,并将其保存为设计实体文件;芯片平面布局连线编辑;功能强大的逻辑综合工具;完备的电路功能仿真与时序逻辑仿真工具;定时/时序分析与关键路径延时分析;可使用SignalTap II逻辑分析工具进行嵌入式的逻辑分析;支持软件源文件的添加和创建,并将它们链接起来生成编程文件;使用组合编译方式可一次完成整体设计流程;自动定位编译错误;高效的期间编程与验证工具;可读入标准的EDIF网表文件、VHDL网表文件和Verilog网表文件;能生成第

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

C语言实验报告参考答案原

C语言实验报告参考答案 实验一熟悉C语言程序开发环境及数据描述 四、程序清单 1.编写程序实现在屏幕上显示以下结果: The dress is long The shoes are big The trousers are black 答案: #include<> main() { printf("The dress is long\n"); printf("The shoes are big\n"); printf("The trousers are black\n"); } 2.编写程序: (1) a=150,b=20,c=45,编写求a/b、a/c(商)和a%b、a%c(余数)的程序。 (2)a=160,b=46,c=18,d=170, 编写求(a+b)/(b-c)*(c-d)的程序。 答案: (1) #include<> main() {

int a,b,c,x,y; a=150; b=20; c=45; x=a/b; y=a/c; printf("a/b的商=%d\n",x); printf("a/c的商=%d\n",y); x=a%b; y=a%c; printf("a/b的余数=%d\n",x); printf("a/c的余数=%d\n",y); } (2) #include<> main() { int a,b,c,d; float x; a=160; b=46; c=18;

d=170; x=(a+b)/(b-c)*(c-d); printf("(a+b)/(b-c)*(c-d)=%f\n",x); } 3. 设变量a的值为0,b的值为-10,编写程序:当a>b时,将b赋给c;当a<=b 时,将0赋给c。(提示:用条件运算符) 答案: #include<> main() { int a,b,c; a=0; b=-10; c= (a>b) b:a; printf("c = %d\n",c); } 五、调试和测试结果 1.编译、连接无错,运行后屏幕上显示以下结果: The dress is long The shoes are big The trousers are black 2、(1) 编译、连接无错,运行后屏幕上显示以下结果: a/b的商=7

DSP正弦波信号发生器

第1章绪论 1.1 DSP简介 数字信号处理(Digital Signal Processing,简称DSP>是一门涉及许多学科而又广泛应用于许多领域地新兴学科.20世纪60年代以来,随着计算机和信息技术地飞速发展,数字信号处理技术应运而生并得到迅速地发展.数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号地方法,这些信号由数字序列表示.在过去地二十多年时间里,信号处理已经在通信等领域得到极为广泛地应用. ,经 x(t>,信号经采样和A/D 转换后,得到输出数字信号y(n>,, 图1.1数字信号处理系统简化框图 数字信号处理是以众多学科为理论基础地,它所涉及地范围极其广泛.例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理地基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关.近来新兴地一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分.可以说,数字信号处理是把许多经典地理论体系作为自己地理论基础,同时又使自己成为一系列新兴学科地理论基础. 1.2 课题来源 数字信号处理器(DSP>是在模拟信号变成数字信号以后进行高速实时处理地专用处理器.DSP芯片以其独特地结构和快速实现各种数字信号处理算法地突出优点,发展十分迅速.数字信号发生器是在电子电路设计、自动控制系统和仪表测量校正调试中应用很多地一种信号发生装置和信号源.而正弦信号是一种频率成分最为单一地常见信号源,任何复杂信号(例如声音信号>都可以通过傅里叶变换分解为许多频率不同、幅度不等地正弦信号地叠加,广泛地应用在电子技术实验、自动控制系统和通

函数信号发生器使用说明

EE1641C~EE1643C型 函数信号发生器/计数器 使用说明书 共 11 张 2004年 10 月

1 概述 1.1 定义及用途 本仪器是一种精密的测试仪器,因其具有连续信号、扫频信号、函数信号、脉冲信号等多种输出信号,并具有多种调制方式以及外部测频功能,故定名为EE1641C型函数信号发生器/计数器、EE1642C(EE1642C1)型函数信号发生器/计数器、EE1643C型函数信号发生器/计数器。本仪器是电子工程师、电子实验室、生产线及教学、科研需配备的理想设备。 1.2 主要特征 1.2.1 采用大规模单片集成精密函数发生器电路,使得该机具有很高的可靠性及优良性能/价格比。 1.2.2 采用单片微机电路进行整周期频率测量和智能化管理,对于输出信号的频率幅度用户可以直观、准确的了解到(特别是低频时亦是如此)。因此极大的方便了用户。 1.2.3 该机采用了精密电流源电路,使输出信号在整个频带内均具有相当高的精度,同时多种电流源的变换使用,使仪器不仅具有正弦波、三角波、方波等基本波形,更具有锯齿波、脉冲波等多种非对称波形的输出,同时对各种波形均可以实现扫描、FSK调制和调频功能,正弦波可以实现调幅功能。此外,本机还具有单次脉冲输出。 1.2.4 整机采用中大规模集成电路设计,优选设计电路,元件降额使用, 以保证仪器高可靠性,平均无故障工作时间高达数千小时以上。 1.2.5 机箱造型美观大方,电子控制按纽操作起来更舒适,更方便。 2 技术参数 2.1 函数信号发生器技术参数 2.1.1 输出频率 a) EE1641C:0.2Hz~3MHz 按十进制分类共分七档 b) EE1642C:0.2Hz~10MHz 按十进制分类共分八档 c) EE1642C1:0.2Hz~15MHz 按十进制分类共分八档 d) EE1643C:0.2Hz~20MHz 按十进制分类共分八档 每档均以频率微调电位器实行频率调节。 2.1.2 输出信号阻抗 a) 函数输出:50Ω b) TTL同步输出:600Ω 2.1.3 输出信号波形 a) 函数输出(对称或非对称输出):正弦波、三角波、方波 b) 同步输出:脉冲波 2.1.4 输出信号幅度 a) 函数输出:≥20Vp–p±10%(空载);(测试条件:fo≤15MHz,0dB衰减) ≥14Vp–p±10%(空载);(测试条件:15MHz≤fo≤20MHz,0dB衰减) b) 同步输出:TTL电平:“0”电平:≤0.8V,“1”电平:≥1.8V(负载电阻≥600Ω) CMOS电平:“0”电平:≤4.5V,“1”电平:5V~13.5V可调(fo≤2MHz) c) 单次脉冲:“0”电平:≤0.5V,“1”电平:≥3.5V 2.1.5 函数输出信号直流电平(offset)调节范围:关或(–10V~+10V)±10%(空载) [“关”位置时输出信号所携带的直流电平为:<0V±0.1V,负载电阻为:50Ω时,调节范围为 (–5V~+5V)±10%]

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

C语言实验报告

实验一进制转换 一、实验要求 采用模块化程序设计完成进制转换。由键盘输入一个十进制正整数,然后将该数转换成指定的进制数(二、八、十六) 形式输出。指定的进制由用户输入。 二、实验目的 1、熟悉C 环境的安装、使用。 2、承上启下,复习《C 程序设计》等基础课程的知识。 3、掌握C 语言编程的方法。 三、预备知识 1、VC6.0的安装与使用。 2、C 程序设计基础知识。 四、实验内容 采用模块化程序设计完成进制转换。 五、程序框图 六、程序清单 1. 编写主函数:输入需转换的数与转换的进制 2. 编写子函数 (1)函数转换为除16进制以外的进制转换算数编程,使用while 循环实现计算进制的转换,并输出转换后的数字; (2)函数转换为16进制,用while 函数实现16进制转换的计算并输出16进制转换后的数据; 3. 编写数组,关于16进制的一系列字符 4. 编写主函数加入do while 使函数可以循环。

七、实验步骤 #include char num[16]={'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'}; void fun(int n, int m) { int i=-1, a[100]; if(m!=16) { while(n) { a[i++]=n%m; n=n/m; } while(i!=-1) printf("%d",a[--i]); printf("\n"); } else { while(n) { a[++i]=num[n%16]; n/=16; } while(i!=-1) printf("%c",a[i--]); printf("\n"); } } int main() { int a, c; char cIn = 0; do { printf("\n输入正整数,转换的进制:"); scanf("%d %d",&a,&c); fun(a,c); printf("Go on? (Y/N):"); cIn = getchar( ); if(cIn == 'N' || cIn == 'n') return 0; } while(1);fun(a,c);

基于Matlab_DSPBuilder的正弦信号发生器设计.

基于Matlab/DSP Builder的正弦信号发生器设计 引言 近年来随着通信技术的不断发展,信号的正确传输显得日益重要,也就是说要有一个可靠的能产生稳定确信号的发生器,基于Matlab/DSP Builder的正弦信号发生器是利用Matlab/DSP Builder的模块进行的模快化设计,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了、易懂、易学。使硬件在软件的控制下协调运作。 DSP Builder可以帮助设计者完成基于FPGA的DSP系统设计设计,除了图形化的系统建模外,还可以完成及大部分的设计过程和仿真,直至将设计文件下载到DSP 开发板上。此次实验的目的就是将两者的优势有机的结合在一起,利用DSP的优势开发正弦信号发生器。 在设计中主要采用DSP Builder库中的模块进行系统的模型设计,然后再进行Simulink仿真。 1.设计思想 1.1 DSP Builder特点 DSP Builder系统级(或算法级设计工具,它架构在多个软件工具之上,并把系统级(算法仿真建模和RTL(硬件实现两个领域的设计工具连接起来,最大程度的发挥了两种工具的优势。DSP Builder依赖于MathWorks公司的数学分析工具 Matlab/Simulink,可以在Simulink中进行图形化设计和仿真,同时又通过Signal Compilder把Matlab/Simulink的设计文件(.mdl转换成相应的硬件描述语言VHDL 设计文件(.vhd,以及用于控制和编译的tcl脚本。而对后者的处理可以用Quartus II 来实现。 1.2 QuartusII特点

函数信号发生器

基于labview的函数信号发生器的设计 [摘要] 介绍一种基于labvIEW环境下自行开发的虚拟函数信号发生器,它不仅能够产 生实验室常用的正弦波、三角波、方波、锯齿波信号,而且还可以通过输入公式,产生测试和研究领域所需要的特殊信号。对任意波形的发生可实现公式输入;对信号频率、幅度、相位、偏移量可调可控;方波占空比可以调控;噪声任意可加、创建友好界面、信号波形显示;输出频谱特性;所有调制都可微调与粗调。该仪器系统操作简便,设计灵活,功能强大,可以完成不同环境下的测量要求。因此具有很强的实用性。 关键词:虚拟仪器,labvIEW,虚拟函数信号发生器,正弦波,三角波,方波,锯齿波, 特殊信号。 引言: 在有关电磁信号的测量和研究中,我们需要用到一种或多种信号源,而函数信号发生器则为我们提供了在研究中所需要的信号源。它可以产生不同频率的正弦波,方波,三角波,锯齿波,正负脉冲信号,调频信号,调幅信号和随机信号等。其输出信号的幅值也可以按需要进行调节。传统信号发生器种类繁多,价格昂贵,而且功能固定单一,不具备用户对仪器进行定义及编程的功能,一个传统实验室很难拥有多类信号发生器。然而,基于虚拟仪器技术的实验室均能满足这一要求。 1、虚拟仪器简介: 自从1986年美国NI(National Instrument)公司提出虚拟仪器的概念以来,随着计 算机技术和测量技术的发展,虚拟仪器技术也得到很快的发展。虚拟仪器是指:利用现有的PC机,加上特殊设计的仪器硬件和专用软件,形成既有普通仪器的基本功能,又有一般仪器所没有的特殊功能的新型仪器。与传统的仪器相比其特点主要有:具有更好的测量精度和可重复性;测量速度快;系统组建时间短;由用户定义仪器功能;可扩展性强;技术更新快等。虚拟仪器以软件为核心,其软件又以美国NI公司的Labview虚拟仪器软件开发平台最为常用。Labview是一种图形化的编程语言,主要用来开发数据采集,仪器控制及数据处理分析等软件,功能强大。目前,该开发软件在国际测试、测控行业比较流行,在国内的测控领域也得到广泛应用。函数信号发生器是在科学研究和工程设计中广泛应用的一种通用仪器。下面结合一个虚拟函数信号发生器设计开发具体介绍基于图形化编程语言Labview的虚拟仪器编程方法与实现技术。 2、虚拟函数信号发生器的结构与组成 2.1 虚拟函数信号发生器的前面板

信号发生器实验报告

电子线路课程设计报告设计题目:简易数字合成信号发生器 专业: 指导教师: 小组成员:

数字合成信号发生器设计、调试报告 一:设计目标陈述 设计一个简易数字信号发生器,使其能够产生正弦信号、方波信号、三角波信号、锯齿波信号,要求有滤波有放大,可以按键选择波形的模式及周期及频率,波形可以在示波器上 显示,此外可以加入数码管显示。 二、完成情况简述 成功完成了电路的基本焊接,程序完整,能够实现要求功能。能够通过程序控制实现正弦波的输出,但是有一定噪声;由于时间问题,我们没有设计数码管,也不能通过按键调节频率。 三、系统总体描述及系统框图 总体描述:以51单片机开发板为基础,将输出的数字信号接入D\A转换器进行D\A转换,然后接入到滤波器进行滤波,最后通过运算放大器得到最后的波形输出。 四:各模块说明 1、单片机电路80C51 程序下载于开发板上的单片机内进行程序的执行,为D\A转换提供了八位数字信号,同时为滤波器提供高频方波。通过开发板上的232串口,可以进行软件控制信号波形及频率切换。通过开发板连接液晶显示屏,显示波形和频率。 2、D/A电路TLC7528 将波形样值的编码转换成模拟值,完成单极性的波形输出。TLC7528是双路8位数字模拟转换器,本设计采用的是电压输出模式,示波器上显示波形。直接将单片机的P0口输出传给TLC7528并用A路直接输出结果,没有寄存。 3、滤波电路MAX7400 通过接收到的单片机发送来的高频方波信号(其频率为所要实现波频率的一百倍)D转换器输出的波形,对转换器输出波形进行滤波并得到平滑的输出信号。 4、放大电路TL072

TL072用以对滤波器输出的波进行十倍放大,采用双电源,并将放大结果送到示波器进行波形显示。 五:调试流程 1、利用proteus做各个模块和程序的单独仿真,修改电路和程序。 2、用完整的程序对完整电路进行仿真,调整程序结构等。 3、焊接电路,利用硬件仿真器进行仿真,并用示波器进行波形显示,调整电路的一些细节错误。 六:遇到的问题及解决方法 遇到的软件方面的问题: 最开始,无法形成波形,然后用示波器查看滤波器的滤波,发现频率过低,于是检查程序发现,滤波器的频率设置方面的参数过大,延时程序的参数设置过大,频率输出过低,几次调整好参数后,在进行试验,波形终于产生了。 七:原理图和实物照片 波形照片:

相关主题
文本预览
相关文档 最新文档