驻车制动设计计算
- 格式:pdf
- 大小:2.00 MB
- 文档页数:3
制动器的设计与计算.第四节制动器的设计与计算一、鼓式制动器的设计计算1.压力沿衬片长度方向的分布规律除摩擦衬片因有弹性容易变形外,制动鼓、蹄片和支承也有变形,所以计算法向压力在摩擦衬片上的分布规律比较困难。
通常只考虑衬片径向变形的影响,其它零件变形的影响较小而忽略不计。
制动蹄有一个自由度和两个自由度之分。
首先计算有两个自由度的紧蹄摩擦衬片的径向变形规律。
如图8-8a 所示,将坐标原点取在制动鼓中心O 点。
1y 坐标轴线通过蹄片的瞬时转动中心1A 点。
制动时,由于摩擦衬片变形,蹄片一面绕瞬时转动中心转动,同时还顺着摩擦力作用的方向沿支承面移动。
结果蹄片中心位于1O 点,因而未变形的摩擦衬片的表面轮廓(11E E 线),就沿1OO 方向移动进入制动鼓内。
显然,表面上所有点在这个方向上的变形是一样的。
位于半径1OB 上的任意点1B 的变形就是11B B '线段,所以同样一些点的径向变形1δ为 111C B =δ≈111cos ψB B ' 考虑到?-+=90)(111α?ψ和max 1111δ=='OO B B ,所以对于紧蹄的径向变形1δ和压图8—8 计算摩擦衬片径向变形简图a)有两个自由度的紧蹄 b)有一个自由度的紧蹄力1p 为:+=+=)sin()sin(11max 1111max 11?α?αδδp p (8-1)式中,1α为任意半径1OB 和1y 轴之间的夹角;1ψ为半径1OB 和最大压力线1OO 之间的夹角;1?为1x 轴和最大压力线1OO 之间的夹角。
其次计算有一个自由度的紧蹄摩擦衬片的径向变形规律。
如图8-8b 所示,此时蹄片在张开力和摩擦力作用下,绕支承销1A 转动γd 角。
摩擦衬片表面任意点1B 沿蹄片转动的切线方向的变形就是线段11B B ',其径向变形分量是这个线段在半径1OB 延长线上的投影,即为11C B 线段。
由于γd 很小,可认为?='∠90111B B A ,故所求摩擦衬片的变形应为γγγδd B A B B C B 111111111sin sin ='==考虑到1OA ≈R OB =1,那么分析等腰三角形11OB A ,则有γαsin sin 11RB A =,所以表面的径向变形和压力为==αγαδsin sin max 11p p d R (8-2)综上所述可知,新蹄片压力沿摩擦衬片长度的分布符合正弦曲线规律,可用式(8-1)和式(8-2)计算。
目录1 系统概述 (1)1.1 系统设计说明 (1)1.2 系统结构及组成 (1)1.3 系统设计原理及规范 (2)2 输入条件 (2)2.1 整车基本参数 (2)2.2 制动器参数 (3)2.3 制动踏板及传动装置参数 (3)2.4 驻车手柄参数 (4)3 系统计算及验证 (4)3.1 理想制动力分配与实际制动力分配 (4)3.2 附着系数、制动强度及附着系数利用率 (7)3.3 管路压强计算 (9)3.4 制动效能计算 (11)3.5 制动踏板及传动装置校核 (14)3.6 驻车制动计算 (17)3.7 衬片磨损特性计算 (19)4 总结 (19)5 制动踏板与地毯距离 (21)参考文献 (21)1 系统概述1.1 系统设计说明只有制动性能良好、制动系统工作可靠的汽车才能充分发挥其动力性能。
因此,在整车新产品开发设计中制动系统的匹配计算尤为重要。
LF7133是在标杆车的基础上设计开发的一款全新车型,其制动系统是在标杆车制动系统为依托的前提下进行设计开发。
根据项目要求,需要对制动系统各参数进行计算与校核,以确保制动系统的正常使用,使系统中各零部件之间参数匹配合理,并且确保其满足国家相关法律法规的要求。
1.2 系统结构及组成经双方确认的设计依据和要求,LF7133制动系统采用同国内外大量A级三厢轿车一致的液压制动系统。
制动系统包含以下装置:行车制动系统:根据车辆配置选择前后盘式或前盘后鼓制动器,制动踏板为吊挂式踏板,带真空助力器,管路布置采用相互独立的X型双管路系统;驻车制动系统:为机械式手动后鼓式制动,采用远距离棘轮拉索操纵机构;应急制动系统:行车制动系统具有应急特性,应保证在行车制动只有一处管路失效的情况下,满足应急制动性能要求。
LF7133制动系统主要由如下部件组成。
结构简图如图1所示:图1 制动系统结构简图1. 真空助力器带制动主缸总成2.制动踏板3.车轮4.轮速传感器5. 制动管路6. 制动轮缸7.ABS控制器1.3 系统设计原理及规范本计算报告根据总布置提供的整车参数、制动器与总泵及真空助力器厂家提供的数据、制动踏板、驻车操纵机构选型进行匹配计算,校核前/后制动力、制动效能、制动踏板力、驻车制动手柄力及驻坡极限倾角等,用以验证制动系统设计的合理性。
球盘式IPB卡钳驻车效率的计算方法作者:易刚裴纯辉来源:《工业设计》2016年第06期摘要:为校核球盘式IPB卡钳驻车制动能力,叙述了球盘式IPB卡钳的工作原理,提出卡钳驻车效率(力的放大比及拉臂行程)的计算方法,通过与台架驻车效率性能结果对比,验证了计算方法的正确性,该方法适用于开发前期球盘式IPB卡钳驻车制动效率的校核计算。
关键词:球盘式;IPB卡钳;驻车效率;放大比;行程;计算方法;试验验证目前乘用车后轮制动器广泛应用盘式制动器,而球盘式IPB行驻一体式卡钳由于驻车效率高而获得了更为广阔的运用,该球盘式IPB行驻一体式卡钳通过集成在卡钳内的特殊驻车机构将驻车输入杆的旋转运动转化为活塞(或球盘)的直线运动,从而推动摩擦片夹紧制动盘实现驻车。
但是国内卡钳厂家由于技术能力限制,对驻车效率(放大比和拉索行程)的校核还无成熟经验或公开文献参考,本文提供一种球盘式IPB卡钳驻车效率的计算方法,并通过与台架试验验证进行对比,论述了该计算方法的准确性。
1 工作原理如上图1所示,手刹带动拉臂旋转,拉臂旋转时带动驻车输入杆旋转,挤压钢球,钢球开始爬坡,并挤压球盘实现直线运动,带动活塞挤压摩擦片夹紧制动盘而从实现驻车。
2 驻车效率计算如下图2所示:O为拉臂旋转中心,A为拉臂初始位置,B为拉臂转动△X角度后的位置,Df为球窝底部圆弧直径,Rb为球窝分度圆半径(一般为9mm),r为钢球半径,α为爬升角(各制动器厂家根据自身能力设计会稍有不同,一般为13°至16°之间),R为拉臂长度,Re为拉臂的旋转力臂,Re’为拉臂旋转△X角度后的旋转力臂,初始角度为β,A为旋转中心与拉索固定点之间的距离,B为拉臂初始位置与拉索固定点之间的距离,B’为拉臂转动△X角度后的位置与拉索固定点之间的距离,初始A点时施加在拉臂上的输入力为F1,此时活塞夹紧摩擦片的输出力为F2,此时对应的放大比为I,拉臂转动△X角度后(即B点)施加在拉臂上的输入力为F1’,此时活塞夹紧摩擦片的输出力为F2’,此时对应的放大比为I’,对应的拉索行程为△L。
§3 制动器的设计计算3.3制动蹄上的压力分布规律与制动力矩的简化计算1.沿蹄片长度方向的压力分布规律用解析方法计算沿蹄片长度方向的压力分布规律比较困难,因为除了摩擦衬片有弹性容易变形外,制动鼓、制动蹄以及支承也都有弹性变形。
通常在近似计算中只考虑衬片径向变形的影响,其他零件变形的影响较小,可以忽略不计。
制动蹄可设计成一个自由度和两个自由度的(见图37)形式。
首先计算有两个自由度的增势蹄摩擦衬片的径向变形规律。
为此,取制动鼓中心O点为坐标原点,如图37所示,并让y 1坐标轴通过制动蹄的瞬时转动中心A 1点。
制动时,由于摩擦衬片变形,制动蹄在绕瞬时转动中心A 1转动的同时,还顺着摩擦力作用方向沿支承面移动。
结果使制动蹄中心位于点,因而可以想象未变形的摩擦衬片的表面轮廓(EE 1O l 线)就沿方向移人制动鼓体内。
显然,衬片表面上所有点在这个方向上的变形是相同的。
例如,位于半径,上的任意点的变形就是线段。
因此,对于该点的径向变形为1OO 1OB 1B '11B B 1'11111cos Ψ≈=B B C B δ由于 和ο90)(111−+=Ψαϕmax 11'11δ==OO B B 于是得到增势蹄的径向变形1δ和压力为1q )sin(11max 11ϕαδδ+≈)sin(11max 1ϕα+=q q (43)式中 1α——任意半径1OB 和轴之间的夹角;1y 1ϕ——最大压力线与轴之间的夹角;1OO 1x 1ψ——半径和线之间的夹角。
1OB 1OO 下面再计算有一个自由度的增势蹄摩擦衬片的径向变形规律。
此时摩擦衬片在张开力和摩擦力的作用下,绕支承销中心A 1转动γd 角(见图37(b))。
摩擦衬片表面任意点沿制动蹄转动的切线方向的变形即为线段,其径向变形分量是线段,在半径延长线上的投影,即线段。
由于1B '11B B '11B B 1OB 1BB γd 角很小,可以认为,则所求的摩擦衬片径向变形为°=∠90'111B B Aγγγδd B A B B C B ⋅===sin sin 11'11111 考虑到,则由等腰三角形可知R OB OA =≈1111OB A γαsin /sin /11R B A = 代入上式,得摩擦衬片的径向变形和压力分别为γαδd R sin 1=αsin max 11q q = (44)综合上述可以认为:对于尚未磨合的新制动蹄衬片,沿其长度方向的压力分布符合正弦曲线规律,可用式(43)和式(44)计算。
驻车制动装置的设计黄键李薇辜振宇(福州大学机械工程学院 福州 350002)摘要:本文比较详细地介绍了驻车制动装置的结构形式和设计方法。
关键词:驻车制动设计1前言驻车制动装置是使汽车在路面(包括斜坡)上停驻时,为防止车辆滑行,以及汽车在坡道上起步时,用以防止车辆后退的装置。
驻车制动装置有别于行车制动装置,它们各自有相互独立的操纵装置,驻车制动装置常采用手操纵机构,所以通常又称为手制动,但驻车制动装置既可以是手操纵也可以是脚操纵。
一般小汽车和轻型卡车采用手操纵机构,而大型车辆则采用脚操纵的驻车制动踏板机构。
本文主要介绍手操纵的驻车制动装置。
2驻车制动装置的结构驻车制动装置包括驻车制动器和驻车驱动机构两部分。
驻车制动器按其作用部位分为两种类型,一种是制动传动轴的中央制动器,另一种是与行车制动器共用的车轮制动器,目前,多采用作用于后轮的驻车机构。
驻车驱动机构因其对可靠性的要求较高,一般都采用机械式的驱动机构,但究竟是采用中央制动器驻车还是采用车轮制动器驻车,其驻车驱动机构有所不同,而不管是哪一种的驻车类型,制动器都有鼓式和盘式之分,所以,驻车驱动机构还有所差异。
图1为采用盘式中央制动器的驻车制动装置,在鼓式制动器中利用行车制动器作手制动器使用时,如图3,一般是在它的后制动蹄上通过固定销装有一个制动蹄杠杆,在这个杠杆的中间通过一根制动蹄推杆同前制动蹄连接。
驻车制动时,拉紧或摆动手制动操纵杆,经一系列杠杆和拉绳传动,将驻车制动杠杆的下端向前拉,使之绕固定销转动,其中间支点推动制动推杆左移,将前制动蹄推向制动鼓。
当前制动蹄压靠到制动鼓上之后,推杆停止移动,此时制动杠杆绕中间支点继续转动,于是制动杠杆的上端向右移动,使后制动蹄压靠到制动鼓上,从而产生驻车制动作用。
对于带有驻车驱动的盘式车轮制动器,如图4,驻车时是通过驻车拉索的拉动使位于制动钳体内的指销推动辅助活塞移动,辅助活塞进而顶住活塞移动,先使活塞一侧的制动块压靠到制动盘,接着,此反作用力则推动制动钳体连同另一侧的制动块压靠到制动盘,从而产生驻车制动作用。
制动器的设计计算部分制动器是用来控制或减速机械设备运动的装置。
它通常由摩擦垫、压力单元、驱动装置和控制装置组成。
制动器的设计计算部分包括静态设计与动态设计两个方面。
静态设计主要涉及计算所需的制动力和摩擦垫的尺寸,而动态设计则涉及制动器在运行期间的热量分布和冷却。
在进行静态设计计算之前,首先需要确定制动器所需的制动力。
制动器的制动力通常由下述式子计算:制动力=需要减速度×机械设备的质量其中,需要减速度是由系统要求或运行条件决定的。
机械设备的质量可以通过实际测量或通过计算机辅助设计软件进行估算。
此外,制动器还需要考虑一些额外的因素,如摩擦系数和安全系数,以确保制动器的可靠性和安全性。
在确定制动力后,需要计算摩擦垫的尺寸。
摩擦垫的尺寸取决于制动器的类型和具体应用。
常见的制动器类型包括盘式制动器和鼓式制动器。
对于盘式制动器,摩擦垫通常由摩擦面的直径和宽度来确定。
对于鼓式制动器,摩擦垫的尺寸通常由鼓面的直径和摩擦面的长度来决定。
与摩擦垫尺寸相关的参数还包括摩擦垫的摩擦系数和最大摩擦温度。
摩擦系数表示摩擦垫在制动时的摩擦性能,其数值通常由摩擦材料的选择决定。
最大摩擦温度是指制动器在运行期间可能达到的最高温度,该温度主要取决于摩擦材料和运行工况。
在动态设计方面,制动器的热量分布和冷却是设计中的重要考虑因素。
当制动器运行一段时间后,摩擦垫会产生大量热量,如果不能及时散热,可能会导致制动性能下降、摩擦垫老化或甚至引发火灾。
因此,制动器的设计需要考虑散热系统,以保持摩擦垫的正常工作温度。
散热系统通常包括散热片或散热鳍片,以增加散热面积,帮助热量的有效传递。
此外,制动器还可以采用风冷式冷却系统,通过引入外部冷气来加速热量的散发。
冷却系统的设计需要考虑风量、风速和冷却材料的选择等因素。
综上所述,制动器的设计计算部分涉及静态设计和动态设计两个方面。
静态设计主要包括计算制动力和摩擦垫尺寸,而动态设计则涉及制动器的热量分布和冷却。
制动计算公式范文制动计算是在机械设计、交通运输等领域中非常重要的计算问题,它涉及到制动系统的设计和性能评估。
制动计算公式是指用来计算制动系统相关参数的数学公式,通常包括制动力、制动距离、制动时间等参数的计算方法。
下面将介绍一些常见的制动计算公式和其应用。
1.制动力计算公式在机械设计中,制动力是制动系统所能提供的制动力量,通常用来衡量制动系统的性能。
制动力的计算公式如下:F=μN其中,F为制动力(N),μ为摩擦系数(无量纲),N为受制动物体施加的正向力(N)。
摩擦系数μ是一个反映摩擦特性的物理量,它与接触材料的性质、表面粗糙度和接触状态等有关。
一般来说,摩擦系数越大,制动力就越大。
2.制动距离计算公式制动距离是车辆在制动过程中行驶的距离,用来评估车辆的制动性能。
制动距离的计算公式如下:d=V^2/(2μg)其中,d为制动距离(m),V为车辆的初始速度(m/s),μ为摩擦系数(无量纲),g为重力加速度(9.81m/s^2)。
通过这个公式可以看出,制动距离与初始速度的平方成正比,与摩擦系数和重力加速度成反比。
因此,在设计制动系统时,需要注意车辆的初始速度和摩擦系数的选择,以减小制动距离。
3.制动时间计算公式制动时间是车辆在进行急刹车时,从刹车踏板被踩下到车辆完全停止的时间。
制动时间的计算公式如下:t=V/a其中,t为制动时间(s),V为车辆的初始速度(m/s),a为减速度(m/s^2)。
减速度a是车辆在进行制动时的减速度,通常是制动系统所能提供的最大减速度。
制动时间与初始速度成正比,与减速度成反比。
因此,在设计制动系统时,需要选择适当的减速度,以保证车辆在合理的时间内完成制动。
4.制动功率计算公式制动功率是指制动系统所需消耗的功率,用来评估制动系统的能耗。
制动功率的计算公式如下:P=FV其中,P为制动功率(W),F为制动力(N),V为车辆的速度(m/s)。
制动功率与制动力和速度成正比。
在选择制动系统时,需要考虑制动功率的大小,以保证系统能够提供足够的制动力。
219
式中ϕ——该车所能遇到的最大附着系数;
q——制动强度
e r ——车轮有效半径。
一个车轮制动器应有的最大制动力矩为按上列公式计算结果的半值。
奥龙、德御系列车采用的是斯太尔前轴、后桥,制动器采用的是斯太尔领从蹄鼓式制动器,如图13.5所示,制动器的规格为前φ420×160/后φ420×185,制动器结构参数及制动力矩见表13.1、表13.2,由于奥龙、德御车制动系统中没有安装气压感载调节阀,所以整车制动力不可调节,对同一系列车,整车制动力分配系数为定值,所以,实际制动力分配曲线与理想的制动力分配曲线相差较大,制动效率较低,前轮可能因抱死而丧失转向能力,后轮也可能抱死使汽车有发生后轴侧滑的危险。
图13.5 领从蹄鼓式制动器结构示意图
因此,对奥龙、德御系列车来说,可以通过调整轴荷分配来调整重心位置,使车辆满载情况下的同步附着系数接近可能遇到的路面附着系数,才能获得稳定的制动工况。
表13.1 斯太尔前、后制动器结构参数
表13.2 斯太尔前、后制动器在各种制动气压下的制动力矩
4.驻车计算
图13.6为汽车在上坡路上停驻时的受力情况,由此可得出汽车上坡停驻时的后轴车轮的附着力为:
结构参数 STEYR (前) STEYR (后) L(mm) 155mm 155mm a(mm) 160mm 160mm M(mm) 38mm 38mm 摩擦片包角0β 95° 110° 摩擦片起始角 29°8′ 21°39′ 制动臂长l(mm) 122 145 摩擦片宽b(mm) 160 185 制动鼓半径(mm) 210 210 ()a MP P 0 0.5 0.6 0.7 0.8 m N M u ⋅ٛ/)(1前 10811 12974 15135 17299 m N M u ⋅ٛ/)(2后
13573 16287 19002 21717
220
图13.6 汽车在上坡路上停驻时的受力简图
)sin cos (12ααϕϕg a h L L
g m Z +=
同样可求出汽车下坡停驻时的后轴车轮的附着力为:
)sin cos (12ααϕϕg a h L L
g m Z −=′ 根据后轴车轮附着力与制动力相等的条件可求得汽车在上坡路和下坡路上停驻时的坡度极限倾角α,α′,即由
αααϕsin )sin cos (1g m h L L
g m a g a =+ 求得汽车在上坡时可能停驻的极限上坡路倾角为:
g h L L ϕϕα−=1arctan 汽车在下坡时可能停驻的极限下坡路倾角为:
g
h L L ϕϕα+=′1arctan GB7258-2004《机动车运行安全技术条件》中第7.13.3条要求, 在空载状态下,驻车制动装置应能保证机动车在坡度为 20%(对总质量为整备质量的 1.2 倍以下的机动车为 15%)、轮胎与路面间的附着系数不小于 0.7 的坡道上正、反两个方向保持固定不动,其时间不应少于 5 min 。
对于允许挂接挂车的汽车,其驻车制动装置必须能使汽车列车在满载状态下时能停在坡度为 12% 的坡道(坡道上轮胎与路面间的附着系数不应小于 0.7)上。
为了使汽车能在接近于由上式确定的坡度为α的坡路上停驻,则应使后轴上的驻车制动力矩接近于由α所确定的极限值αsin e a gr m (因αα′>),并保证在下坡路上能停驻的坡度不小于法规规定值。
单个后轮驻车制动器的制动上限为αsin 2
1e a gr m ;中央驻车制动器的制动力矩上限为0/sin i gr m e a α,0i 为后驱动桥主减速比。
13.3.3 制动驱动机构的结构型式选择
1.制动驱动机构的结构型式选择
根据制动力源的不同,制动驱动机构可分为简单制动、动力制动和伺服制动三大类,重型汽车一般均采用动力制动系。
气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力且主车与被拖的挂车以及汽车列车之间制动驱动系统的联接装置结构简单、联接和断开都很方便,因此广泛用于总质量为8t 以上尤其是15t
以上的载货汽车、越野汽车和客车上。
但气
221 压制动系必须采用空气压缩机、储气筒、制动阀等装置,使结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(0.3~0.9s),因此在制动阀到制动气室和储气筒的距离较远时有必要加设气动的第二级控制元件——继动阀(即加速阀)以及快放阀;管路工作压力较低(一般为0.5~0.8MPa),因而制动气室的直径大,只能置于制动器之外,再通过杆件及凸轮驱动制动蹄,使非簧载质量增大;另外,制动气室排气时也有较大噪声。
图13.7为气压制动系的双回路制动系统管路示意图。
由发动机驱动的空气压缩机1将压缩空气经调压阀2进入空气干燥器3进行干燥,然后进入四回路保护阀4进行分配,储气筒6、7分别作为双回路的前、后桥制动储气装置,气压表10用于随时测量前、后回路的制动气压值,感载阀18可确保制动力随载荷的变化而变化,弹簧制动气室19起到紧急制动和驻车制动的作用,ABS 电磁阀39、40分别串联于制动阀与制动气室之间,起到了调节制动压力的作用,避免了车轮抱死,从储气筒5出来的压缩空气通过手制动阀16、继动阀20、弹簧制动气室19构成了驻车制动回路,另外还给挂车充气,从挂车制动阀17连接至挂车接头11、12的两根管路确保了挂车制动回路的双管路制动。
图13.7 气压制动系的双回路示意图
奥龙、德御、德龙系列车均沿用斯太尔制动技术,行车制动采用双回路气压制动,驻车及应急制动采用弹簧储能断气制动,辅助制动采用发动机排气制动或排气门制动(WEVB),挂车制动控制采用双管路气压制动。
2.制动系统的多回路设计
为了提高制动驱动机构的工作可靠性,保证行车安全,制动驱动机构至少应有两套独立的系统,即应将汽车的全部行车制动器气压管路分成两个或更多个相互独立的回路,以便当一个回路失效后,其他完好的回路仍能可靠地工作。
奥龙、德御、德龙系列车沿用斯太尔制动技术,制动回路采用双回路,即前、后桥采用两个相对单独的制动回路,确保了制动系统的可靠性。
13.3.4 制动系统阀类的选择
1.空气干燥器的选择
空气干燥器的作用是调整制动系统的工作气压,其切断压力就是制动系统的最大工作压力,同时它可以过滤空气中的水份、油污,并适时再生干燥剂,集成的安全阀可防止系统压力过载,集成的加热装置能避免总成冬季冻结失效,空气干燥器总成的分子筛要求每两年更换一次,以确保空气干燥器的干燥性能。
我公司有STEYR 和F3000两大技术平台,制动系统的工作压力有0.81MPa 和
1MPa。