完整word版,医学统计学名词解释及问答题
- 格式:doc
- 大小:81.01 KB
- 文档页数:5
,更确切地说,就是同质的所有观察单位某种观察值(变量值)的集合。
,观察单位数无限。
,其实测值的集合。
样本应具有代表性。
研究者则应对每个观察单位的某项特征进行测量与观察,这种特征称为变量。
,亦称为资料。
,可以控制的主要因素尽可能相同。
,就是对每个观察对象的观察指标用定量方法测定其数值大小所得的资料,一般用度量衡单位。
,就是先将观察对象的观察指标按性质或类别进行分组,然后计数各组该观察指标的数目所得的资料。
,常用P表示。
(用希腊字母代表),如总体均数μ,总体率л,总体标准差σ等。
,称为统计量。
(用拉丁字母代表)如相本均数x,样本率p,样本标准差s等。
(变量取值为一定范围内的任意值)的资料,其结果表达的限制因素就是测量仪器或方法的灵敏度。
,表示观察值在各组内出现的频繁程。
,即为频数分布表,简称频数表。
,左右两侧的频数基本对称。
,集中位置偏向一侧。
若集中位置偏向数值小的一侧(左侧),称为正偏态;若集中位置偏向数值大的一侧(右侧),,在医学领域中常用的平均数有算术均数、几何均数及中位数。
,描述一组同质计量资料的平均水平。
统计学中常用希腊字母μ表示总体均数,用x表演示样本均数。
,但经过对数变换后呈正态分布或近似正态分布的资料,如血清抗体滴度、细菌计数等,宜采用几何均数描,即全部观察值中最大值与最小值之差,用符号R表示。
极差大,说明变异程度大;反之,说明变异程度小。
x百分位置上的数值,用符号表示为P x。
简记为CV),亦称离散系数,为标准差与均数之比。
写成公式为:CV=S/X×100%,常用于(1)比较计量单位不同的几组资料的离散程;(2),也称正常值。
,生物医学数据并非常数,而就是在一定范围内波动。
,随机抽样引起的样本统计量与总体参数间的差异称为抽样误差。
样本均数的标准差称为标准误 ,其计算公式为。
,就是统计推断的一个重要方面。
,称为点值估计。
,指按预先给定的概率估计未知总体均数的可能范围。
,用α表示,就是预先规定的概率值,在实际工作中一般取α=0、05。
统计名词解释1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。
具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。
2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。
3、变异:同一性质的事物,其观察值(变量值)之间的差异。
4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。
这种用样本指标推论总体参数的方法称为抽样研究。
5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。
6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。
7、概率:是指某事件出现可能性大小的度量,以符号P表示。
8、医学参考值范围:参考值范围又称正常值范围。
医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。
9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。
10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相同或相近。
11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。
12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。
13、标准误:表示样本均数间变异程度。
14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。
15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。
16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。
医学统计学复习题 一、名词解释 1.总体:根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。总体可分为有限总体和无限总体。总体中的所有单位都能够标识者为有限总体,反之为无限总体。 2.样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。样本应具有代表性。所谓有代表性的样本,是指用随机抽样方法获得的样本。 3.随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。随机抽样是样本具有代表性的保证。 4.变异:在自然状态下,个体间测量结果的差异称为变异(variation)。变异是生物医学研究领域普遍存在的现象。严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。 5.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。计量资料亦称定量资料、测量资料。.其变量值是定量的,表现为数值大小,一般有度量衡单位。如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。 6.计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。计数资料亦称定性资料或分类资料。其观察值是定性的,表现为互不相容的类别或属性。如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O四种血型的人数等。 7.等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。等级资料又称有序资料。如患者的治疗结果可分为治愈、好转、有效、无效、死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量。 8.概率:概率(probability)又称几率,是度量某一随机事件A发生可能性大小的一个数值,记为P(A),P(A)越大,说明A事件发生的可能性越大。0﹤P(A)﹤1。 9.频率:在相同的条件下,独立重复做n次试验,事件A出现了m次,则比值m/n称为随机事件A在n次试验中出现的频率(freqency)。当试验重复很多次时P(A)= m/n。
1.总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
有限总体明确规定了空间、时间、人群范围2.样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本3.变量(variable)(观察指标等):要研究的个体特征例如:身高、体重、性别、血型、反应、疗效等4.个体(观察单位等):统计研究中的基本单位-据研究目的而定5.同质:给个体规律的一些相同性质(使研究变量的已知影响因素齐同)6.变异:同质个体的变量值的差异7.计量资料(measurement data)又称定量资料或数值变量资料。
为测定每个观察单位某项指标的大小而获得的资料。
其变量值是定量的,表现为数值大小,一般有度量衡单位。
8.计数资料(enumeration data)又称定性资料或无序分类变量资料。
为将观察单位按某种属性或类别分组计数,分组汇总各组观察单位数后而得到的资料。
其变量值是定性的,表现为互不相容的属性或类别。
9.等级资料(ranked data)又称半定量资料或有序分类变量资料。
为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后而得到的资料。
其变量值具有半定量性质,表现为等级大小或属性程度。
10.随机误差(random error):不恒定的、随机变化的误差,由多种尚无法控制的因素引起。
无方向性。
主要指重复测量产生的测量误差和抽样过程产生的抽样误差。
11.抽样误差(sampling error )是指样本统计量与总体参数的差别。
在总体确定的情况下,总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。
12.系统误差(systematic error):实验过程中产生的误差,它的值或恒定不变,或遵循一定的变化规律,其产生原因往往是可知的或可能掌握的,大小变化有方向性。
1、标准正态分布(u分布)与t分布有何异同?相同点:集中位置都为0,都是单峰分布,是对称分布,标准正态分布是t分布的特例(自由度是无限大时)不同点:t分布是一簇分布曲线,t 分布的曲线的形状是随自由度的变化而变化,标准正态分布的曲线的形状不变,是固定不变的,因为它的形状参数为1。
3、简述直线回归与直线相关的区别。
1资料要求上不同:直线回归分析适用于应变量是服从正态分布的随机变量,自变量是选定变量;直线相关分析适用于服从双变量正态分布的资料。
2 两种系数的意义不同:回归系数是表明两个变量之间数量上的依存关系,回归系数越大回归直线越陡峭,表示应变量随自变量变化越快;相关系数是表明两个变量之间相关的方向和紧密程度的,相关系数越大,两个变量的关联程度越大。
第一章医学统计中的基本概念2、抽样中要求每一个样本应该具有哪三性?从总体中抽取样本,其样本应具有“代表性”、“随机性”和“可靠性”。
(1)代表性: 就是要求样本中的每一个个体必须符合总体的规定。
(2)随机性: 就是要保证总体中的每个个体均有相同的几率被抽作样本。
(3)可靠性: 即实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测总体的结论有较大的可信度。
由于个体之间存在差异, 只有观察一定数量的个体方能体现出其客观规律性。
每个样本的含量越多,可靠性会越大,但是例数增加,人力、物力都会发生困难,所以应以“足够”为准。
需要作“样本例数估计”。
3、什么是两个样本之间的可比性?可比性是指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。
实习一统计研究工作的基本步骤1、什么叫医学统计学?医学统计学与统计学、卫生统计学、生物统计学有何联系与区别?医学统计学:是运用统计学原理和方法研究生物医学资料的搜索、整理、分析和推断的一门学科统计学:是研究数据的收集、整理、分析与推断的科学。
卫生统计学:是把统计理论、方法应用于居民健康状况研究、医疗卫生实践、卫生事业管理和医学科研的一门应用学科。
医学统计学1、Medical Statistics(医学统计学):是以医学理论为指导,借助统计学的原理和方法研究医学现象中的数据搜集、整理、分析和推断的一门综合性学科。
2、Variable(变量):是指观察个体的某个指标或特征,统计上习惯用大写拉丁字母表示。
3、Numerical/Quantitative/Measurement date/variable数值变量/定量变量/计量资料/定量资料:是以定量的方式来表示观察单位某项观察指标的大小,所得的资料称之为~,有度量单位。
4、Unordered categorical/Qualitative/Enumeration date/variable无序分类变量/定性变量/计数资料/定性资料:是以定性的方式来表示观察单位某项观察指标,所得的资料称之为~,无固有度量单位。
5、Ordinal categorical/Semi-quantitative/Ranked date/variable有序分类变量/半定量资料/等级资料:是以等级的方式来表示观察单位某项观察指标,所得的资料称之为~,为半定量的观察结果,有大小顺序。
6、Homogeneity(同质):是指事物的性质、影响条件或背景相同或相近。
7、Variation(变异):是指同质的个体之间的差异。
8、Population(总体):是根据研究目的所确定的同质观察单位的全体或集合,分为有限总体和无限总体。
9、Sample(样本):是从总体中随机抽取的一部分观察单位所组成的集合。
10、Random variable(随机变量):是指取值不能事先确定的观察结果。
11、Parameter(参数):是总体特征的统计指标,采用小写的希腊字母,为固定的常数。
12、Statistic(统计量):是样本特征的统计指标,采用拉丁字母表示,由样本信息推算而得,是参数附近波动的随机变量。
13、Random Sampling(随机抽样):为了保证样本的可靠性和代表性,需要采用随机的抽样方法,使总体中每个个体均有相同的机会被抽到。
医学统计学复习题一、名词解释1.总体:根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
2•样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
3.随机抽样:随机抽样(ran dom sampli ng )是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
4.变异:在自然状态下,个体间测量结果的差异称为变异(variation )。
变异是生物医学研究领域普遍存在的现象。
严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
5•计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。
6.计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(cou ntdata)。
计数资料亦称定性资料或分类资料。
其观察值是定性的,表现为互不相容的类别或属性。
如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。
7.等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。
等级资料又称有序资料。
如患者的治疗结果可分为治愈、好转、有效、无效、死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量。
统计学(Statistics):运用概率论、数理统计的原理与方法,研究数据的搜集;分析;解释;表达的科学。
总体(population):大同小异的研究对象全体。
更确切的说,总体是指根据研究目的确定的、同质的全部研究单位的观测值。
样本(sample):来自总体的部分个体,更确切的说,应该是部分个体的观察值。
样本应该具有代表性,能反映总体的特征。
利用样本信息可以对总体特征进行推断。
抽样误差(sampling error)在抽样过程中由于抽样的偶然性而出现的误差。
表现为总体参数与样本统计量的差异,以及多个样本统计量之间的差异。
可用标准误描述其大小。
标准误(Standard Error) 样本统计量的标准差,反映样本统计量的离散程度,也间接反映了抽样误差的大小。
样本均数的标准差称为均数的标准误。
均数标准误大小与标准差呈正比,与样本例数的平方根呈反比,故欲降低抽样误差,可增加样本例数区间估计(interval estimation):将样本统计量与标准误结合起来,确定一个具有较大置信度的包含总体参数的范围,该范围称为置信区间(confidence interval,CI),又称可信区间。
参考值范围描述绝大多数正常人的某项指标所在范围;正态分布法(标准差)、百分位数法,参考值范围用于判断某项指标是否正常置信区间揭示的是按一定置信度估计总体参数所在的范围。
t分布法、正态分布法(标准误)、二项分布法。
置信区间估计总体参数所在范围参数统计(parametric statistics)非参数统计(nonparametric statistics)是指在统计检验中不需要假定总体分布形式和计算参数估计量,直接对比较数据(x)的分布进行统计检验的方法。
变异(variation):对于同质的各观察单位,其某变量值之间的差异同质(homogeneity):研究对象具有的相同的状况或属性等共性。
回归系数有单位,而相关系数无单位β为回归直线的斜率(slope)参数,又称回归系数(regression coefficient)。
1. 总体(population):根据研究目的所确定的同质观察单位的全体。
只包括(确定的时间和空间范围内)有限个观察单位的总体,称为有限总体(finite population)。
假想的,无时间和空间概念的,称为无限总体(infinite population)。
2. (总体)参数(parameter):总体的统计指标或特征值。
总体参数是事物本身固有的、不变的。
3. 样本(sample):从总体中随机抽取的部分个体。
4. 样本含量(sample size):样本中所包含的个体数。
5. 变量(variable):观察对象个体的特征或测量的结果。
由于个体的特征或指标存在个体差异,观察结果在测量前不能准确预测,故称为随机变量(random variable),简称变量(variable)。
变量的取值称为变量值或观察值(observation)。
根据变量的取值特性,分为数值变量和分类变量。
6. 数值变量(Numerical variable):又称为计量资料、定量资料,指构成其的变量值是定量的,其表现为数值大小,有单位。
对每个观察单位用定量的方法测定某项指标的数值,组成的资料。
7. 计数资料:将全体观测单位按照某种性质或特征分组,然后再分别清点各组观察单位的个数。
分类变量(categorical variable):或称定性变量,其取值是定性的,表现为互不相容的类别或或属性,有两种情况:1)无序分类(unordered categories):包括①二项分类,如上述“性别”变量,表现为互相对立的结果;②多项分类,如上述“血型”变量,表现为互不相容的多类结果。
2)有序分类(ordered categories):各类之间有程度上的差别,或等级顺序关系,有“半定量”的意义,亦称等级变量。
等级资料:介于计量资料和计数资料之间的一种资料,通过半定量方法测量得到。
8. 抽样(sampling):从总体中抽取部分观察单位的过程称为抽样。
1 1、总体(population):是根据研究目的确定的同质研究对象的全体。 2、样本(sample):从总体中抽取的一部分有代表性的个体。 3、同质(homogeneity):是指所研究的观察对象具有某些相同的性质或特征。 4、变异(variation):指同质个体的某项指标之间的差异。 5、参数(parameter):反映总体特征的指标称为参数。 6、统计量(statistic):通过样本资料计算出来的相应指标称为统计量。 7、抽样误差(sampling error):由随机抽样造成的样本指标与总体指标之间、样本指标与样本指标之间的差异。 8、概率(probability):某事件发生的可能性大小。 9、正态分布(normal distribution):高峰位于均数处,中间高两边低,左右完全对称地下降,但永远不与横轴相交的钟形曲线。 10、平均数(average):是描述一组同质变量值的平均水平或集中趋势的指标。 11、中位数(median):将一组数据由小到大排列,位于中间位置的观测值。 12、医学参考值范围(medical reference range):又称正常值范围,医学上常将包括绝大多数正常人的某项指标的波动范围称为该指标的正常值范围。 13、方差(variance):是各个数据与平均数之差的平方的平均数。 14、标准差(standard deviation):是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。 15、标准误(standard error):样本均数的标准差,等于原变量总体标准差除以例数的平方根,用以说明均数抽样误差的大小。 16、均数的抽样误差(sampling error of mean):由个体差异和抽样所导致的样本均数与样本均数之间,样本均数与总体均数之间的差异。 17、假设检验(hypothesis testing):先对总体做出某种假设,然后根据样本信息来推断其是否成立的一类统计方法的总称。 18、统计推断(statistical inference):是根据已知的样本信息来推断未知的总体,是统计分析的目的,包括参数估计和假设检验。 19、Ⅰ型错误(type Ⅰ error):拒绝了实际上成立的H0,这类弃真错误,发生的概率为α,为已知。 20、Ⅱ型错误(type Ⅱ error):不拒绝实际上不成立的H0,这类存伪错误,发生的概率为β,未知。 21、检验效能(power of test):又称把握度,为1-β,其意义是两总体确有差别,按α水准能发现它们有差别的能力。 22、可信区间(confidence interval):指总体参数可能所在的范围。 23、率(rate):说明某现象发生的频率或强度。 24、构成比(constituent ratio):表示某事物内部各组成部分所占的比重或分布,常以百分数表示。 25、相对比(relative ratio):表示两个有关事物指标之比,常以百分数和倍数表示,用以说明一个指标是另一个指标的几倍或百分之几。 26、标准化率(standardized rate):亦称调整率,是采用统一的标准对内部构成不同的各组频率进行调整和对比的方法。 27、参数检验(parametric test):一类依赖于总体分布的具体形式的统计推断方法。 28、非参数检验(non parametric test):一类不依赖总体分布类型的检验,在应用中可以不考虑被研究对象为何种分布以及分布是否已知,检验假设中没有包括总体参数的统计方法。 2
29、自变量(independent variable):如果没有一个变量依赖于其他变量变化而变化的关系时,一般把测量比较简单的变量作为自变量。 30、因变量(dependent variable):测量比较复杂的变量称为因变量或应变量。 31、相关分析(correlation analysis):分析两个或多个变量间相互关系的统计分析方法。 32、线性回归分析(linear regression analysis):用直线回归方程或数学模型描述变量间数量关系的统计方法。 33、相关系数(coefficient of correlation):描述两个变量间线性相关关系密切程度与方向的统计指标。 34、回归系数(regression coefficient):即回归直线的斜率,表示自变量x每改变一个单位时,应变量y平均变化b个单位,B为回归系数。 35、决定系数(determinant coefficient):r2,表示由x与y的直线关系导致的y的变异SS回,在总变异SS总所占比重,即回归效果的好坏,决定系数越接近1,回归效果越好。 36、最小二乘法(least square method):以各实测点到直线的纵向距离的平方和最小来确定回归直线。 37、统计表(statistical table):将统计分析的事物及其指标用表格的形式列出来,直观地反映事物的数量关系及其趋势的一种表现形式。 38、统计图(statistical chart):用点的位置,线段的升降,直条的长短和面积大小等表达统计数据的一种形式。 39、单纯随机抽样(simple random sampling):是从总体中以完全随机的方法抽取一部分观察对象组成样本,是最简单的抽样方法。 40、整群抽样(cluster sampling):先将总体划分为N个群,每个群包含若干个观察对象,再随机抽取n个群(n41、系统抽样(systematic sampling):又称等距抽样,是按照一定的顺序,机械地每隔若干个观察单位抽取一个观察单位组成样本。 42、分层抽样(stratified sampling):按影响观察值变异较大的某种特征将总体分成若干层,再从每层内随机抽取一定数量的观察单位组成样本。 43、配对设计(paired design):是将受试对象按一定条件配成对子,再随机分配每对中的两个受试对象到不同的处理组,或者比较受试者实验前后的变量值改变情况。 44、盲法(blind-method):在随机对比试验中,为避免出现偏倚,使研究者或研究对象不明确干预措施的分配的方法。 45、对照(control):处理因素与非处理因素的差异的科学对比,鉴别处理因素与非处理因素的效应差异。 46、随机区组设计(randomized block design):又称配伍设计,是将几个条件基本相同的受试对象划成一个区组,区组中观察对象的数量取决于对比组的组数。将区组中的受试对象采用随机方法,分配到不同的对比组中。 47、随机对照试验(random-control trail):又称完全随机设计,属于单因素研究设计,是将受试对象按照随机分配的原则分配到实验组和对照组中,然后给予不同的处理因素,对各组的效应进行同期平行观察,比较各组观察指标有无差异。 48、实验研究(experimental study):是指研究者根据研究目的人为地对受试对象施加处理因素,控制混杂因素,观察、总结处理因素的效果的一种研究方法。 3
1、 什么是卫生统计学?应用统计学的基本原理与方法,研究医学卫生及其有关领域数据信息的搜集、整理、分析、表达和解释的一门学科。 2、 统计学的基本步骤有哪些?①良好的研究设计;②有计划地搜集资料;③合理地整理资料;④正确地分析资料。 3、 抽样误差产生的原因有哪些?可以避免抽样误差吗?抽样误差的的根源在于个体变异,在抽样研究中是不可避免的。 4、 何为概率及小概率事件?概率P是指某事件发生的可能性大小。P≤0.05的随机事件称为小概率事件,其原理是在一次实验中不大可能发生的。 5、 描述数值变量资料集中趋势的指标有哪些?其适用范围有何异同?均数、几何均数、中位数。均数适用于计量资料正态分布或近似正态分布资料;几何均数适用于对数正态分布或近似对数正态分布资料,也可用于等比资料,但一般不能有观察值为0,也不能同时包含正负观察值。中位数用于描述极偏态资料,有特大特小值资料,有不确定数据资料和分布不明的资料。 6、 描述数值变量资料离散趋势的指标有哪些?其适用范围有何异同?极差、四分位数间距、方差和标准差、变异系数。极差和四分位数间距用于描述偏态分布资料、一端或两端没有确定值的资料。方差和标准差用于描述正态分布资料的离散程度。变异系数描述的是相对离散程度,用于单位不同,或虽单位相同但均数相差较大的资料变异程度的比较。 7、 中位数与百分位数在意义上,计算和应用上有何区别于联系?中位数是将一组数据由小到大排列,位于中间位置的观测值。百分位数也是一种位置指标,样本的第x百分位数记作Px,它表示将全部观察值x1、x2…xn,由小到大排列后位于第x百分位置的数值。中位数M是一个特殊的百分位数,即第50百分位数P50。 8、 标准差与标准误的区别与联系:1.区别:①标准差衡量观察值的离散趋势(变异程度),越大表示观察值越分散,样本均数的代表性越差;反之,样本均数的代表性就越好;样本越大,标准差趋于稳定。标准差主要用于医学参考值范围的估计。②标准误代表样本均数的变异程度,表示抽样误差的大小,标准误越大,抽样误差越大,样本均数越离散,用样本均数估计总体均数的可靠性越差,反之样本均数的可靠性就好。标准误主要用于总体均数可信区间的估计和假设检验。2.
联系:都是变异指标,反应离散趋势;标准误的大小可以由标准差的大小来估计, x=/n,
x与成正比,与n成反比;对于同一份资料,标准差越大,标准误也越大。
9、 可信区间与参考值范围有何不同?从意义上:①可信区间按是预先给定的概率1-α确定总体均数μ的可能范围,95%可信区间是按95%可信度估计总体均数所在的范围,此时估计正确率为95%,即有95%可能性包含了总体均数,说明总体均数的可能范围。②参考值范围是绝大多数正常人的某项指标的波动范围,95%参考值范围指同质总体中包含95%个体值的估计范围,说明个体值的
波动范围。从计算上:①可信区间:正态分布,σ未知,n<100时,双侧sx,tvx;σ未知,n
≥100时,双侧sxzx;σ已知,双侧xz。②参考值范围:正态分布,双侧Sz,单侧szx或sxz;偏态分布,双侧Px2/~Px2/100单侧Px或Px100。从应用上:①可信区间用于总体均数区间估计,评价未知总体均数所在范围;②参考值范围可判断某项指标是否正常,评价个体指标是否正常。 10、 假设检验与区间估计有何区别与联系?①可信区间用于推断总体参数所在范围,假设检验用于推