植物病原真菌致病基因研究进展_周爱东_徐小明_王岚_黄冰
- 格式:pdf
- 大小:167.99 KB
- 文档页数:3
绣线菊内生真菌的分离及对植物病原菌的抑制作用
徐庆庆;曾现银;柏钰;花日茂;操海群;吴祥为;李学德;唐俊
【期刊名称】《安徽农业大学学报》
【年(卷),期】2013(40)6
【摘要】采用组织分离法,以PDA培养基为分离培养基,从绣线菊的根、茎和叶中分离获得39株内生真菌。
平板对峙结果表明,21株活性菌株对6种植物病原菌(辣椒疫霉病原菌、番茄枯萎病原菌、苹果腐烂病原菌、苹果炭疽病原菌、葡萄灰霉病原菌、小麦赤霉病原菌)有不同程度的抑制作用,其中菌株XXT10对苹果腐烂病原菌、苹果炭疽病原菌、番茄枯萎病原菌、小麦赤霉病原菌的抑制率分别达到73.2%、72.5%、39.5%和42.7%。
通过测得的ITSrDNA序列与GenBank数据库中已知序列比对后该菌为链格孢属菌。
生物学特性试验表明,该菌株在28~32℃时,选择PDA培养基,分别以乳糖和蛋白胨作为碳、氮源,酸碱度中性的条件下,茵落的生长状况最佳。
【总页数】6页(P975-980)
【作者】徐庆庆;曾现银;柏钰;花日茂;操海群;吴祥为;李学德;唐俊
【作者单位】安徽农业大学资源与环境学院
【正文语种】中文
【中图分类】S482.292
【相关文献】
1.商洛黄芩内生真菌分离鉴定及抗植物病原菌活性筛选
2.喜树内生真菌的分离、鉴定以及抗植物病原菌活性的初步研究
3.无花果内生真菌Alternaria sp. FL25次生代谢产物的分离及对植物病原菌的抑制活性(英文)
4.对三种苹果病原菌具抑制作用的新疆野苹果内生真菌的分离与鉴定
5.喜树内生真菌的分离及其对植物病原菌的抑菌活性测定
因版权原因,仅展示原文概要,查看原文内容请购买。
丛枝菌根真菌和根瘤菌防控植物真菌病害的研究进展高萍;李芳;郭艳娥;段廷玉【期刊名称】《草地学报》【年(卷),期】2017(025)002【摘要】丛枝菌根(arbuscularmycorrhiza,AM)真菌和根瘤菌均可在一定程度上减轻植物病害的发生,提高植物生物量.AM真菌提高寄主植物的抗病机理包括:改善寄主营养状况、补偿作用、改变根系形态、与病原菌竞争侵染位点和寄主光合作用产物、改变根际微生物区系以及激活寄主防御机制.根瘤菌防病机理可归纳为:寄主生理生化的变化、根系形态改变和寄主防御机制激活.AM真菌和根瘤菌两者相互作用,可更好地防控植物病害.本文归纳了国内外AM真菌和根瘤菌对植物抗病性的影响及机理,同时展望了两者在生防中的应用前景.【总页数】7页(P236-242)【作者】高萍;李芳;郭艳娥;段廷玉【作者单位】草地农业生态系统国家重点实验室,兰州大学草地农业科技学院,甘肃兰州730020;草地农业生态系统国家重点实验室,兰州大学草地农业科技学院,甘肃兰州730020;草地农业生态系统国家重点实验室,兰州大学草地农业科技学院,甘肃兰州730020;草地农业生态系统国家重点实验室,兰州大学草地农业科技学院,甘肃兰州730020【正文语种】中文【中图分类】S432【相关文献】1.山西植物真菌病害种类及分布研究--山西观赏植物真菌病害(Ⅳ) [J], 张作刚;杨小芳;王建明;贺运春2.山西植物真菌病害种类及分布研究:山西药用植物真菌病害(Ⅰ) [J], 张作刚;张云凤3.山西植物真菌病害种类及分布研究:山西观赏植物真菌病害(Ⅱ) [J], 王建明;张作刚4.山西植物真菌病害种类及分布研究——山西园林植物真菌病害(I) [J], 张作刚;王建明;等5.丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展 [J], 赵丹丹;李涛;赵之伟因版权原因,仅展示原文概要,查看原文内容请购买。
DOI: 10.12357/cjea.20220093储薇, 郭信来, 张晨, 周柳婷, 吴则焰, 林文雄. 丛枝菌根真菌-植物-根际微生物互作研究进展与展望[J]. 中国生态农业学报 (中英文), 2022, 30(11): 1709−1721CHU W, GUO X L, ZHANG C, ZHOU L T, WU Z Y, LIN W X. Research progress and future directions of arbuscular mycorrhizal fungi-plant-rhizosphere microbial interaction[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1709−1721丛枝菌根真菌-植物-根际微生物互作研究进展与展望*储 薇, 郭信来, 张 晨, 周柳婷, 吴则焰**, 林文雄(福建农林大学生命科学学院 福州 350002)摘 要: 根际微生态作为土壤生态环境的热区, 以多种方式影响着植物的生长和代谢, 许多科学家将根系视为第二次绿色革命的关键。
丛枝菌根(arbuscular mycorrhizal, AM)是植物最普遍的菌根共生类别之一, 与陆地植物的进化史密不可分。
丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与宿主植物根系形成的菌根共生体可改变植株根系形态、改善营养状况, 从而促进宿主植物的生长发育, 提高抗逆性及抗病性, 参与植物的许多生理代谢过程, 并通过对土壤结构及微生物群落结构的调节间接影响植物的生长。
本文简述了AMF 与植物、根际微生物和菌根辅助菌(mycorrhizae helper bacteria, MHB)的互作研究结果, 探讨了菌根共生对植株建立、竞争、维持生物多样性及其在地球环境生态中的重要作用。
尽管AMF 与植株共生已经表现出良好的生产效益, 但是大多数科学文献报道的研究都是在受控条件(生长室或温室、无菌基质)下进行的, 由于AMF 在自然环境中的响应可能会发生显著变化, 因此我们还需要在田间条件下评估AMF 的能力。
櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄[20]WangB,YuanJ,LiuJ,etal.Codonusagebiasanddeterminingforcesingreenplantmitochondrialgenomes[J].JournalofIntegrativePlantBiology,2011,53(4):324-334.[21]SongYF,YangQH,YiXG,etal.ComparativeanalysisofCodonusagepatternsinchloroplastgenomesofcherries[J].Forests,2022,13(11):1891.[22]MortonBR,WrightSI.SelectiveconstraintsonCodonusageofnucleargenesfromArabidopsisthaliana[J].MolecularBiologyandEvolution,2007,24(1):122-129.[23]LiuQP,XueQZ.Comparativestudiesoncodonusagepatternofchloroplastsandtheirhostnucleargenesinfourplantspecies[J].JournalofGenetics,2005,84(1):55-62.[24]陆奇丰,黄至欢,骆文华.番茄WRKY转录因子密码子偏性分析[J].分子植物育种,2020,18(18):5908-5916.[25]段淋渊,戴国礼,焦恩宁,等.枸杞自交不亲和基因S-RNase密码子偏性分析[J].西南林业大学学报(自然科学),2020,40(2):44-52.[26]赵 森,邓力华,陈 芬.秋茄叶绿体基因组密码子使用偏好性分析[J].森林与环境学报,2020,40(5):534-541.[27]叶 琦,宋炎峰,李 蒙,等.迎春樱桃叶绿体基因组特征及其密码子使用偏好性分析[J].分子植物育种,2022,20(14):4576-4585.[28]胡晓艳,许艳秋,韩有志,等.酸枣叶绿体基因组密码子使用偏性分析[J].森林与环境学报,2019,39(6):621-628.[29]喻 凤,韩 明.紫花苜蓿叶绿体基因组密码子偏好性分析[J].广西植物,2021,41(12):2069-2076.[30]唐玉娟,赵 英,黄国弟,等.芒果叶绿体基因组密码子使用偏好性分析[J].热带作物学报,2021,42(8):2143-2150.[31]杨祥燕,蔡元保,谭秦亮,等.菠萝叶绿体基因组密码子偏好性分析[J].热带作物学报,2022,43(3):439-446.[32]耿晓姗,贾 魏,陈佳宁,等.金花茶叶绿体基因组密码子偏好性分析[J].分子植物育种,2022,20(7):2196-2203.张路阳,张有建,饶聪颖,等.烟草DUF538基因家族鉴定及根结线虫胁迫下表达分析[J].江苏农业科学,2023,51(20):34-42.doi:10.15889/j.issn.1002-1302.2023.20.006烟草DUF538基因家族鉴定及根结线虫胁迫下表达分析张路阳1,张有建2,饶聪颖2,许燕彪2,谢 可2,李 伟2,郑 聪2(1.河南农业大学烟草学院,河南郑州450002;2.福建省南平市烟草公司,福建南平353000) 摘要:DUF538基因是没有功能注释的蛋白,在根结线虫胁迫的响应过程中,含有DUF538结构域的蛋白质的基因表达发生变化。
玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析作者:邹晓威王娜刘芬夏蕾王艳丽洪泽源徐冲力郑岩来源:《江苏农业科学》2014年第11期摘要:提取玉米丝黑穗病与黑粉病发病叶片的RNA,反转录获得cDNA后,通过玉米抗病相关基因(登录号分别为:AI881638、AW424529、CF028241、CO526016、CK371597、BM379188、AI649523、CF349132、BM074921、BM349111)的序列设计引物,对玉米抗病相关基因进行RT-PCR扩增,分析目标基因的表达差异。
结果显示,抗病基因病程相关蛋白(BM379188)、丝氨酸/苏氨酸蛋白激酸(AW424529)、无毒性蛋白(AI881638)、富含亮氨酸重复区域蛋白激酶(CF028241)在2种病害发生过程中均呈现上调表达,其他选取基因在侵染玉米叶片中均未检测到其表达,所选取的抗病相关基因在对照玉米叶片中均未检测到其表达。
关键词:玉米;玉米丝黑穗病菌;玉米黑粉病菌;抗病基因;互作机制;基因表达中图分类号:Q786;S435.131.4文献标志码:A文章编号:1002-1302(2014)11-0150-03玉米丝黑穗病(Sphacelothecareiliana)和玉米黑粉病(Ustilagomaydis)是2种经常发生的玉米真菌性病害,传统防治方法主要以种子包衣为主,但该方法会造成农民生产成本提高,并对环境产生不良影响,选育和推广抗病品种是控制玉米丝黑穗病与玉米黑粉病发生的有效措施[1],因此有必要针对病原菌的侵染扩散机理对玉米抗病基因进行深入的研究。
玉米丝黑穗病及玉米黑粉病的病原菌都属于黑粉菌科,其亲缘关系较近,在同一寄主上前者是系统性病害,后者是局部性病害。
寄主植物在与病原菌互作的过程中,诱导表达的基因往往抑制或促进病原菌繁殖,这些基因的表达产物有直接攻击病原菌的病程相关蛋白,如病程相关蛋白、几丁质酶[2-4];有参与调控的转录因子,如WRKY蛋白[5-6];同时存在信号级联放大的蛋白激酶,如丝氨酸-苏氨酸蛋白激酶等[7-9]。
水稻白叶枯病抗性基因Xa21的分子生物学研究进展陈小林;颜群;高利军;高汉亮【摘要】由黄单胞杆菌水稻致病变种Xanthomonas oryzae pv.oryzae(Xoo)引起的白叶枯病是水稻重要细菌性病害之一.迄今,已有7个水稻白叶枯病抗性基因被克隆.Xa21是第一个被克隆的白叶枯病抗性基因,因具有广谱抗性而受到广泛的关注.对Xa21的发现、定位及克隆、表达特征、编码产物XA21的生化特性、作用与调控以及XA21介导的免疫反应模式等方面的研究结果进行综述,并对今后的研究方向进行展望.【期刊名称】《生物技术通报》【年(卷),期】2014(000)001【总页数】7页(P8-14)【关键词】水稻;白叶枯病;抗性基因;Xa21【作者】陈小林;颜群;高利军;高汉亮【作者单位】广西作物病虫害生物学重点实验室广西农业科学院植物保护研究所,南宁530007;广西作物病虫害生物学重点实验室广西农业科学院植物保护研究所,南宁530007;广西作物病虫害生物学重点实验室广西农业科学院植物保护研究所,南宁530007;广西作物病虫害生物学重点实验室广西农业科学院植物保护研究所,南宁530007【正文语种】中文由黄单胞杆菌水稻致病变种(Xanthomonas oryzaepv.oryzae,Xoo)引起的水稻白叶枯病是水稻最严重的细菌性病害之一[1,2]。
受白叶枯病危害的田块一般减产10%-20%,严重的减产50%以上,甚至绝收[3]。
白叶枯病1909年首次在日本福冈地区出现,随后在亚洲各国以及非洲、美洲和澳洲等地的水稻产区被发现,已成为一种世界性的水稻病害[4]。
目前,我国除了新疆、西藏和东北北部以外,其余各稻区均有发生,尤其在南方稻区危害更为严重[3]。
抗性基因的研究一直以来都是水稻白叶枯病防治的重要内容之一,并且已取得较大的成果。
到目前为止,经注册确认的和期刊报道的水稻白叶枯病抗性基因共38个,其中,Xa1、xa5、xa13,Xa21、Xa23、Xa26和Xa27等7个基因已成功被克隆[5-11]。
㊀山东农业科学㊀2024ꎬ56(2):176~180ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2024.02.024收稿日期:2023-03-05基金项目:国家自然科学基金项目(32001545)ꎻ山东省农业良种工程项目(2021LZGC013)ꎻ山东省农业科学院农业科技创新工程项目(CXGC2023A01)ꎻ农业农村部黄淮北片小麦种质资源精准鉴定项目作者简介:崔德周(1987 )ꎬ男ꎬ山东惠民人ꎬ博士ꎬ助理研究员ꎬ主要从事小麦种质资源与遗传育种研究ꎮE-mail:dezhoucui@126.com王丽丽(1989 )ꎬ女ꎬ山东郓城人ꎬ山东大学人居环境研究中心特约研究员ꎬ主要从事植物种质资源研究ꎮE-mail:565993570@qq.com∗同为第一作者ꎮ通信作者:樊庆琦(1978 )ꎬ男ꎬ山东郓城人ꎬ博士ꎬ研究员ꎬ主要从事小麦种质创新研究ꎮE-mail:fanqingqi@163.com小麦ERF亚族转录因子参与逆境胁迫的研究进展崔德周1ꎬ王丽丽2∗ꎬ陈祥龙3ꎬ李永波1ꎬ黄琛1ꎬ隋新霞1ꎬ楚秀生1ꎬ樊庆琦1(1.山东省农业科学院作物研究所/小麦玉米国家工程研究中心/农业农村部黄淮北部小麦生物学与遗传育种重点实验室/山东省小麦技术创新中心/济南市小麦遗传改良重点实验室ꎬ山东济南㊀250100ꎻ2.山东省林草种质资源中心ꎬ山东济南㊀250102ꎻ3.山东鲁研农业良种有限公司ꎬ山东济南㊀250100)㊀㊀摘要:小麦是中国三大粮食作物之一ꎬ其生长发育过程中会受到多种逆境胁迫的影响ꎮAP2/EREBP是植物特有的一个庞大的转录因子超家族ꎬ普遍参与生长发育和逆境胁迫应答等生物学进程ꎮERF类转录因子是AP2/EREBP转录因子超家族的一个亚族ꎮ本研究结合国内外相关研究进展ꎬ简要综述了小麦ERF亚族转录因子的结构特征与分布ꎬ重点阐述近年来小麦ERF亚族转录因子响应高盐㊁干旱㊁低温㊁重金属㊁病原菌侵染等逆境胁迫的功能和机制研究进展ꎬ最后展望了ERF亚族转录因子的研究方向和应用前景ꎮ关键词:小麦ꎻERF亚族ꎻ转录因子ꎻ胁迫响应ꎻ研究进展中图分类号:S512.1㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2024)02-0176-05AdvancesinResearchonFunctionofWheatERFTranscriptionFactorSubfamilyinStressResponseCuiDezhou1ꎬWangLili2∗ꎬChenXianglong3ꎬLiYongbo1ꎬHuangChen1ꎬSuiXinxia1ꎬChuXiusheng1ꎬFanQingqi1(1.CropResearchInstituteꎬShandongAcademyofAgriculturalSciences/NationalEngineeringResearchCenterofWheatandMaize/KeyLaboratoryofWheatBiologyandGeneticsandBreedinginNorthernHuang ̄HuaiRiverPlainꎬMinistryofAgricultureandRuralAffairs/ShandongTechnologyInnovationCenterofWheat/JinanKeyLaboratoryofWheatGeneticImprovementꎬJinan250100ꎬChinaꎻ2.ShandongProvincialCenterofForestandGrassGermplasmResourcesꎬJinan250102ꎬChinaꎻ3.ShandongLuyanAgriculturalCo.ꎬLtd.ꎬJinan250100ꎬChina)Abstract㊀WheatisoneofthethreemajorgraincropsinChinaꎬbutitsgrowthanddevelopmentmightbeaffectedbymultipleadversestresses.AP2/EREBPisasuperfamilyofplantspecifictranscriptionfactorswhicharewidelyinvolvedinbiologicalprocessesessuchasgrowthꎬdevelopmentandstressresponse.TheERFtranscriptionclassisasubfamilyoftheAP2/EREBPsuperfamily.Hereꎬthestructuralcharacteristicsanddis ̄tributionsofERFsubfamilytranscriptionfactorsinwheatwerebrieflyintroduced.Andtherecentresearchpro ̄gressesofthefunctionsandmechanismsofERFsubfamilytranscriptionfactorsinwheatwasemphasizedinre ̄sponsetostressessuchashighsaltꎬdroughtꎬlowtemperatureꎬheavymetalandpathogeninfection.FinallyꎬtheresearchdirectionandapplicationprospectofERFsubfamilytranscriptionfactorswereprospected.Keywords㊀WheatꎻERFsubfamilyꎻTranscriptionfactorꎻStressresponseꎻResearchprogress㊀㊀小麦(TriticumaestivumL.)是世界上最重要的粮食作物之一ꎬ是全球三分之一以上人口的主食ꎮ中国是世界上最大的小麦生产国和消费国ꎬ小麦的高产稳产对保障国家粮食安全至关重要ꎮ小麦生长发育周期长ꎬ期间干旱㊁盐碱㊁低温㊁高温㊁重金属㊁病虫害等生物㊁非生物胁迫都会不同程度地威胁小麦的高产稳产ꎮ近年来ꎬ得益于小麦基因组学的飞速发展ꎬ小麦响应逆境胁迫的分子调控网络被逐步阐明ꎬ转录因子在功能基因表达调控中的关键作用进一步凸显[1-4]ꎮ根据DNA结合域的特性ꎬ转录因子可分成若干家族ꎬ包括MYB㊁WRKY㊁bZIP㊁NAC㊁AP2/EREBP等[5-7]ꎮAP2/EREBP转录因子是植物特有的一类转录因子ꎬ广泛参与小麦逆境胁迫应答[8-10]ꎮERF转录因子是AP2/EREBP转录因子超家族的一个亚族ꎬ最早从烟草中分离得到[11]ꎮ本研究综述小麦ERF亚族转录因子在逆境胁迫应答中的作用及可能机制ꎬ以期为深入研究小麦ERF亚族的分子功能及其抗逆遗传改良提供参考ꎮ1㊀ERF亚族转录因子的特征AP2/EREBP是一个庞大的基因家族ꎬ因含有60~70个氨基酸组成的AP2/EREBP结构域而得名[12]ꎮ在拟南芥中ꎬSakuma等[13]根据序列相似性和AP2/EREBP结构域的数量ꎬ将其分为5个亚族 ERF亚族㊁DREB亚族㊁RAV亚族㊁AP2亚族和其他ꎮAP2亚族含有2个AP2/EREBP结构域ꎬ主要在细胞生长发育过程中发挥调控作用[14-15]ꎻRAV亚族含有1个AP2/EREBP结构域和1个B3结构域ꎬ在乙烯㊁油菜素内酯和胁迫响应过程中发挥重要作用[14ꎬ16-17]ꎻDREB亚族和ERF亚族均属于EREBP型转录因子ꎬ都仅含1个AP2/EREBP结构域ꎬ在调控植物细胞发育及对病原菌㊁干旱㊁高盐㊁低温㊁激素等胁迫的应答反应中发挥作用[14ꎬ18-22]ꎬ但AP2/EREBP结构域的第14位和第19位氨基酸存在差异ꎬDREB亚族分别是缬氨酸和谷氨酸ꎬ而ERF亚族则分别是丙氨酸和天冬氨酸ꎮERF亚族转录因子还可与乙烯诱导顺式作用元件GCC-box结合ꎬ抵御植物逆境胁迫[23-26]ꎮ2㊀小麦ERF亚族转录因子鉴定分析目前正式命名的小麦ERF亚族转录因子基因只有8个ꎬ而从全基因组水平分析ꎬ符合ERF亚族特征的基因则有上百个之多[27-28]ꎮZhuang等[29]在全基因组水平鉴定到47个小麦ERF亚族转录因子成员ꎬ根据拟南芥和水稻同源基因分类ꎬ将其分为B1㊁B2㊁B3㊁B4和B6五个亚组ꎮ随着二代测序技术及小麦基因组学研究的飞速发展ꎬRiaz等[30]鉴定到138个ERF亚族转录因子成员ꎬ分为6个亚组ꎬ主要定位于细胞核ꎻMagar等[2]鉴定到238个成员ꎬ其中ꎬ174个基因不含内含子㊁3个基因含3个内含子ꎬ鉴定数量有了质的飞跃ꎮ李世姣等[31]利用隐马尔可夫模型文件检索中国春数据库ꎬ筛选到229条小麦ERFsꎬ通过分析A/B/D同源关系ꎬ将其归为96个ERF亚族成员ꎮ此外ꎬFaraji等[32]在硬粒小麦中鉴定到185个ERF亚族成员ꎮ3㊀小麦ERF亚族转录因子参与逆境胁迫的分子机制3.1㊀非生物胁迫越来越多的研究表明ꎬ大部分小麦ERF亚族成员在对高盐㊁干旱㊁低温㊁重金属等非生物胁迫抗性调控中发挥重要作用(表1)ꎮ位于小麦7A染色体上的TaERF1ꎬ通过结合GCC-box和DRE/CRT元件㊁激活启动子区含GGCC-box的PR蛋白(pathogenesisrelatedpro ̄teinꎬ病程相关蛋白)㊁磷酸化TaMAPK1等方式ꎬ参与干旱㊁高盐㊁低温等代谢途径ꎬ过表达TaE ̄RF1可显著提高转基因拟南芥对干旱㊁高盐和低温的耐受能力[33]ꎮTaERF2基因受干旱㊁高盐㊁低温和湿害强烈诱导ꎬ过表达后可提高转基因拟南芥对干旱㊁低温等非生物胁迫的抗性[34-35]ꎮTaERF3通过特异结合GCC-boxꎬ正向调控LEA3㊁GST6等抗逆相关基因表达ꎬ过表达TaERF3可增加叶片脯氨酸㊁叶绿素含量ꎬ降低过氧化氢含量ꎬ增强小麦对高盐㊁干771㊀第2期㊀㊀㊀㊀㊀㊀崔德周ꎬ等:小麦ERF亚族转录因子参与逆境胁迫的研究进展旱胁迫的耐受能力ꎻ而经病毒诱导基因沉默(VIGS)干扰后的小麦植株则表现为盐和干旱敏感[36]ꎮTaERF4是一个具有EAR基序的转录抑制因子ꎬ过表达TaERF4抑制AtNHX1㊁AtNHX2等钠离子转运相关基因的表达ꎬ通过非ABA依赖的信号通路降低拟南芥耐盐性[37]ꎮTaERF5受高盐㊁渗透胁迫㊁乙烯㊁ABA和茉莉酸甲酯诱导表达ꎬ遗传学证据显示ꎬTaERF5-B过表达增强了转基因水稻的耐盐性[38]ꎮ叶片TaERF7表达受温度和日照调控ꎬ进而影响小麦百农不育系育性[27]ꎮTaE ̄RF8-2D的表达受高盐胁迫诱导持续上调ꎬ其分子机制有待进一步研究[39]ꎮZhu等[40]研究发现ꎬTaPIEP1/TaPIE1通过激活乙烯合成基因ꎬ增强小麦对冷害胁迫的抗性ꎮTaERFL1a受低温㊁高盐㊁干旱㊁ABA等胁迫诱导表达ꎬVIGS干扰该基因降低小麦对干旱胁迫的抗性[41]ꎮDu等[42]研究表明ꎬTaERF87通过与Ta ̄AKS1互作ꎬ协同增强TaP5CS1和TaP5CR1的表达ꎬ提高脯氨酸的生物合成ꎬ进而增强小麦抗旱性ꎮ此外ꎬ在硬粒小麦(TriticumturgidumL.sub ̄sp.durum)中ꎬTdERF1响应高盐和干旱胁迫[43-44]ꎬTdSHN1受高盐㊁干旱㊁低温㊁ABA和重金属胁迫强烈诱导表达ꎬ过表达TdSHN1可显著提高酵母对非生物胁迫的耐受性[45-46]ꎮ㊀㊀表1㊀参与非生物胁迫的小麦ERF亚族转录因子基因结合元件分子功能参考文献TaERF1GCC-box/DRE/CRT提高拟南芥对干旱㊁高盐和低温的耐受能力[33]TaERF2GCC-box/ERE提高拟南芥对干旱㊁低温的耐受能力ꎬ响应小麦湿害胁迫[34-35]TaERF3GCC-box提高小麦对高盐㊁干旱胁迫的耐受能力[36]TaERF4 降低拟南芥对高盐胁迫的耐受能力[37]TaERF5 提高水稻对高盐胁迫的耐受能力[38]TaERF6 与TdERF1高度同源[47]TaERF7GCC-box/DRE/CRT控制百农不育系小麦育性[27]TaERF8-2D 高盐胁迫下持续上调表达[39]TaPIEP1/TaPIE1GCC-box提高小麦对冷害胁迫的耐受能力[40]TaERFL1a 提高小麦对干旱胁迫的耐受能力[41]TaERF87GCC-box/E-box提高小麦对干旱胁迫的耐受能力[42]TdERF1GCC-box/DRE响应高盐和干旱胁迫[43-44]TdSHN1GCC-box/DRE提高酵母对高盐㊁干旱㊁重金属胁迫的耐受能力[45-46]3.2㊀生物胁迫小麦生育期遭遇的生物胁迫主要包括病原菌侵染和植食性害虫啃食ꎬ而小麦响应生物胁迫的转录因子研究主要集中在前者ꎮ研究表明ꎬERF亚族转录因子可以提高小麦对病原菌的抗性(表2)ꎮTaERF1的表达受白粉病菌侵入的诱导ꎬ过表达TaERF1可提高转基因拟南芥对真菌㊁细菌病害的抗性[33]ꎮ病原菌侵染下ꎬTaERF3可激活防御基因表达ꎬ其中ꎬ在白粉病菌侵染早期主要通过水杨酸途径ꎬ而在镰刀菌㊁纹枯病菌侵染晚期主要通过乙烯/茉莉酸途径[48]ꎮ过表达TaPIEP1/TaPIE1可大量激活下游防卫基因的表达ꎬ进而提高小麦对纹枯病㊁根腐病的抗性[40ꎬ49]ꎮChen等[50]从中间偃麦草中分离了一个新的ERF基因TiERF1ꎬ该基因主要通过依赖乙烯的信号转导途径激活病程蛋白相关基因的表达ꎬ提高转基因小麦对纹枯病的抗性ꎮ㊀㊀表2㊀参与生物胁迫的小麦ERF亚族转录因子基因结合元件分子功能参考文献TaERF1GCC-box/DRE/CRT提高拟南芥对真菌㊁细菌病害的抗性[33]TaERF3GCC-box参与对小麦白粉病菌㊁镰刀菌㊁纹枯病菌的防卫[48]TaPIEP1/TaPIE1GCC-box提高小麦对纹枯病㊁根腐病的抗性[40ꎬ49]TiERF1GCC-box提高小麦对纹枯病的抗性[50]871山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀4㊀展望近年来ꎬ极端天气频发ꎬ低温㊁干旱㊁高盐等非生物胁迫及病原菌侵染等生物胁迫严重制约小麦的安全生产ꎬ给粮食安全带来了严峻挑战ꎮ作为AP2/EREBP转录因子超家族的一个亚族ꎬERF类转录因子连接上游信号和下游功能基因ꎬ在小麦抵御逆境胁迫中具有关键作用ꎮ基因组学分析表明ꎬ小麦ERF亚族基因有200余个ꎬ但目前只克隆鉴定了部分基因ꎬ并且已经投入育种应用的转基因材料也鲜有报道ꎬ后续仍需进一步深入挖掘具有重要抗逆功能的ERF亚族基因ꎮ此外ꎬ目前的研究多集中在转录因子基因的克隆及转录调节功能的鉴定分析上ꎬERF亚族转录因子自我调节的模式及其同其他转录因子间的相互作用关系尚未完全了解ꎮ相信随着基因组学㊁分子生物学技术的发展ꎬ对小麦ERF亚族转录因子的抗逆网络解析会更加深入ꎬ从而为小麦抗逆遗传改良提供更坚实的理论依据和更强有力的基因工具ꎮ参㊀考㊀文㊀献:[1]㊀GahlautVꎬJaiswalVꎬKumarAꎬetal.Transcriptionfactorsinvolvedindroughttoleranceandtheirpossibleroleindevelo ̄pingdroughttolerantcultivarswithemphasisonwheat(Tritic ̄umaestivumL.)[J].Theor.Appl.Genet.ꎬ2016ꎬ129(11):2019-2042.[2]㊀MagarMMꎬLiuHꎬYanGJ.Genome ̄wideanalysisofAP2/ERFsuperfamilygenesincontrastingwheatgenotypesrevealsheatstress ̄relatedcandidategenes[J].Front.PlantSci.ꎬ2022ꎬ13:853086.[3]㊀XiaoJꎬLiuBꎬYaoYYꎬetal.Wheatgenomicstudyforgenet ̄icimprovementoftraitsinChina[J].Sci.ChinaLifeSci.ꎬ2022ꎬ65(9):1718-1775.[4]㊀解亚蒙ꎬ赵晓蕾ꎬ白菁华ꎬ等.小麦NF-Y家族基因TaNF-YA1介导植株耐旱功能研究[J].河北农业大学学报ꎬ2023ꎬ46(1):1-9.[5]㊀丰锦ꎬ陈信波.抗逆相关AP2/EREBP转录因子研究进展[J].生物技术通报ꎬ2011(7):1-6ꎬ11.[6]㊀王淑叶ꎬ伍国强ꎬ魏明.WRKY转录因子调控植物逆境胁迫响应的作用机制[J].生物工程学报ꎬ2024ꎬ40(1):35-52. [7]㊀JavedTꎬShabbirRꎬAliAꎬetal.Transcriptionfactorsinplantstressresponses:challengesandpotentialforsugarcaneim ̄provement[J].Plantsꎬ2020ꎬ9(4):491.[8]㊀YuYꎬYuMꎬZhangSXꎬetal.TranscriptomicidentificationofwheatAP2/ERFtranscriptionfactorsandfunctionalcharac ̄terizationofTaERF ̄6 ̄3Ainresponsetodroughtandsalinitystresses[J].Int.J.Mol.Sci.ꎬ2022ꎬ23(6):3272. [9]㊀KaramiMꎬFatahiNꎬLohrasebiTꎬetal.RAVtranscriptionfactorregulatoryfunctioninresponsetosaltstressintwoIranianwheatlandraces[J].J.PlantRes.ꎬ2022ꎬ135(1):121-136. [10]洪林ꎬ杨蕾ꎬ杨海健ꎬ等.AP2/ERF转录因子调控植物非生物胁迫响应研究进展[J].植物学报ꎬ2020ꎬ55(4):481-496.[11]Ohme ̄TakagiMꎬShinshiH.Ethylene ̄inducibleDNAbindingproteinsthatinteractwithanethylene ̄responsiveelement[J].PlantCellꎬ1995ꎬ7(2):173-182.[12]刘建光ꎬ王永强ꎬ张寒霜ꎬ等.ERF转录因子在植物抗逆境胁迫的研究进展[J].华北农学报ꎬ2013ꎬ28(增刊):214-218.[13]SakumaYꎬLiuQꎬDubouzetJGꎬetal.DNA ̄bindingspecific ̄ityoftheERF/AP2domainofArabidopsisDREBstranscriptionfactorsinvolvedindehydration ̄andcold ̄induciblegeneexpres ̄sion[J].Biochem.Biophys.Res.Commun.ꎬ2002ꎬ290(3):998-1009.[14]张计育ꎬ王庆菊ꎬ郭忠仁.植物AP2/ERF类转录因子研究进展[J].遗传ꎬ2012ꎬ34(7):44-56.[15]WangYYꎬSunLLꎬWangRꎬetal.TheAP2transcriptionfactorsTOE1/TOE2conveyArabidopsisageinformationtoeth ̄ylenesignalinginplantdenovorootregeneration[J].Plantaꎬ2022ꎬ257(1):1.[16]FuMꎬKangHKꎬSonSHꎬetal.AsubsetofArabidopsisRAVtranscriptionfactorsmodulatesdroughtandsaltstressresponsesindependentofABA[J].PlantCellPhysiol.ꎬ2014ꎬ55(11):1892-1904.[17]LuoYXꎬChenSKꎬWangPDꎬetal.Genome ̄wideanalysisoftheRAVgenefamilyinwheatandfunctionalidentificationofTaRAV1insaltstress[J].Int.J.Mol.Sci.ꎬ2022ꎬ23(16):8834.[18]于志晶ꎬ蔡勤安ꎬ刘艳芝ꎬ等.拟南芥抗逆基因DREB2A转化大豆的研究[J].大豆科学ꎬ2013ꎬ32(5):606-608. [19]ZhangXXꎬTangYJꎬMaQBꎬetal.OsDREB2Aꎬaricetran ̄scriptionfactorꎬsignificantlyaffectssalttoleranceintransgenicsoybean[J].PLoSONEꎬ2013ꎬ8(12):e83011.[20]刘坤ꎬ李国婧ꎬ杨杞.参与植物非生物逆境响应的DREB/CBF转录因子研究进展[J].生物技术通报ꎬ2022ꎬ38(5):201-214.[21]ChengCꎬAnLKꎬLiFZꎬetal.Wide ̄rangeportrayalofAP2/ERFtranscriptionfactorfamilyinmaize(ZeamaysL.)developmentandstressresponses[J].Genesꎬ2023ꎬ14(1):194.[22]阮航ꎬ多浩源ꎬ范文艳ꎬ等.AtERF49在拟南芥应答盐碱胁迫中的作用[J].生物技术通报ꎬ2023ꎬ39(1):150-156. [23]MüllerMꎬMunné ̄BoschS.Ethyleneresponsefactors:akeyregulatoryhubinhormoneandstresssignaling[J].PlantPhys ̄iol.ꎬ2015ꎬ169(1):32-41.[24]DebbarmaJꎬSarkiYNꎬSaikiaBꎬetal.Ethyleneresponse971㊀第2期㊀㊀㊀㊀㊀㊀崔德周ꎬ等:小麦ERF亚族转录因子参与逆境胁迫的研究进展factor(ERF)familyproteinsinabioticstressesandCRISPR ̄Cas9genomeeditingofERFsformultipleabioticstresstoler ̄anceincropplants:areview[J].Mol.Biotechnol.ꎬ2019ꎬ61(2):153-172.[25]赵曾强ꎬ郭文婷ꎬ张析ꎬ等.棉花抗枯萎病相关基因GhERF5 ̄4D的克隆及功能分析[J].生物技术通报ꎬ2022ꎬ38(4):193-201.[26]才晓溪ꎬ胡冰霜ꎬ沈阳ꎬ等.GsERF6基因过表达对水稻耐盐碱性的影响[J].作物学报ꎬ2023ꎬ49(2):561-569. [27]李紫良ꎬ张建朝ꎬ李政ꎬ等.小麦转录因子基因TaERF7的克隆及其表达分析[J].西北植物学报ꎬ2020ꎬ40(2):210-217.[28]ZhangLꎬLiuPꎬWuJꎬetal.IdentificationofanovelERFgeneꎬTaERF8ꎬassociatedwithplantheightandyieldinwheat[J].BMCPlantBiol.ꎬ2020ꎬ20(1):263.[29]ZhuangJꎬChenJMꎬYaoQHꎬetal.Discoveryandexpres ̄sionprofileanalysisofAP2/ERFfamilygenesfromTriticumaestivum[J].Mol.Biol.Rep.ꎬ2011ꎬ38(2):745-753. [30]RiazMWꎬLuJꎬShahLꎬetal.ExpansionandmolecularcharacterizationofAP2/ERFgenefamilyinwheat(TriticumaestivumL.)[J].Front.Genet.ꎬ2021ꎬ12:632155. [31]李世姣ꎬ张晓军ꎬ乔麟轶ꎬ等.小麦盐胁迫响应相关ERF基因的分离和初步验证[J].核农学报ꎬ2021ꎬ35(5):1039-1047.[32]FarajiSꎬFilizEꎬKazemitabarSKꎬetal.TheAP2/ERFgenefamilyinTriticumdurum:genome ̄wideidentificationandex ̄pressionanalysisunderdroughtandsalinitystresses[J].Genesꎬ2020ꎬ11(12):1464.[33]XuZSꎬXiaLQꎬChenMꎬetal.Isolationandmolecularchar ̄acterizationoftheTriticumaestivumL.ethylene ̄responsivefac ̄tor1(TaERF1)thatincreasesmultiplestresstolerance[J].PlantMol.Biol.ꎬ2007ꎬ65(6):719-732.[34]宋桂成ꎬ周淼平ꎬ余桂红ꎬ等.小麦乙烯转录因子TaERF2响应湿害胁迫的表达分析[J].核农学报ꎬ2022ꎬ36(5):876-884.[35]徐兆师.小麦抗逆相关DREB/ERF转录因子基因的克隆与鉴定[D].北京:中国农业科学院ꎬ2005:114-121. [36]RongWꎬQiLꎬWangAYꎬetal.TheERFtranscriptionfactorTaERF3promotestolerancetosaltanddroughtstressesinwheat[J].PlantBiotechnol.J.ꎬ2014ꎬ12(4):468-479. [37]DongWꎬAiXꎬXuFꎬetal.IsolationandcharacterizationofabreadwheatsalinityresponsiveERFtranscriptionfactor[J].Geneꎬ2012ꎬ511(1):38-45.[38]张蕾.小麦盐胁迫应答相关基因TaERF5的功能研究[D].北京:中国农业科学院ꎬ2013:32-34.[39]崔德周ꎬ李永波ꎬ隋新霞ꎬ等.小麦盐胁迫持续上调转录因子基因TaERF8 ̄2D的克隆及其分析[J].山东农业科学ꎬ2021ꎬ53(5):32-37.[40]ZhuXLꎬQiLꎬLiuXꎬetal.Thewheatethyleneresponsefac ̄tortranscriptionfactorpathogen ̄inducedERF1mediateshostresponsestoboththenecrotrophicpathogenRhizoctoniacerealisandfreezingstresses[J].PlantPhysiol.ꎬ2014ꎬ164(3):1499-1514.[41]GaoTꎬLiGZꎬWangCRꎬetal.FunctionoftheERFL1atranscriptionfactorinwheatresponsestowaterdeficiency[J].Int.J.Mol.Sci.ꎬ2018ꎬ19(5):1465.[42]DuLYꎬHuangXLꎬDingLꎬetal.TaERF87andTaAKS1synergisticallyregulateTaP5CS1/TaP5CR1 ̄mediatedprolinebiosynthesistoenhancedroughttoleranceinwheat[J].NewPhytol.ꎬ2023ꎬ237(1):232-250.[43]MakhloufiEꎬYousfiFEꎬMarandeWꎬetal.Isolationandmo ̄lecularcharacterizationofERF1ꎬanethyleneresponsefactorgenefromdurumwheat(TriticumturgidumL.subsp.durum)ꎬpotentiallyinvolvedinsalt ̄stressresponses[J].J.Exp.Bot.ꎬ2014ꎬ65(22):6359-6371.[44]MakhloufiEꎬYousfiFEꎬPirrelloJꎬetal.TdERF1ꎬanethyl ̄eneresponsefactorassociatedwithdehydrationresponsesindu ̄rumwheat(TriticumturgidumL.subsp.durum)[J].PlantSignalandBehav.ꎬ2015ꎬ10(10):e1065366.[45]DjemalRꎬKhoudiH.IsolationandmolecularcharacterizationofanovelWIN1/SHN1ethylene ̄responsivetranscriptionfactorTdSHN1fromdurumwheat(TriticumturgidumL.subsp.du ̄rum)[J].Protoplasmaꎬ2015ꎬ252(6):1461-1473. [46]DjemalRꎬKhoudiH.Theethylene ̄responsivetranscriptionfactorofdurumwheatꎬTdSHN1ꎬconferscadmiumꎬcopperꎬandzinctolerancetoyeastandtransgenictobaccoplants[J].Protoplasmaꎬ2022ꎬ259(1):19-31.[47]HaghirSꎬAlemzadehA.Cloningandmolecularcharacteriza ̄tionofTaERF6ꎬageneencodingabreadwheatethylenere ̄sponsefactor[J].Mol.Biol.Res.Commun.ꎬ2018ꎬ7(4):153-163.[48]ZhangZYꎬYaoWLꎬDongNꎬetal.AnovelERFtranscriptionactivatorinwheatanditsinductionkineticsafterpathogenandhormonetreatments[J].J.Exp.Bot.ꎬ2007ꎬ58(11):2993-3003.[49]DongNꎬLiuXꎬLuYꎬetal.OverexpressionofTaPIEP1ꎬapathogen ̄inducedERFgeneofwheatꎬconfershost ̄enhancedresistancetofungalpathogenBipolarissorokiniana[J].Funct.Integr.Genomic.ꎬ2010ꎬ10(2):215-226.[50]ChenLꎬZhangZYꎬLiangHXꎬetal.OverexpressionofTiERF1enhancesresistancetosharpeyespotintransgenicwheat[J].J.Exp.Bot.ꎬ2008ꎬ59(15):4195-4204.081山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀。
林木病理学Forest Pathology二、植物病理学的概念病斑:症状真菌、细菌:病原致病原因:机制病害的扩展蔓延:发生发展规律治疗:防治措施植物病理学的定义:研究经济植物病害的症状、病原、致病机制、发病规律和防治方法的一门科学。
三、病害对农业、林业的危害爱尔兰饥荒:爱尔兰人以马铃薯为主要粮食,1845-1846年马铃薯晚疫病在爱尔兰大流行,导致150万人饿死,迫使100万人逃离本土。
植物病理学由此诞生。
孟加拉饥荒:1942年印度的孟加拉邦水稻胡麻叶斑病大流行,约200万人饿死。
1870-1880年,原产咖啡的斯里兰卡,咖啡锈病严重危害,咖啡产业被全部摧毁,后改种茶叶。
1881-1888年,法国葡萄霜霉病严重发生,使久负盛名的法国酿酒业几乎全部停顿。
1970年玉米小斑病在美国大流行,减产15%约165亿Kg,经济损失达10亿美元。
松材线虫病从日本传入,自1982年以来危害面积达7万hot因该病危害已累计致死松树3 500多万株。
目前已严重威胁到安徽黄山、浙江西湖等风景名胜区的安全以及整个中部及南部的大面积松林。
桉树青枯病成为广东、广西及海南地区桉树发展的严重障碍,1982年以来发病累计面积已达10万hm。
红松疱锈病、落叶松枯梢病(北方)如辽宁,这两种病害每年发病面积达9.5万hO。
四、林木病理学的发展历史林木病理学(森林病理学),是研究林木病害的症状、致病原因、发生和流行规律及其防治的一门科学。
植物病理学的一个分支学科。
Robert Hartig (德国人)1882年出版了《树病学》一书,这是世界上第一本林木病理学教材,标志着林木病理学的诞生,他本人被推崇为林木病理学的创始人。
1934年苏联的C. H .瓦宁出版了《森林植物病理学》教科书。
我国的林木病理学发展的四个时期萌生时期(1917 ~ 1953 )1952年后,森林植物病理学正式列入高、中等林业院(学)校的教学计划。
创建时期(1954 ~ 1978 )1958年到1960年间,北京林学院、南京林学院、东北林学院和中南林学院等设立了森保专业或森林病虫害防治专业。
拟南芥NDR1基因介导的广谱抗病性研究进展龚前园;张超;李为民;张永强【摘要】抗病基因的研究是抗病育种及防治植物病害的基础。
拟南芥NDR1(Non-race-specific disease resistance 1)基因,编码一个质膜定位蛋白,在R基因介导的抗性中具有重要作用。
NDR1能与CC-NB-LRR(卷曲螺旋核酸结合或富亮氨酸重复)类抗病蛋白相互作用。
以拟南芥抗病基因NDR1及其蛋白结构的研究进展为基础,综述了NDR1的广谱抗病性和抗病分子机理。
%The research of resistance genes is the basis of disease resistance breeding and plant diseases controlling. Arabidopsis NDR1 (non-race-specific disease resistance 1)gene, encoding a plasma membrane protein, plays an important role in the R gene mediated disease resistance, by interacting with CC-NB-LRR(nucleic acid binding or coiled-coil leucine-richrepeat)class of antiviral proteins. Here, we summarized the latest progresses of Arabidopsis NDR1 gene and the broad-spectrum disease resistance of NDR1.【期刊名称】《生物技术通报》【年(卷),期】2014(000)006【总页数】5页(P29-33)【关键词】抗病基因;NDR1;CC-NB/LRR【作者】龚前园;张超;李为民;张永强【作者单位】中国农业科学院生物技术研究所,北京 100081;中国农业科学院生物技术研究所,北京 100081;中国农业科学院生物技术研究所,北京 100081;中国农业科学院生物技术研究所,北京 100081【正文语种】中文植物在生长发育过程中会经常受到细菌、真菌和病毒等病原体的侵袭,其结果表现为抗病或感病。