当前位置:文档之家› 戴桂菊《俄罗斯文化》课后习题详解

戴桂菊《俄罗斯文化》课后习题详解

戴桂菊《俄罗斯文化》课后习题详解
戴桂菊《俄罗斯文化》课后习题详解

戴桂菊《俄罗斯文化》课后习题详解来源网络,精心编制,

如有侵权,马上删除。

小学数学典型应用题合集之年龄问题

小学数学典型应用题之年龄问题 一、含义 已知两个或多个人年龄关系,求各自年龄或年龄关系,这类应用题叫做和倍问题。 二、数量关系 (1)大数=(和+差)÷2小数=(和-差)÷2总和÷(几倍+1)=较小的数 (2)总和-较小的数=较大的数较小的数×几倍=较大的数两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数 三、解题思路和方法 年龄问题具有年龄同增同减,年龄差不变的特性。年龄问题都可以转化为和差、和倍、差倍问题。简单的题目直接利用公式,复杂的题目变通后利用公式 四、例题 例题(一):爸爸今年38岁,妈妈今年36岁,当爸爸42岁时,妈妈 _____ 岁。 解:(1)本题考查的年龄差不变(简单),不管过了多少年年龄差是不变的。 (2)爸爸比妈妈大2岁,根据不管过了多少年年龄差是不变的,当爸爸42岁时,妈妈是40岁。 例题(二):姐姐今年15岁,妹妹今年12岁,当她们的年龄和是39岁时,那时妹妹 _____ 岁。

解:方法1:(1)利用年龄同增同减的思路。 (2)姐妹俩今年的年龄之和是:15+12=27(岁),年龄之和到达39岁时需要的年限是:(39-27)÷2=6(年) (3)那是妹妹的年龄是12+6=18(岁) 方法2:(1)利用年龄差不变的思路。 (2)两姐妹的年龄差为15-12=3(岁),再根据小数=(和-差)÷2的公式,可以求出妹妹的年龄为(39-3)÷2=18(岁) 例题(三):爸爸今年50岁,哥哥今年14岁, _____ 年前,爸爸的年龄是哥哥的5倍。 解:(1)不管过了多少年,年龄差是不变的,当爸爸的年龄是哥哥的5倍时,年龄差仍是50-14=36(岁)。 (2)问什么时候爸爸的年龄是哥哥的5倍,实际上年龄差就是哥哥的5-1=4(倍) (3)根据两个数的差÷(几倍-1)=较小的数,可以求出哥哥当时的年龄是(50-14)÷4=9(岁) (4)再根据题意可求出14-9=5(年)前

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

高中数学:两角和、差及倍角公式练习

高中数学:两角和、差及倍角公式练习 1.(新疆乌鲁木齐一诊)2cos10°-sin20° sin70° 的值是( C ) A .12 B .32 C . 3 D . 2 解析:原式= 2cos (30°-20°)-sin20° sin70° =2(cos30°·cos20°+sin30°·sin20°)-sin20°sin70° =3cos20° cos20°= 3. 2.(山西五校联考)若cos θ=23,θ为第四象限角,则cos ? ???? θ+π4的值为( B ) A . 2+10 6 B . 22+10 6 C .2-106 D .22-106 解析:由cos θ=2 3,θ为第四象限角, 得sin θ=-5 3, 故cos ? ???? θ+π4=22(cos θ-sin θ)=22×? ????23+53=22+106.故选B . 3.若α∈? ????π2,π,且3cos2α=sin ? ???? π4-α,则sin2α的值为( C ) A .-1 18 B .1 18 C .-1718 D .1718 解析:由3cos2α=sin ? ?? ?? π4-α可得

3(cos 2 α-sin 2 α)=2 2(cos α-sin α), 又由α∈? ???? π2,π可知cos α-sin α≠0, 于是3(cos α+sin α)=2 2, 所以1+2sin α·cos α=1 18, 故sin2α=-17 18.故选C . 4.已知锐角α,β满足sin α-cos α=1 6,tan α+tan β+3tan α·tan β=3,则α,β的大小关系是( B ) A .α<π 4<β B .β<π 4<α C .π 4<α<β D .π 4<β<α 解析:∵α为锐角,sin α-cos α=1 6>0, ∴π4<α<π2 . 又tan α+tan β+3tan αtan β=3, ∴tan(α+β)= tan α+tan β 1-tan αtan β =3, ∴α+β=π3,又α>π4,∴β<π 4<α. 5.在△ABC 中,sin A =513,cos B =3 5,则cos C =( A ) A .-1665 B .-5665 C .± 1665 D .± 5665 解析:∵B 为三角形的内角,cos B =3 5>0, ∴B 为锐角,∴sin B =1-cos 2B =4 5,

余弦定理练习题及答案解析

1.在△ABC中,已知a=4,b=6,C=120°,则边c的值是() A.8B.217 C.6 2 D.219 解析:选D.根据余弦定理,c2=a2+b2-2ab cos C=16+36-2×4×6cos 120°=76,c=219. 2.在△ABC中,已知a=2,b=3,C=120°,则sin A的值为() A. 57 19 B. 21 7 C. 3 38D.- 57 19 解析:选A.c2=a2+b2-2ab cos C =22+32-2×2×3×cos 120°=19. ∴c=19. 由a sin A= c sin C得sin A= 57 19. 3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________. 解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a2 2·2a·2a= 7 8. 答案:7 8 4.在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.解:法一:根据余弦定理得 b2=a2+c2-2ac cos B. ∵B=60°,2b=a+c, ∴(a+c 2) 2=a2+c2-2ac cos 60°, 整理得(a-c)2=0,∴a=c. ∴△ABC是正三角形. 法二:根据正弦定理, 2b=a+c可转化为2sin B=sin A+sin C. 又∵B=60°,∴A+C=120°, ∴C=120°-A, ∴2sin 60°=sin A+sin(120°-A), 整理得sin(A+30°)=1, ∴A=60°,C=60°. ∴△ABC是正三角形. 课时训练一、选择题 1.在△ABC中,符合余弦定理的是() A.c2=a2+b2-2ab cos C B.c2=a2-b2-2bc cos A C.b2=a2-c2-2bc cos A D.cos C=a2+b2+c2 2ab 解析:选A.注意余弦定理形式,特别是正负号问题. 2.(2011年合肥检测)在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是() A.12 13 B. 5 13

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

三角函数的两角和差及倍角公式练习题

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · ; 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

余弦定理内容以及解析

余弦定理详解 余弦定理定义及公式 余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。是勾股定理在一般三角形情形下的推广。 a2=b2+c2-2bccosA 余弦定理证明 如上图所示,△ABC,在c上做高,根据射影定理,可得到: 将等式同乘以c得到: 运用同样的方式可以得到: 将两式相加: 向量证明

正弦定理和余弦定理 正弦定理 a/sinA=b/sinB=c/sinC=2R (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。 余弦定理 是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三 边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起 来更为方便、灵活。 直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值 在△DEF中有余弦定理:DE2=DF2+EF2-2DF?EFcos∠DFE.拓展到空间,类比三角形的余弦定理,在斜三棱柱ABC-A1B1C1的中ABB1A1与BCC1B1所成的二面角的平面角为θ,则得到的类似的关系式是_____. 答案: . 解析: 由平面和空间中几何量的对应关系,和已知条件可写出类比结论 解:平面中的点、线、面分别对应空间中的线、面、体,平面中的长度对应空间中的面积,平面中线线的夹角,对应空间中的面面的夹角 故答案为: 证明如下:如图斜三棱柱ABC-A1B1C1 设侧棱长为a 做面EFG垂直于侧棱AA1、BB1、CC1,则∠EFG=θ 又∵ 在△EFG中,根据余弦定理得:EG2=EF2+FG2-2EF?FG?COSθ

三角函数的两角及差与倍角公式练习题.doc

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若 sin 3 ( 2 ), tan 1 ,则 tan( ) 的值是 5 2 A .2 B .- 2 2 2 C . D . 11 11 2、如果 sin x 3cosx, 那么 sin x · cosx 的值是 1 1 2 3 A . B . C . D . 6 5 9 10 3、如果 tan( ) 2 , tan( ) 1 ,那么 tan( )的值是 5 4 4 4 13 3 13 13 A . B . C . D . 18 22 22 18 4、若 f (sin x) cos2x, 则 f 3 等于 2 1 3 1 3 A . B . C . D . 2 2 2 2 5、在 ABC 中, sin A · sin B cosA · cosB, 则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6 、角 终边过点 (4,3) ,角 终边过点 ( 7, 1),则 sin() ; 7 、若 tan 3,则 2 所在象限是 ; 8 、已知 cot 4 3,则 2 sin cos ; cos 2 sin 9 、 tan 65 tan 70 tan65·tan 70 ; 10、 化简 3sin 2x 3 cos2x 。 三、解答题: 11、求 sec100 tan 240·csc100 的值。

12、已知3 ,求(1 tan )(1 tan )的值。4 13、已知cos2 3 , 求 sin 4 cos4的值。 5 14、已知tan, tan 是方程x 2 3x 5 0的两个根, 求 sin 2 ( ) 2 sin( ) ·cos( ) 的值。

最新余弦定理教案设计

余弦定理 一、教材分析 本节主要研究xxxxxx,分两课时,这里是第一课时。它是在学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解三角形的基础上进行学习的。通过利用平面几何法、坐标法(两点的距离公式)、向量的模,正弦定理等方法推导余弦定理,学生会正确理解余弦定理的结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”问题,体会方程思想,理解余弦定理是勾股定理的特例, 从多视角思考问题和发现问题,形成良好的思维品质,激发学生探究数学,应用数学的潜能,培养学生思维的广阔性。 二、学情分析 本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了"边"和"角"的互化,从而使"三角"与"几何"有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了"已知三角形的两边和夹角,无法用正弦定理去解三角形",进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完

勾股定理练习题及问题详解(共6套)

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() A.2 B.4 C.6 D.8 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北 7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

两角和与差理解练习知识题

两角和与差的三角函数及倍角公式练习及答案 一、选择题: 1、若)tan(,2 1 tan ),2(53sin βαβπαπα-=<<=则的值是 A .2 B .-2 C .211 D .-2 11 2、如果sin cos ,sin cos x x x x =3那么·的值是 A . 1 6 B . 15 C . 29 D . 310 3、如果的值是那么)4 tan(,41)4tan(,52)tan(π απββα+=-=+ A . 1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ? ??232则等于 A .- 12 B .- 32 C . 12 D . 32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 8、已知=+-=?? ? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 12、的值。 ,求已知)tan 1)(tan 1(4 3βαπ βα--= + 两角和与差练习题 一、选择题: 2.已知)2,0(πα∈,sin(6πα+)=5 3,则cos α的值为( ) A .-10 334+ B .10 343- C .10334- D .10 334+

7.已知cos(α-π6)+sin α= 4 5 3,则sin(α+7π 6 )的值是 ( ) A .- 2 35 B.235 C .-45 D.45 8.f(x)=sinx cosx 1+sinx +cosx 的值域为( ) A .(―3―1,―1) ∪(―1, 3―1) B .[-2-1 2,―1] ∪(―1, 2-1 2 ) C .( -3-12 , 3-1 2 ) D .[ -2-1 2,2-1 2 ] 解析:令t =sin x +cos x = 2sin(x +π 4)∈[― 2,―1]∪(―1, 2). 则f(x)=t 2-1 21+t = t -12∈[-2-1 2,―1]∪(―1, 2-1 2 ).B 9 .sin()cos()cos()θθθ+?++?-+?7545315的值等于( ) A. ±1 B. 1 C. -1 D. 0 10.等式sin α+3cos α=4m -6 4-m 有意义,则m 的取值范围是 ( ) A .(-1,7 3) B .[-1,7 3 ] C .[-1,7 3 ] D .[―73 ,―1] 11、已知αβγ,,均为锐角,且1tan 2α=,1tan 5β=,1tan 8 γ=,则αβγ++的值( ) A.π 6 B. π4 C. π3 D.5π4 12.已知 是锐角,sin =x,cos =y,cos()=- 5 3 ,则y 与x 的函数关系式为

年龄问题经典例题

年龄问题经典例题 今年妈妈和女儿的年龄和是66岁,妈妈的年龄比女儿的3倍小10岁,那么多少年前妈妈的年龄为女儿的5倍? 【解析】根据题意可知这是一个和倍问题,可以求出母女今年的年龄。 女儿今年的年龄是:(66+10)÷(3+1)=76÷4=19(岁) 妈妈今年的年龄是:19×3-10=47(岁) 无论到哪一年母女的年龄差都是不变的,即47-19=28(岁) 当妈妈的年龄是女儿的5倍时,女儿的年龄为:(47-19)÷(5-1)=7(岁) 19-7=12(年)即12年前妈妈的年龄为女儿的5倍。 训练 (1)爸爸和儿子今年的年龄和是37岁,爸爸的年龄比儿子的6倍多2岁,那么多少年后,爸爸的年龄是儿子的4倍? (2)小明和小兰今年的年龄和是18岁,小明的年龄比小兰的3倍少2岁,那么多少年前,小明的

年龄是小兰的9倍? 例题 4年前妈妈的年龄是小华的4倍,小华今年11岁,妈妈今年多少岁? 【解析】小华今年11岁,四年前小华的年龄应该是11-4=7(岁),那么妈妈4年前的年龄是7×4=28(岁),再经过四年妈妈的年龄应该再加4岁,即28+4=32(岁)。 训练 (1)5年前小兰的年龄是小明的3倍,小明今年10岁,小兰今年多少岁? (2)4年前哥哥的年龄是弟弟的2倍,弟弟今年14岁,哥哥今年多少岁? 例题 小明今年3岁,父亲今年27岁,几年后父亲的年龄正好是小明的4倍? 【解析】父亲与小明的年龄差是27-3=24(岁),这是一个不变的量,当父亲的年龄是小明的4倍,小明的年龄是24÷(4-1)=8(岁),8-3=5(年)。训练

(1)欢欢今年18岁,迎迎今年2岁,几年后欢欢的年龄正好是迎迎的5倍? (2)哥哥今年16岁,弟弟今年12岁,几年前哥哥的年龄刚好是弟弟的3倍? 例题 父亲今年35岁,儿子今年13岁,几年后父亲和儿子的年龄和是62岁? 【解析】父亲和儿子的年龄差是不变的量,即35-13=22(岁),当父亲与儿子年龄和为62岁时,儿子的年龄是(62-22)÷2=20(岁),20-13=7(年)。 变式训练◇8 (1)母亲今年30岁,女儿今年5岁,几年后母亲和女儿年龄和是55岁? (2)天天比明明小6岁,当他们年龄和是40岁时,明明多少岁?

三角函数基础,两角和与差、倍角公式

练习: 一、填空题 1. α是第二象限角,则2 α 是第 象限角. 2.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为 . 同角三角函数的基本关系公式: αααtan cos sin = ααα cot sin cos = 1cot tan =?αα 1cos sin 22=+αα 1?“同角”的概念与角的表达形式无关,如: 13cos 3sin 2 2 =+αα 2tan 2 cos 2sin ααα = 2?上述关系(公式)都必须在定义域允许的围成立。 3?由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号. 这些关系式还可以如图样加强形象记忆: ①对角线上两个函数的乘积为1(倒数关系). ②任一角的函数等于与其相邻的两个函数的积(商数关系). ③阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系). 二、讲解例: 例1化简:ο440sin 12- 解:原式οοο ο ο 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简 解:) sin 1)(sin 1() sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+--- -+++= 原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2 222ααααα ααα--+=----+= 0cos <∴αα是第三象限角,Θ αα α ααtan 2cos sin 1cos sin 1-=----+= ∴原式 (注意象限、符号) 例3求证: α α ααcos sin 1sin 1cos +=- 分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满足

余弦定理练习题(含答案)

余弦定理练习题 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( ) A .6 B .2 6 C .3 6 D .46 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) D .2 3.在△ABC 中,a 2=b 2+c 2 +3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° ? 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2 )tan B =3ac ,则∠B 的值为( ) 或5π6 或2π 3 5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对 6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) B .2 3 或2 3 D .2 ~ 9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 13.在△ABC 中,a =32,cos C =1 3 ,S △ABC =43,则b =________. 15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 2 4 ,则角C =________. 16.三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2 -23x +2=0的两根,且2cos(A +B )=1,求AB 的长. ` 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为1 6 sin C ,求角C 的度数. : 19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π 4 )的值. 20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状. —

小学数学年龄问题:一张思维导图,五大方法,年龄问题就这么简单!

小学数学巧解应用题︱一张思维导图,五大方法,年龄问题就这么简单! 1、含义 已知若干年前或若干年后两人年龄之间的倍数、和、差的关系,求两人现在年龄的应用题,或已知条件和所求问题与上述相反的应用题,叫作年龄问题。 2、特点 (1)年龄差不变; (2)年龄同增同减(几年后、几年前); (3)年龄的倍数却随着年数的增加而减少。 3、题型 (1)转化为和差问题的年龄问题; (2)转化为和倍问题的年龄问题; (3)转化为差倍问题的年龄问题。 4、常用公式 成倍数时小的年龄=两人年龄差÷(倍数-1) =该年两人年龄和÷(倍数+1) =(该年两人年龄和-两人年龄差)÷2 大的年龄=小的年龄×倍数=(该年两人年龄和+两人年龄差)÷2 几年前距今年的年数=今年小的年龄-成倍数时小的年龄 =今年小的年龄-两人年龄差÷(几年前大年龄对几年前小年龄的倍数-1) 几年后距今年的年数=成倍时小的年龄-今年小的年龄

=两人年龄差÷(几年后大年龄对几年后小年龄的倍数-1)-今年小的年龄 5、解题思路 年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路一致。 6、解题方法 解答这类问题,往往可以借助线段图分析,结合和倍、差倍、和差等问题分析方法灵活解题。 三、经典应用 (1)和差法 例1、姐姐今年13岁,弟弟今年19岁,当姐弟俩岁数的和是40岁时,两

人各应该是多少岁? 【分析】不管经过多少年,姐弟俩的年龄差都不变,都是(13-9)岁。又知两人的年龄和是40岁。根据和差公式可以求出两人几年后的年龄。 【解答】年龄差:19-13=4(岁) 姐姐年龄:(40+4)÷2=22(岁) 弟弟年龄:40-22=18(岁) 答:姐姐是22岁,弟弟是18岁。 (2)和倍法 例2、1994年姐妹两人年龄之和是55岁。若干年前,当姐姐的年龄只有妹妹现在这么大时,妹妹的年龄恰好是姐姐年龄的一半。姐姐是哪一年出生的? 【分析】“若干年前,妹妹的年龄恰好是姐姐年龄的一半。”,把若干年前妹妹的年龄看作“1倍量”,那么若干年前姐姐的年龄是2倍量,比妹妹年龄大1倍量。因为若干年前姐姐的年龄等于妹妹现在的年龄,所以妹妹现在的年龄为2倍量。根据“年龄差不变”,姐姐现在的年龄为(2+1)倍量。已知两人现在的年龄和为55岁,根据和倍公式,可以求出妹妹若干年前的年龄,再求姐姐现在年龄,最后求出姐姐哪一年出生。 【解答】妹妹若干年前年龄:55÷(2+2+1)=11(岁) 姐姐今年年龄:11×(2+1)=33(岁) 由于年龄都按周岁计算,即出生的那一年不计入 姐姐的出生年份:1994-33-1=1960(年) 答:姐姐是1960年出生。 (3)差倍法 例3、10年前吴昊的年龄是他儿子年龄的7倍。15年后,吴昊的年龄是他儿子的2倍。现在父子俩人的年龄各是多少岁? 【分析】15年后吴昊的年龄是他儿子年龄的2倍,故两人年龄差等于15年后儿子的年龄,即两人年龄差等于10年前儿子的年龄加上(10+15)年。10年前吴昊的年龄是他儿子年龄的7倍,两人年龄差相当于儿子10年前年龄的(7-1)

(完整版)勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1?勾股定理 内容:____________________________________________________________ 表示方法:如果直角三角形的两直角边分别为 a , b,斜边为c,那么__________________ 2 ?勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3 ?勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C 90 , 则 __________________________________________ ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定 理解决一些实际问题 4. 勾股定理的逆定理 如果三角形三边长a , b , c满足a2 b2c,那么这个三角形是直角三角形,其中c为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过数转化为形”来确定三角形的可能 形状,在运用这一定理时,可用两小边的平方和a2 b2与较长边的平方c2作比较,若它们相等时,以 a , b , c为三边 的三角形是直角三角形;若 _________ ,时,以a , b , c为三边的三角形是钝角三角形;若__________________ ,时,以a , b , c为三边的三角形是锐角三角形; ②定理中a , b , c及a2 b2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a , b , c满足a2 c2 b2, 那么以a , b , c为三边的三角形是直角三角形,但是b为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5. 勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2 b2 c2中,a , b , c为正整数时,称a , b , c为 一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13; 7,24,25等 ③用含字母的代数式表示n组勾股数: 2 2 n 1,2n,n 1 (n 2, n 为正整数); 2n 1,2n2 2n,2n2 2n 1 (n为正整数)m2 n2,2mn,m2 n2(m n, m , n为正整数)7 .勾股定理的应用

三角函数的两角和差及倍角公式练习题之欧阳学文创编

三角函数的两角和差及倍角公式练 习题 欧阳学文 一、选择题: 1、若)tan(,2 1 tan ),2 (53sin βαβπαπα-= <<=则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D . 3 10 3、如果的值是那么)4 tan(,4 1)4 tan(,5 2)tan(παπββα+=-=+ A .1318 B . 322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ? ? ?232则等于 A .-12 B .-32 C .12 D . 32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题:

6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+=; 7、若αα23tan ,则=所在象限是; 8、已知=+-=?? ? ??+θθθθθπ sin 2cos cos sin 234cot ,则; 9、=??-?+?70tan 65tan 70tan 65tan ·; 10、化简3232sin cos x x + =。 三、解答题: 11、求的值。 ·??+?100csc 240tan 100sec 12、的值。,求已知)tan 1)(tan 1(4 3βαπβα--=+ 13、已知求的值。cos ,sin cos 235 44θθθ=+ 14、已知 )sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。 答案: 一、 1、B 2、D 提示: tanx = 3, 所求12 2sin x , 用万能公式。 3、B 提示: ()απ αββπ+ =+--? ? ?? ?44 4、A 提示: 把x =π3 代入

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

最新勾股定理逆定理讲义(经典例题+详解+习题)

XX教育一对一个性化教案 授课日期:2014 年月日学生姓名许XX 教师姓名授课时段2h 年级8 学科数学课型VIP 教学内容勾股定理及逆定理 教学重、难点重点:运用勾股定理判定一个三角形是否为直角三角形。难点:运用用勾股定理和勾股定理逆定理解决实际问题。 教学步骤及突出教学方法一、知识归纳 1、勾股定理的逆定理 如果三角形三边长a,b,c满足222 a b c +=,那么这个三角形是直角三角形,其中c为斜边。 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22 a b +与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222 a b c +<,时,以a,b,c为三边的三角形是钝角三角形;若222 a b c +>,时,以a,b,c为三边的三角形是锐角三角形; ②定理中a,b,c及222 a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222 a c b +=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边。 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。 2、勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222 a b c +=中,a,b,c为正整数时,称a,b,c为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n组勾股数: 22 1,2,1 n n n -+(2, n≥n为正整数); 22 21,22,221 n n n n n ++++(n为正整数) 2222 ,2, m n mn m n -+(, m n >m,n为正整数)

相关主题
文本预览
相关文档 最新文档