解直角三角形测试题1
- 格式:doc
- 大小:3.34 KB
- 文档页数:3
【期末优化训练】浙教版2022-2023学年九下数学第1章解直角三角形测试卷1考试时间:120分钟满分:150分一、选择题(本大题有10小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的.1.在Rt△ABC中,△C=90°,若sin△A=23,则cosB=()A.23B.√53C.2√55D.√522.在△ABC中,∠A、∠B均为锐角,且|tanB−√3|+(2sinA−√3)2=0,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.某铁路路基的横断面是一个等腰梯形(如图),若腰的坡比为2:3,路基顶宽3米,高4米,则路基的下底宽为()A.7米B.9米C.12米D.15米4.如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在△O上时,cos△OQB的值等于()A.12B.13C.14D.23(第3题)(第4题)(第5题)5.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A.1sinαB.1cosαC.sinαD.16.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.8tan20°C.8sin20°D.8cos20°7.我国魏晋时期的数学家刘徽首创割圆术:割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣",即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,…….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈l62R=3.再利用圆的内接正十二边形来计算圆周率则圆周率约为()A.12sin15°B.12cos15°C.12sin30°D.12cos30°(第7题)(第8题)8.如图,在△ABC中,∠BAC=45°,D为AC上一点,连接BD,将△BDC沿BD翻折,点C恰好落在AB上的点E处,连CE.若AD=7√22,tan∠ABD=13,则CD的长度为()A.5√22B.6√25C.3√22D.7√239.如图,在边长为4的正方形ABCD中,点E是CD边上的一点,点F是点D关于直线AE对称的点,连接AF、BF,若tan△ABF=2,则DE的长是()A.1B.65C.43D.5310.在△ABC中,∠ACB=90°,P为AC上一动点,若BC=4,AC=6,则√2BP+AP的最小值为()A.5B.10C.5√2D.10√2(第9题)(第10题)(第11题)第12题)二、填空题(本大题有6小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.北京冬奥会开幕式的巨型雪花状主火炬塔的设计,体现了环保低碳理念.如图所示,它的主体形状呈正六边形.若点A,F,B,D,C,E是正六边形的六个顶点,则tan△ABE=.12.某校数学兴趣小组开展无人机测旗杆的活动:已知无人机的飞行高度为30m,当无人机飞行至A 处时,观测旗杆顶部的俯角为30°,继续飞行20m到达B处,测得旗杆顶部的俯角为60°,则旗杆的高度约为m.(参考数据:√3≈1.732,结果按四舍五八保留一位小数)13.图1是一款折叠式跑步机,其侧面结构示意图如图2(忽略跑步机的厚度).该跑步机由支杆AB (点A固定),底座AD和滑动杆EF组成.支杆AB可绕点A转动,点E在滑槽AC上滑动.已知AB=60cm,AC=125cm.收纳时,滑动端点E向右滑至点C,点F与点A重合;打开时,点E从点C向左滑动,若滑动杆EF与AD夹角的正切值为2,则察看点F处的仪表盘视角为最佳.(1)BE=cm;(2)当滑动端点E与点A的距离EA=cm时,察看仪表盘视角最佳.(第13题)(第14题)14.如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=.15.如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD=.(第15题)(第16题)16.如图,岸边堤坝和湖中分别伫立着甲、乙两座电线塔,甲塔底CD和堤坝EF段均与水平面MN 平行,B为CD中点,CD=6EF=12米,DE=5米.某时刻甲塔顶A影子恰好落在斜坡底端E处,此时小章测得2米直立杆子的影长为1米.随后小章乘船行驶至湖面点P处,发现点D,F,P三点共线,并在P处测得甲塔底D和乙塔顶T的仰角均为α=26.7°,则塔高AB的长为米;若小章继续向右行驶10米至点Q,且在Q处测得甲、乙两塔顶A,T的仰角均为β=36.8°.若点M,P,Q,N在同一水平线上,TN⊥MN,则甲、乙两塔顶A,T的距离为米.(参考数据:tan26.7°≈0.5,sin26.7°≈0.45,tan36.8°≈0.75,cos36.8°≈0.8)三、解答题(本题有8小题,第17~19题每题8分,第20~22题每题10分,第23题每题12分,第24题14分,共80分)解答应写出文字说明,证明过程或推演步骤.17.计算:(1)tan30°sin60°−cos245°+tan45°;(2)√(tan60∘−1)2+|1−cos60°|−2tan45°·cos30°.18.如图,在△ABC中,△C=150°,AC=4,tanB= 18.(1)求BC的长;(2)利用此图形求tan15°的值(精确到0.1,参考数据:√2=1.4,√3=1.7,√5=2.2)19.如图,在△ABC中,△C=90°,D是BC边上一点,以DB为直径的△O经过AB的中点E,交AD 的延长线于点F,连结EF.(1)求证:△1=△F.,EF=2 √5,求CD的长.(2)若sinB= √5520.某校门前正对一条公路,车流量较大,为便于学生安全通过,特建一座人行天桥.如图,是这座天桥的引桥部分示意图,上桥通道由两段互相平行的楼梯AB、CD和一段平行于地面的平台CB构成.已知△A=37°,天桥高度DH 为5.1米,引桥水平跨度AH 为8.3米. (1)求水平平台BC 的长度;(2)若两段楼梯AB :CD=10:7,求楼梯AB 的水平宽度AE 的长.(参考数据:sin37°≈ 35 ,cos37°≈ 45 ,tan37°≈ 34)21.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.今年首个超强台风“圣帕”第0709号超强台风于8月13日在北纬21.3度,东经123.3度的太平洋上生成,其中心气压925百帕,近中心最大风速55米/秒,生成时还是热带风暴的“圣帕”,在连跳两级后,15日晚8时已“变身”为超强台风.向台湾东部沿海逼近并登陆台湾岛,之后于19日上午将在福建中南部沿海福州一带再次登陆.在这之前,台风中心在我国台湾海峡的B 处,在沿海城市福州A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问: (1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长? (3)该城市受到台风影响的最大风力为几级?22.如图1,在△ABC 中,△ACB=90°,△CAB=30°,△ABD 是等边三角形,E 是AB 的中点,连接CE 并延长交AD 于F .(1)求证:①△AEF△△BEC ;②四边形BCFD 是平行四边形;(2)如图2,将四边形ACBD 折叠,使D 与C 重合,HK 为折痕,求sin△ACH 的值.23.在△ABC 中,△ABC=90°.(1)如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM△△BCN ;(2)如图2,P 是边BC 上一点,△BAP=△C ,tan△PAC= 2√55,求tanC 的值;(3)如图3,D 是边CA 延长线上一点,AE=AB ,△DEB=90°,sin△BAC= 35 , AD AC =25,直接写出tan△CEB 的值. 24.已知:点 C 、D 在 ⊙O 上,弦 AB ⊥CD ,垂足 E ,弦 AF ⊥BC ,垂足为 G ,弦 AF 与 CD 相交于点 H ;(1)如图1,求证: DE=EH;(2)如图2,连接OC,当CD平分∠BCO时,求证:弧AD=弧FD;(3)如图3,在(2)的条件下,半径OC与AF相交于点K,连接BH,若sin∠BHD=23,S△BCH=√5,求线段OK的长.。
东夏初中2014-2015学年第一学期第二单元教学质量检测九 年 级 数 学 试 题(时间:90分钟) 时间:2014年10月17日 等级:一、选择题1、在Rt △ABC 中,∠C =90°,a =1,c =4,则sinA 的值是( )A. 1515B. 13C. 14D. 1542、已知△ABC 中,∠C=90°,tanA ·tan 50°=1,那么∠A 的度数是( )A. 50°B. 40°C. (150 )°D. (140 )°3、在直角三角形中,若各边的长度都缩小5倍,那么锐角∠A 的正弦值 ( )A. 扩大5倍B. 缩小5倍C. 没有变化D. 不能确定4、在Rt△ABC 中,∠C=90°,已知a 和A ,则下列关系式中正确的是( )A. c =α·sinAB. c =α sinAC. c =α·cosBD. c =αcosA5、、李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是( )A.40°B.30°C.20°D.10°6、1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是 ( )A .80米 B. 85米 C. 120米 D. 125米 7、化简(1-sin50°)2 -(1-tan50°)2 的结果为 ( )A. tan50°-sin50°B. sin50°-tan50°C. 2-sin50°-tan50°D. -sin50°-tan50° 8、在Rt△ABC 中,∠C=90°,tan A =3,AC 等于10,则S △ABC 等于 ( )A. 3B. 300C. 503D. 1509、已知∠A+∠B=90°,且cosA=15 ,则cosB 的值为 ( )A. 15B. 45C. 265D. 2510、BD 、CE 是锐角△ABC 的边AC 、AB 上的高,∠A =45º,则△ABC 的面积和△AED 的面积之比为( )A. 2B. 3C.2D. 311.等腰直角三角形斜边为10,则它的直角边为( ).A ....12.在一个锐角三角形中,已知两条边的长为1和3,则第三边的值范围是( ). A .24c << B .23c<≤ C .2c <<.c <<13.如图,在Rt △ABC 中,∠C=90°,D 为BC上的一点,AD=BD=2,AB=AC 的长为( ).A..3 D 1 4.如果∠A 是锐角,且3sin 4B =,那么( ). A .030A ︒<∠<︒ B .3045A ︒<∠<︒C .4560A ︒<∠<︒D .6090A ︒<∠<︒15.若∠B 是Rt△ABC 的一个内角,且有sin B cos 2B 等于( ).A .12 B16.已知1cos 3α=,则3sin tan 4sin 2tan αααα-+的值等于( ). A .47 B .12 C .13D .017.点M (sin -60°,cos 60°)关于x 轴对称的点的坐标是( ).A .12)B .(--12)C .(- 12)D .(-12,-)18.已知1sin cos 8αα⋅=,且4590α︒<<︒,则cos sin αα-的值为( ).A.-.34D .±19.已知α2(110αα-+=,则α等于( ).A .30°B .60°C .30°或60°D .45°或60° 20.等腰三角形中,一腰上的高为1,且这条高与底边的夹角为15°,则它的面积为( ).A .1B .12 D .14二、填空题CB21.如下图:P 是∠α的边OA 上一点,且P 点的坐标为(3,4),则sin α=_____________.22.32可用锐角的余弦表示成__________. 已知tanC=1.,锐角C=__________23.当x = 时,xx x x cos sin cos sin -+无意义.(00<x <90024.已知:tanx=2 ,则sinx+2cosx2sinx -cosx=____________.25.△ABC 的三边是三个连续自然数(AB <BC <CA ),延长BC 到D 使CD =AC ,延长CB 到E 使BE =AB ,则tanD ×tanE 的值是__________。
解直角三角形[例1](2004贵阳)某居民小区有一朝向为正南方向的居民楼(如图12),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时. (1)问超市以上的居民住房采光是否有影响,为什么?(2)若要使超市采光不受影响,两楼应相距多少米?(结果保留整数,参考数据:sin32º≈53100 ,cos32≈106125 ,tan32º≈58)[例2](2004海口)雄伟壮观的“千年塔”屹立在海口市西海岸带状公园的“热带海洋世界”.在一次数学实践活动中,为了测量这座“千年塔”的高度,雯雯在离塔底139米的C 处 C 与塔底B 在同一水平线上),用高1.4米的测角仪CD 测得塔顶A 的仰角α=43°(如图),求这座“千年塔”的高度AB (结果精确到0.1米).(参考数据:tan43°≈0.9325,cot43°≈1.0724)[例3](2004重庆)如图,点A 是一个半径为300米的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通.经测得∠ABC=45°,∠ACB=30°,问此公路是否会穿过该森林公园?请通过计算进行说明. 〖考题训练〗1.(2004深圳)如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30º夹角,这棵大树在折断前的高度为A .10米B .15米C .25米D .30米2.(2005徐州)21.(A 类)如图1,在与旗杆AB 相距20米的C 处,用高1.20米的测角仪测得旗杆顶端B 的仰角α=30°.求旗杆AB 的高(精确到0.1米). (B 类)如图9,在C 处用高1.20米的测角仪测得塔AB 顶端B 的仰角α=30º,向塔的方向前进20米到E 处,又测得塔顶端B 的仰角β=45°.求塔AB 的高(精确到0.1米).我选做______________类题,解答如下:3.(2004大连)如图5,某校自行车棚的人字架棚顶为等腰三角形, D 是AB 的中点,中柱CD=1米,∠A=27°, 求跨度AB 的长(精确到0.01米)。
第一章解直角三角形 单元测试题(满分100分;时间:90分钟)一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )1. 如果三角形满足一个角是另一个角的4倍,那么我们称这个三角形为“实验三角形”,下列各组数据中,能作为一个“实验三角形”三边长的一组是( )A.1,1,√2B.1,1,√3C.1,2,√3D.1,2,32. 如图,△ABC 中,∠B =90∘,BC =2AB ,则cos A =( )A.√52B.12C.2√55D.√553. 如图,在△ABC 中,∠C =90∘,sin A =35,则BC AC 等于( )A.34B.43C.35D.454. 在△ABC 中,∠C =90∘,如果tan A =34,那么sin B 的值等于( ) A.53 B.35 C.54 D.455. cot β=√33,则锐角β等于( )A.0∘B.30∘C.45∘D.60∘6. 如图是一台54英寸的大背投彩电放置在墙角的俯视图.设∠DAO=α,彩电后背AD平行于前沿BC,且与BC的距离为55cm,若AO=100cm,则墙角O到前沿BC的距离OE是()A.(55+100tanα)cmB.(55+100sinα)cmC.(55+100cosα)cmD.以上答案都不对7. 如果某人沿坡度为1:3的斜坡向上行走a米,那么他上升的高度为()A.√1010a米 B.√10a米 C.a3米 D.3a米8. 如图是一台54英寸的大背投彩电放置在墙角的俯视图(其中ABCD是矩形).设∠ADO=α,彩电后背AD与前沿BC的距离为60cm,若AO=100cm,则墙角O到前沿BC的距离OE是()A.(60+100sinα)cmB.(60+100cosα)cmC.(60+100tanα)cmD.(60−100sinα)cm9. 某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45∘,再往摩天轮的方向前进50m至D处,测得最高点A的仰角为60∘.问摩天轮的高度AB约是()米(结果精确到1米,参考数据:√2≈1.41,√3≈1.73)A.120B.117C.118D.119二、填空题(本题共计11 小题,每题3 分,共计33分,)10. 如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ;②sinα>sinβ;③cosα>cosβ,正确的结论为________(填序号).11. 如图,在一次测绘活动中,某同学站在点A观测放置于B,C两处的标志物,数据显示点B在点A南偏东75∘方向20米处,点C在点A南偏西15∘方向20米处,则点B与点C的距离为________米..AC上有一点E,满足AE:CE= 12. 如图,已知AD是等腰△ABC底边上的高,且tan B=342:3.那么tan∠ADE的值是________.13. 如果在某建筑物的A处测得目标B的俯角为37∘,那么从目标B可以测得这个建筑物的A 处的仰角为________.14. 计算:sin60∘⋅cos30∘−tan45∘=________.15. 如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD与灯柱BC成120∘角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD=√3米,则路灯的灯柱BC高度应该设计为________米.(计算结果保留根号).16. 茗茗在坡度为1:√3的坡面上走了100m,则茗茗上升了________m.17. 如图,我国一渔政船在A处,发现正东方向B处有一可疑船只,正以16海里/小时速度向西北方向航行,我渔政船立即往北偏东60∘方向航行,1.5小时后,在C处截获可疑船只,则我渔政船的航行路程AC=________海里(结果保留根号).18. 在Rt△ABC中,∠C=90∘,sin A=1,那么cos A=________.219. 如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则sin A=________.20. 动手操作:今有一副三角板(如图1),中间各有一个直径为4cm的圆洞,现将三角形a的30∘角的那一头插入三角板b的圆洞内(如图2),则三角板a通过三角板b的圆洞的那一部分的最大面积为________cm2(不计三角板的厚度).三、解答题(本题共计6 小题,共计60分,)−√3⋅tan30∘.21. 计算:cos245∘+cos302sin60+122. 已知电线杆AB直立于地面,它的影子恰好照在土坡的坡面CD和地面BC上.如果CD与地面成45∘,∠A=60∘,CD=4√2米,BC=(4√3−4)米,求电线杆AB的长.23. 某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A处测得大楼部分楼体CD的顶端C点的仰角为45∘,底端D点的仰角为30∘,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为60∘(如图②所示),求大楼部分楼体CD的高度为多少米?24. 在旧城改造中,要拆除一烟囱AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在从离B点21米远的建筑物CD顶端C测得A点的仰角为45∘,到B点的俯角为30∘,问离B点30米远的保护文物是否在危险区内?(√3约等于1.732)25. 如图,已知“中国渔政310”船(A)在南海执行护渔任务,接到陆地指挥中心(P)命令,得知出事渔船(B)位于陆地指挥中心西南方向,位于“中国渔政310”船正南方向,“中国渔政310”船位于陆地指挥中心北偏西60∘方向,距离为80海里的地方.而“中国渔政310”船最大航速为20海里/时.根据以上信息,请你求出“中国渔政310”船接到命令后赶往渔船出事地点最少需要多少时间(结果保留根号)?26. 我区在修筑渭河堤防工程时,欲拆除河岸边的一根电线杆AB.如图,已知距电线杆AB 水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡度为1:0.5,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30∘,D、E之间的宽是2米,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将DE段封止?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】B【解答】解:A、若三边为1,1,√2,由于12+12=(√2)2,则此三边构成一个等腰直角三角形,所以这个三角形不是“实验三角形”,所以A选项错误;B、由1,1,√3能构成,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30∘,顶角为120∘,所以这个三角形是“实验三角形”,所以B选项正确;C、若三边为1,2,√3,由于12+(√3)2=22,则此三边构成直角三角形,最小角为30∘,所以这个三角形不是“实验三角形”,所以C选项错误;D、由1,2,3不能构成三角形,所以D选项错误.故选B.2.【答案】D【解答】∵∠B=90∘,BC=2AB,∴AC=√AB2+BC2=√AB2+(2AB)2=√5AB,∴cos A=ABAC =√5AB=√55.3.【答案】A【解答】解:∵sin A=35,设a=3x,则c=5x,结合a2+b2=c2得b=4x;∴tan A=BCAC =ab=3x4x=34,故选A.4.【答案】D【解答】解:由tan A=34,可设∠A的对边是3k,∠A的邻边是4k.则根据勾股定理,斜边是5k.∴sin B=4.故选D.5.【答案】D【解答】解:∵cotβ=√33,β为锐角,∴β=60∘.故选D.6.【答案】B【解答】解:设OE、AD相交于F,则EF=55,在直角三角形AFO中,∵∠DAO=α,AO=100cm,∴OF=100sinα,∵EF=55,∴OE=55+100sinαOE=55+100sinα.故选B.7.【答案】A【解答】解:如图:根据题意得:AC=a,i=1:3,∴i=AECE =13.设AE=x米,则CE=3x米,∴AC=√AE2+CE2=√10x(米),∴√10x=a,解得:x=√1010a,∴AE=√1010a米.即他上升的高度为√1010a米.故选A.8.【答案】B【解答】解:∵△AOD是直角三角形,∴∠OAD+∠ODA=90∘,∵△AOF是直角三角形,∴∠OAD+∠AOF=90∘,∴∠AOF=∠ADO=α,在Rt△AOF中,OF=AO⋅cosα=100cosα,∵EF=CD=60cm,∴OE=EF+OF=(60+100cosα)cm.故选B.9.【答案】C【解答】解:在Rt△ABC中,由∠C=45∘,得AB=BC,在Rt△ABD中,∵tan∠ADB=tan60∘=ABBD,∴BD=ABtan60∘=√3=√33AB,又∵CD=50m,∴BC−BD=50,即AB−√33AB=50,解得:AB≈118.即摩天轮的高度AB约是118米.故选:C.二、填空题(本题共计11 小题,每题 3 分,共计33分)10.【答案】①②【解答】解:根据图形得:∠α>∠β,∴tanα>tanβ,sinα>sinβ,cosα<cosβ.∴①②正确.故答案为①②.11.【答案】20√2【解答】解:根据题意得:∠BAC=90∘,AB=AC=20米,在R t△ABC中,BC=√AC2+AB2=√202+202=20√2,故答案是:20√2.12.【答案】89【解答】解:作EF⊥AD于F,如图,∵△ABC为等腰三角形,AD为高,∴∠B=∠C,∴tan C=34=ADDC设AD=3t,DC=4t,∴AC=√AD2+CD2=5t,而AE:CE=2:3,∴AE=2t,∵EF // CD,∴△AEF∽△ACD,∴EFCD =AFAD=AEAC,即EF4t=AF3t=2t5t,∴AF=65t,EF=85t,∴FD=AD−AF=95t,在Rt△DEF中,tan∠FDE=EFFD =85t95t=89∴tan∠ADE=89.故答案为89.13.【答案】37∘【解答】解:如图,∵某建筑物的A处测得目标B的俯角为37∘,∴目标B可以测得这个建筑物的A处的仰角为37∘,故答案为:37∘14.【答案】−1 4【解答】解:sin60∘⋅cos30∘−tan45∘=√32⋅√32−1=−14.故答案为:−14.15.8√3【解答】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90∘,∠P=30∘,OB=10米,CD=√3米,∴在直角△CPD中,DP=DC⋅tan60∘=3米,PC=CD÷sin30∘=2√3(米),∵∠P=∠P,∠PDC=∠B=90∘,∴△PDC∽△PBO,∴PDPB =CDOB,∴PB=PD⋅OBCD =3×10√3=10√3(米),∴BC=PB−PC=10√3−2√3=8√3(米).故答案为:8√3.16.【答案】50【解答】解:根据题意画图:AB=100,tan B=ACBC =1√3,设AC=x,BC=√3x,则x2+(√3x)2=1002,解得x=50,答:茗茗上升了50m.故答案为:50.17.24√2【解答】解:如图,作CD⊥AB于点D,垂足为D,∵在直角三角形BCD中,BC=16×1.5=24海里,∠CBD=45∘,∴CD=BC⋅sin45∘=24×√22=12√2海里,∴在直角三角形ACD中,AC=CDsin30∘=12√2×2=24√2海里,故答案为:24√2.18.【答案】√32【解答】∵在Rt△ABC中,∠C=90∘,sin A=12,∴∠A=30∘,∴cos A=√32.19.【答案】35【解答】解:如图所示:作CD⊥AB,则DC=3,AC=5,故sin A=DCAC =35.故答案为:35.20.【答案】 14.9【解答】解:如图,BC =4,∠BAC =30∘,作AD ⊥BC 于点D ,当点D 是BC 的中点时,△ABC 的面积最大,此时由中垂线的性质知,AB =AC ,∠B =75∘,S △ABC =12BC ⋅BD tan 75∘=12×4×2×3.732≈14.9cm 2.-----------------------故答案为:14.9三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 )21.【答案】原式=(√22)2+√322×√32+1−√3×√33=12+3−√34−1 =1−√34.【解答】原式=(√22)2+√322×√32+1−√3×√33=12+3−√34−1 =1−√34.22.【答案】解:如图,延长AD交BC的延长线于点E,作DF⊥BE于F.∵在Rt△DCF中,∠CFD=90∘,∠DCF=45∘,CD=4√2,∴CF=DF=4.∵在Rt△DEF中,∠EFD=90∘,∠E=30∘,∴EF=DFtan∠E =4√33=4√3,∴BE=BC+CF+FE=4√3−4+4+4√3=8√3.∵在Rt△ABE中,∠B=90∘,∠E=30∘,∴AB=BE tan30∘=8√3×√33=8.故电线杆AB的长为8米.【解答】解:如图,延长AD交BC的延长线于点E,作DF⊥BE于F.∵在Rt△DCF中,∠CFD=90∘,∠DCF=45∘,CD=4√2,∴CF=DF=4.∵在Rt△DEF中,∠EFD=90∘,∠E=30∘,∴EF=DFtan∠E =4√33=4√3,∴BE=BC+CF+FE=4√3−4+4+4√3=8√3.∵在Rt△ABE中,∠B=90∘,∠E=30∘,∴AB=BE tan30∘=8√3×√33=8.故电线杆AB的长为8米.23.【答案】解:设楼高CE为x米,∵ 在Rt△AEC中,∠CAE=45∘,∴ AE=CE=x.∵ AB=20,∴ BE=x−20.在Rt△CEB中,CE=BE⋅tan60∘=√3(x−20),∴√3(x−20)=x,解得:x=30+10√3(米).=10√3+10,在Rt△DAE中,DE=AE⋅tan30∘=(30+10√3)×√33∴ CD=CE−DE=30+10√3−(10√3+10)=20(米).答:大楼部分楼体CD的高度为20米.【解答】解:设楼高CE为x米,∵ 在Rt△AEC中,∠CAE=45∘,∴ AE=CE=x.∵ AB=20,∴ BE=x−20.在Rt△CEB中,CE=BE⋅tan60∘=√3(x−20),∴√3(x−20)=x,解得:x=30+10√3(米).=10√3+10,在Rt△DAE中,DE=AE⋅tan30∘=(30+10√3)×√33∴ CD=CE−DE=30+10√3−(10√3+10)=20(米).答:大楼部分楼体CD的高度为20米.24.【答案】文物在危险区内.解:在Rt△AEC中,∠ACE=45∘,则CE=EA,∵DB=CE=21m,∴DB=EA=21m,在Rt△CEB中,∠BCE=30∘,则tan30∘=BE,即BE=EC tan30∘,EC=7√3m,∴BE=21×√33∴AB=AE+EB=(21+7√3)m,∵AB=(21+7√3)>30,∴文物在危险区内.【解答】此题暂无解答25.【答案】“中国渔政310”船接到命令后赶往渔船出事地点最少需要(2+2√3)小时.【解答】解:过点P作PD⊥AB于点D.在Rt△APD中,∵AP=80海里,∠APD=90∘−60∘=30∘,AP=40海里,PD=√3AD=40√3海里.∴AD=12在Rt△BDP中,PD=40√3海里,∠B=45∘,∴BD=PD=40√3海里,∴AB=AD+BD=(40+40√3)海里,=2+2√3(小“中国渔政310”船接到命令后赶往渔船出事地点最少需要的时间为40+40√320时).26.【答案】解:∵i=1:0.5,CF=2米=2,∴tan∠CDF=CFDF∴DF=1米,BG=2米,∵BD=14米,∴BF=GC=15米.=5√3≈8.66(米),在Rt△AGC中,AG=15tan30∘=15×√33∴AB=AG+BG=8.66+2=10.66米,BE=BD−DE=14−2=12(米),∵10.66<12,∴没有必要封止DE.【解答】解:∵i=1:0.5,CF=2米=2,∴tan∠CDF=CFDF∴DF=1米,BG=2米,∵BD=14米,∴BF=GC=15米.=5√3≈8.66(米),在Rt△AGC中,AG=15tan30∘=15×√33∴AB=AG+BG=8.66+2=10.66米,BE=BD−DE=14−2=12(米),∵10.66<12,∴没有必要封止DE.。
浙教版初中数学九年级下册第一单元《解直角三角形》(困难)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,已知△ABC中,∠B=90°,D,E分别为BC,AC的中点,连结DE,过D作AC的平行线与∠CAB的角平分线交于点F,连结EF,若EF⊥DF,AC=2,则∠DEF的正弦值为( )A. √5−12B. √5+14C. √5−14D. 3+√542. 在△ABC中,已知tanA=tanB,则下列说法不正确的是( )A. 边AB上任意一点P到边AC、BC的距离之和等于点B到AC的距离B. 边AB的垂直平分线是△ABC的对称轴C. △ABC的外心可能在△ABC内部、边上或外部D. 如果△ABC的周长是l,那么BC=l−2AB3. 如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点M处,折痕为AP,再将△PCM,△ADM分别沿PM,AM折叠,此时点C,D落在AP上的同一点N处.给出以下结论:①M是CD的中点;②AD//BC;③∠DAM+∠CPM=90∘;④当AD=CP时,ABCD =√32.其中正确的个数为( )A. 1B. 2C. 3D. 44. 在Rt△ABC中,∠C=90°,cosB=12,则sinA的值为( )A. 12B. √22C. √32D. √35. 如图,AB⏜是半径为1的半圆弧,△AOC 为等边三角形,点D 是BC ⏜上的一动点、则△COD 的面积S 的最大值是 ( )A. √34B. √33C. √32D. 126. 如图,Rt △ABC 中,∠BAC =90∘,cosB =14,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使∠ADE =∠B ,连接CE ,则CEAD的值为( )A. 32B. √3C. √152D. 27. 已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是( ) A. 2B. 1C. √3D. √328. 如图,在正方形ABCD 中,AB =2,点E 是BC 边的中点,连接DE ,延长EC 至点F ,使得EF =DE ,过点F 作FG ⊥DE ,分别交CD 、AB 于N 、G 两点,连接CM 、EG 、EN ,下列正确的是:①tan∠GFB =12;②MN =NC ;③CMEG =12;④S 四边形GBEM =√5+12( )A. 4B. 3C. 2D. 19. 四巧板是一种类似七巧板的传统智力玩具,它是由一个长方形按如图1分割而成,这几个多边形的内角除了有直角外,还有45°、135°、270°角.小明发现可以将四巧板拼搭成如图2的T字形和V字形,那么T字形图中高与宽的比值ℎl为( )A. √2B. √2+12C. 4+√24D. 3√2210. 如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于( )A. 12B. 13C. 14D. 2311. 如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②△OAP∽△EAC;③四边形OECF的面积是正方形ABCD面积的14;④AP−BP=√2OP;⑤若BE:CE=2:3,则tan∠CAE=47.其中正确的结论有( )个A. 2个B. 3个C. 4个D. 5个12. 如图,建筑工地划出了三角形安全区(△ABC),一人从A点出发,沿北偏东53°方向走50m 到达C点,另一人从B点出发,沿北偏西53°方向走100m到达C点,则点A与点B相距(tan53°=43)( )A. 30√15mB. 30√17mC. 40√10mD. 130m第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有______.14. 如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为______.,BE=2,则该菱形的面积是______.15.如图,在菱形ABCD中,DE⊥AB,cosA=3516.如图,在矩形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AH:AE=4:3,四边形EFGH的周长是40cm,则矩形ABCD的面积是______cm2.三、解答题(本大题共9小题,共72分。
青岛版九年级上册数学第2章解直角三角形含答案一、单选题(共15题,共计45分)1、已知sin6°=a,sin36°=b,则sin26°=()A.a 2B.2aC.b 2D.b2、等腰三角形的底角为15,腰长a为,则此等腰三角形的底长为()A. B. C. D. a3、如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A. B. C. D.4、如图,⊙A经过点E、B、C、O,且C(0,8),E(﹣6,0),O(0,0),则cos∠OBC的值为()A. B. C. D.5、如图,水库大坝的横断面为梯形,坝顶宽6米,坝高8米,斜坡AB的坡角为45°,斜坡CD的坡度为1:3,则坝底宽BC为()A.36米B.72米C.78米D.38米6、如图,内接于⊙ ,是⊙ 的直径,,平分交⊙ 于,交于点,连接,则的值等于().A. B. C. D.7、在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,c=3a,则sinA的值是()A. B. C.3 D.以上都不对8、计算的值为()A. B. C.1 D.9、如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s 的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ 的最大面积是()A.18cm 2B.12cm 2C.9cm 2D.3cm 210、如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°11、三角形在方格纸中的位置如图所示,则tan的值是()A. B. C. D.12、Rt△ACB中,∠C=90°,AB=5,BC=4,则tan∠A= ( )A. B. C. D.13、如图,过点,点C是上的一点,连接,则的度数为()A. B. C. D.14、下列等式:①sin30°+sin30°=sin60°;②sin25°=cos65°;③cos45°=sin45°;④cos62°=sin18°.其中正确的个数是()A.1B.2C.3D.415、如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35°C.D.二、填空题(共10题,共计30分)16、如图,一个斜坡长m,坡顶离水平地面的距离为m,那么这个斜坡的坡度为________.17、如图,在边长为6的等边△ABC中,点D在边AB上,且AD=2,长度为1的线段PQ在边AC上运动,则线段DP的最小值为________,四边形DPQB面积的最大值为________.18、如图,已知在Rt△ABC中,∠ACB=90°,,BC=8,点D在边BC上,将△ABC沿着过点D的一条直线翻折,使点B落在AB边上的点E处,联结CE、DE,当∠BDE=∠AEC时,则BE的长是________.19、如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB =500米,则这名滑雪运动员的高度下降了________米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)20、如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC于点D,则AC的长为________,sin∠ABD的值为________.21、规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此判断下列等式成立的是________(写出所有正确的序号)①cos(﹣60°)=﹣;②sin75°= ;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny.22、等腰三角形底边长10cm,周长为36cm,则一底角的正切值为________23、某处欲建一观景平台,如图所示,原设计平台的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°,则调整后楼梯AD的长为________m.(结果保留根号)24、如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.25、如图,已知弧AB所在的圆O半径为2,菱形CMON的顶点C在弧AB上,顶点M,在弦AB上,连接OA,OB,当AM=OM时,则阴影部分的面积是________.三、解答题(共5题,共计25分)26、计算:27、已知:如图,为了躲避台风,一轮船一直由西向东航行,上午点,在处测得小岛的方向是北偏东,以每小时海里的速度继续向东航行,中午点到达处,并测得小岛的方向是北偏东,若小岛周围海里内有暗礁,问该轮船是否能一直向东航行?28、在△ABC中,sinB= ,AB=15,∠C=45°,求△ABC的周长(结果保留根号).29、如图是春运期间的一个回家场景。
浙教版2022-2023学年九下数学第1章 解直角三角形 培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.在Rt△ABC 中,△C =90°,各边都扩大5倍,则tanA 的值( ) A .不变 B .扩大5倍 C .缩小5倍 D .不能确定 【答案】A【解析】∵三角函数值与对应边的比值有关, ∴各边都扩大5倍后,tanA 的值不变. 故答案为:A.2.如图,冬奥会滑雪场有一坡角为20°的滑雪道,滑雪道的长AC 为100米,则BC 的长为( )米.A .100cos20° B .100cos20° C .100sin20° D .100sin20° 【答案】B【解析】∵△B=90°,△C=20°,∴cos∠C =BCAC,∴BC=AC·cos∠C =100cos20°. 故答案为:B. 3.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为( )米A .4√3B .6√5C .12√5D .24【答案】B【解析】如图,过B 作BE△AD 于点E ,∵斜面坡度为1:2,AE=12, ∴BE=6,在Rt△ABC 中, AB =√AE 2+BE 2=√122+62=6√5 . 故答案为:B .4.如图所示,在边长相同的小正方形组成的网格中,两条经过格点的线段相交所成的锐角为α,则夹角α的正弦值为( )A .12B .√22C .√32D .1【答案】B【解析】如图,设AB 与CD 交于点E ,过点C 作CF△AB ,连接DF ,∵CF△AB ,∴∠C =∠AEC =α , 设小正方形的边长为1,根据勾股定理得: CD 2=12+32=10 , DF 2=12+22=5 , CF 2=12+22=5 ,∴CF 2+DF 2=CD 2 ,DF=CF , ∴△CDF 为等腰直角三角形, ∴△C=45°,∴sinC =√22,∴夹角α的正弦值为 √22.故答案为:B.5.鹅岭公园是重庆最早的私家园林,前身为礼园,是国家级AAA 旅游景区,园内有一瞰胜楼,登上高楼能欣赏到重庆的优美景色.周末,李明同学游览鹅岭公园,如图,在点A 观察到瞰胜楼楼底点C 的仰角为12°,楼顶点D 的仰角为13°,测得斜坡BC 的坡面距离BC = 510米,斜坡BC 的坡度 i =8:15 .则瞰胜楼的高度CD 是( )米.(参考数据:tan12°≈0.2,tan13°≈0.23)A .30B .32C .34D .36 【答案】D【解析】由斜坡BC 的坡度i =8:15 ,设 CE =8x 、 BE =15x , 在 Rt △BCE 中,BC =√BE 2+CE 2=√(8x)2+(15x)2=17x , 由 BC =17x =510 求得 x =30 , ∴CE =240 米、 BE =450 米,在 Rt △ACE 中,AE =CE tan∠CAE =240tan12°=1200 (米), 在 Rt △ADE 中,DE =AEtan∠DAE =1200×tan13°=276 (米), 则 DC =DE −CE =276−240=36 (米). 故答案为:D.6.若规定 sin(α−β)=sinαcosβ−cosαsinβ ,则sin15°=( ) A .√2−12 B .√2−√64 C .√3−12 D .√6−√24【答案】D【解析】由题意得,sin15°=sin (45°-30°) =sin45°cos30°-cos45°sin30°=√22×√32−√22×12=√6−√24故答案为:D7.如图,在菱形ABCD 中,DE△AB ,cosA =35,AE =3,则tan△DBE 的值是( )A .12B .2C .√52D .√55【答案】B【解析】∵DE△AB ,cosA =35,AE =3,∴AE AD =3AD =35,解得:AD =5. ∴DE = √AD 2−AE 2=√52−32=4, ∵四边形ABCD 是菱形,∴AD=AB=5, ∴BE =5﹣3=2,∴tan△DBE = DE BE =42=2.故答案为:B.8.如图,在△ABC 中,△C=90°,△A=30°,D 为AB 上一点,且AD :DB=1:3,DE△AC 于点E ,连接BE ,则tan△CBE 的值等于( )A .B .C .D .【答案】C【解析】设AB=4a ,∵在△ABC 中,△C=90°,△A=30°,D 为AB 上一点,且AD :DB=1:3, ∴BC=2a ,AC=2 √3 a ,AD :AB=1:4, ∵△C=90°,DE△AC , ∴△AED=90°, ∴△AED=△C , ∴DE△BC ,∴△AED△△ACB ,∴AE AC =AD AB ,∴AE AC =14 ,∴AE= 14×2√3a =√32a ,∴EC=AC ﹣AE= 2√3a −√32a =3√32a ,∴tan△CBE= CE CB =3√32a 2a =3√34,故答案为:C .9.如图,已知扇形OAB 的半径为r ,C 是弧AB 上的任一点(不与A ,B 重合),CM△OA ,垂足为M ,CN△OB ,垂足为N ,连接MN ,若△AOB = α ,则MN 可用 α 表示为( )A .rsinαB .2rsin α2 C .rcosα D .2rcos α2【答案】A【解析】如图,连接OC 交MN ,延长OM 、ON 交于一点D ,∵∵△CMD=△DNO=90°, ∴△D=△D ,∴△CMD△△OND ,∴DM DN =DC DO ,即DM DC =DN DO , ∵△D=△D ,∴△DMN△△DCO , ∴MN CO =DN OD, ∵sin△AON=DN OD ,∴sin△AON=MN CO, 即sin α=MN r,∴MN= rsinα , 故答案为:A.10.如图,在△ABC 中,AB =AC ,BC =8,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D.设BD =x ,tan△ACB =y ,则x 与y 满足关系式( )A .x ﹣y 2=3B .2x ﹣y 2=6C .3x ﹣y 2=9D .4x ﹣y 2=12【答案】C【解析】过A 作AQ△BC 于Q ,过E 作EM△BC 于M ,连接DE ,∵BE 的垂直平分线交BC 于D ,BD=x , ∴BD=DE=x ,∵AB=AC ,BC=8,tan△ACB=y , ∴EM MC =AQCQ =y ,BQ=CQ=4, ∴AQ=4y ,∵AQ△BC ,EM△BC , ∴AQ ∥EM ,∵E 为AC 中点,∴CM=QM=12CQ=2,∴EM=2y ,∴DM=8-2-x=6-x ,在Rt△EDM 中,由勾股定理得:x 2=(2y )2+(6-x )2, 即3x -y 2=9. 故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,正方形网格中,点A ,O ,B ,E 均在格点上.△O 过点A ,E 且与AB 交于点C ,点D 是△O 上一点,则tan∠CDE = .【答案】12【解析】由题意可得:△CDE =△EAC , 则tan△CDE =tan△EAC =BE AE =24=12.故答案为:12.12.如图,已知BD 是△ABC 的外接圆直径,且BD =13,tanA =512,则BC = .【答案】5【解析】如图所示,连接C ,D ,由图可知 ∠A =∠D (同弧所对的圆周角相等), 且 ∠BCD =90°(直径所对的圆周角等于90°),∵tanA =512,∴sinA =513,∴sinA =sinD =513,∴BC =BD ⋅sinD =13×513=5,故答案为:5.13.如图所示,在四边形 ABCD 中, ∠B =90° , AB =2 , CD =8 , AC ⊥CD ,若 sin∠ACB =13,则 cos∠ADC = .【答案】45【解析】∵∠B =90° , sin∠ACB =13,∴AB AC =13 ,∵AB =2 ,∴AC =6 ,∵AC ⊥CD ,∴∠ACD =90° ,∴AD =√AC 2+CD 2=√62+82=10 ,∴cos∠ADC =DC AD =810=45. 14.如图,在Rt△ABC 中,△C =90°,AM 是BC 边上的中线,sin△CAM = 35,则tan△B = .【答案】23【解析】Rt△AMC 中,sin△CAM=MC AM =35, 设MC=3x ,AM=5x ,则AC= √AM 2−MC 2 =4x . ∵M 是BC 的中点,∴BC=2MC=6x . 在Rt△ABC 中,tan△B= AC BC =4x 6x =23.故答案为 23.15.如图,在5×5的正方形网格中,点A ,B ,C ,D 为格点,AB 交CD 于点O ,则tan△AOC = .【答案】12【解析】如图:将线段AB 向右平移至FD 处,使得点B 与点D 重合,连接CF ,∴△AOC =△FDC ,设正方形网格的边长为单位1,根据勾股定理可得:CF =√22+12=√5,CD =√42+22=2√5, DF =√32+42=5,∵(√5)2+(2√5)2=52, ∴CF 2+CD 2=DF 2, ∴△FCD =90°,∴tan∠AOC =tan∠FDC =CF CD =√52√5=12.故答案为:12.16.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为 66cm ,中轴轴心 C 到地面的距离 CF 为 33cm ,后轮中心 A 与中轴轴心 C 连线与车架中立管 BC 所成夹角 ∠ACB =72° ,后轮切地面 l 于点 D .为了使得车座 B 到地面的距离 BE 为 90cm ,应当将车架中立管 BC 的长设置为 cm .(参考数据: sin72°≈0.95,cos72°≈0.31,tan72°≈3.1)【答案】60【解析】∵车轮的直径为 66cm ∴AD=33cm ∵CF=33cm ∴AC△DF∴EH=AD=33cm ∵BE△ED ∴BE△AC∵BH=BE -EH=90-33=57cm∴△sinACB=sin72°= BH BC =57BC=0.95∴BC=57÷0.95=60cm 故答案为60.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤. 17.求下列各式的值(1)sin45°cos45°+4tan30°sin60° ;(2)cos60°−2sin 245°+23tan60°−sin30° .【答案】(1)解: sin45°cos45°+4tan30°sin60°=√22×√22+4×√33×√32=12+2 =52. (2)解:cos60°−2sin 245°+23tan 260°−sin30° .=12 -2×(√22)2+23×(√3)2-12 =12-1+2-12 =1. 18.在一次课外活动中,某数学兴趣小组测量一棵树CD 的高度.如图所示,测得斜坡BE 的坡度i =1:4(即AB :AE =1:4),坡底AE 的长为8米,在B 处测得树CD 顶部D 的仰角为30°,在E 处测得树CD 顶部D 的仰角为60°.(1)求AB的高;(2)求树高CD.(结果保留根号)【答案】(1)解:作BF△CD于点F,根据题意可得ABCF是矩形,∴CF=AB,∵斜坡BE的坡度i=1:4,坡底AE的长为8米,∴AB=2(米),(2)解:∵AB=2,∴CF=2,设DF=x米,在Rt△DBF中,tan∠DBF=DF BF,则BF=DFtan30∘=√3x(米),在直角△DCE中,DC=x+CF=(2+x)米,在直角△DCE中,tan∠DEC=DC EC∴EC=√33(x+2)米.∵BF-CE=AE,即√3x−√33(x+2)=8.解得:x=4√3+1,则CD=4√3+1+2=(4√3+3)米.答:CD的高度是((4√3+3))米.19.如图,将一个直角三角形形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩底下,可以使木桩向上运动.如果楔子底面的斜角为10°,其高度AC为1.8厘米,楔子沿水平方向前进一段距离(如箭头所示),留在外面的楔子长度HC为3厘米.(1)求BH的长;(2)木桩上升了多少厘米?(sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,结果精确到0.1厘米)【答案】(1)解:在Rt△ABC中,∠ABC=10°,tan∠ABC=AC BC,则BC=ACtan∠ABC≈1.80.18=10(cm),∴BH=BC−HC=7(cm),(2)解:在 Rt △BPH 中, ∠ABC =10° , tan∠ABC =PHBH, 则 PH =BH ⋅tan∠ABC ≈7×0.18≈1.3(cm) , 答:木桩上升了大约 1.3 厘米.20.图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径MN ⌢的长度.(结果保留π)【答案】(1)解:过B 作BE△AC 于E ,则AE=AC ﹣BD=0.66米﹣0.26米=0.4米,△AEB=90°,∴AB =AE sin∠ABE =0.4sin20°≈1.17(米).(2)解:△MON=90°+20°=110°,∴弧MN 的长度是110π×0.8180=2245π米. 21.图1,图2分别是某型号拉杆箱的实物图与平面示意图,具体信息如下:水平滑杆 DE 、箱长 BC 、拉杆 AB 的长度都相等,即 DE =BC =AB ,点 B , F 在线段 AC 上,点 C 在 DE 上,支撑点 F 到箱底 C 的距离 FC =32cm ,CE : CD =1 : 5 , DF ⊥AC 于点 F , ∠DCF =50° ,请根据以上信息,解决下列问题:(1)求水平滑杆 DE 的长度;(2)求拉杆端点 A 到水平滑杆 DE 的距离 ℎ 的值 ( 结果保留到 1cm).( 参考数据:sin50°≈0.77 , cos50°≈0.64 , tan50°≈1.19) . 【答案】(1)解: ∵DF ⊥AC 于点 F , ∠DCF =50° ,在 Rt △CDF 中, cos50°=CFCD,∴CD =CF cos50∘=320.64≈50(cm) ,∵CE : CD =1 : 5 , ∴DE =60cm ;(2)解:如图,过A 作 AG ⊥ED ,交 ED 的延长线于G ,∵DE =BC =AB , DE =60cm , ∴AC =120cm ,在 Rt △ACG 中, sin∠DCF =AGAC,∴ℎ=AG =AC ⋅sin50°=120×0.77=92.4≈92(cm) .22.如图,在等腰三角形ABC 中,△ABC =90°,点D 为AC 边上的中点,过点D 作DE△DF ,交AB 于点E ,交BC 于点F.(1)求证:DE =DF(2)若AE =4,FC =3,求cos△BEF 的值. 【答案】(1)证明:连接BD ,∵ △ABC=90°,D 为AC 边上的中点,∴AD=BD=CD ,△C=△A=△EBD=△FBD=45°,BD△AC ,∵DE△DF ,∴△EDF=△BDC=90°,∴△EDB=△CDF=90°-△BDF , ∴△EDB△△FDC (ASA ), ∴ DE=DF(2)解:∵ △EDB△△FDC ,CF =3, ∴ CF=BE=3,同理AE=BF=4,在Rt△EBF 中,由勾股定理得:EF=√32+42=5,∴ cos△BEF =BF EF =35.23.如图,AB 是△O 的直径,弦CD△AB 于点E ,点P 在△O 上,△1=△BCD .(1)求证:CB△PD ;(2)若BC=3,sin△BPD= 35,求△O 的直径.【答案】(1)证明:∵△D=△1,△1=△BCD,∴△D=△BCD,∴CB△PD;(2)解:连接AC,∵AB是△O的直径,∴△ACB=90°,∵CD△AB,∴BD⌢= BC⌢,∴△BPD=△CAB,∴sin△CAB=sin△BPD= 3 5,即BCAB=35,∵BC=3,∴AB=5,即△O的直径是5.24.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC△AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作△Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若△ABE=△FDE,求EF的值.(3)若AB﹣BO=4,求tan△AFC的值.【答案】(1)解:∵点A(0,8),∴AO=8,∵点D是点C关于点A的对称点,∴AC=AD,∵AC△AB,∴BC=BD,∴∠C=∠ADB,∵以AD为直径作△Q交BD于点E,∴∠AED=90°,∴在△CAO和△DAE中,{∠COA=∠AED=90°∠C=∠ADBAC=AD∴△CAO≌△DAE(AAS),∴AE=AO=8;(2)解:∵△ABE=△FDE,∴AB ∥DF ,∴∠CAB =∠CDF ,又∵∠C =∠C ,∴△CAB ∽△CDF ,∴AB DF =AC CD =12, ∵△ABE =△FDE ,∠AEB =∠FED , ∴△ABE ∽△FDE ,∴AE FE =AB DF =12,即8FE =12, 解得△FE =16;(3)解:∵AB ﹣BO =4,即AB =BO +4, ∵∠AOB =90°,∴在RtΔABO 中,AO 2+OB 2=AB 2,即82+OB 2=(OB +4)2, 解得△OB =6,AB =10,∵∠BEF =90°,∴BE =√AB 2−AE 2=√102−82=6, ∵∠AOB =∠BEF =90°,∠AFO =∠BFE , ∴△AFO ∽△BFE ,∴AO BE =FO EF =86=43, ∴设EF =3x ,OF =4x ,∴BF =4x −6,∴在RtΔBEF 中,BE 2+EF 2=BF 2,即62+(3x)2=(4x −6)2,解得△x =487, ∴EF =3x =1447, ∴tan∠AFC =tan∠EFB =BE EF =61447=724.。
中考数学每日一练:解直角三角形练习题及答案_2020年填空题版答案答案答案答案答案答案2020年中考数学:图形的变换_锐角三角函数_解直角三角形练习题~~第1题~~(2020青浦.中考模拟) 在△ABC 中,∠C =90°,如果tan B =2,AB =4,那么BC =________.考点: 解直角三角形;~~第2题~~(2020湖州.中考模拟) 在△ABC 中,AC=6,点D 为直线AB 上一点,且AB=3BD,直线CD 与直线BC 所夹锐角的正切值为 ,并且CD ⊥AC ,则BC 的长为________.考点: 解直角三角形;~~第3题~~(2020上海.中考模拟) 如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在Rt △AB C 中,∠C=90°,若Rt △ABC 是“好玩三角形”,则tanA=________.考点: 解直角三角形;~~第4题~~(2020松江.中考模拟) 如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米.那么斜面AB 的坡度为________.考点: 解直角三角形;解直角三角形的应用﹣坡度坡角问题;~~第5题~~(2020上海.中考模拟) 如图,在四边形ABCD 中,∠B =∠D =90°,AB =3, BC=2,tanA =,则CD =________.考点: 锐角三角函数的定义;解直角三角形;~~第6题~~(2020虹口.中考模拟) 公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角θ的正切为,那么大正方形的面积是________.考点: 锐角三角函数的定义;解直角三角形;~~第7题~~答案答案答案答案(2020上海.中考模拟) 一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m ,已知木箱高BE=m ,斜面坡脚为30°,则木箱顶端E 距离地面AC 的高度EF 为________m 。
第一章:解直角三角形培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.如图,某地修建的一座建筑物的截面图的高BC =5m ,坡面AB 的坡度为1:3,则AB 的长度为( ) A .10mB .103mC .5mD .53m2.如图,某数学兴趣小组测量一棵树的高度,在点A 处测得树顶C 的仰角为045,在点B 处测得树顶C 的仰角为060,且A ,B ,D 三点在同一直线上,若m AB 16=,则这棵树CD 的高度是( ) A .()m 338-B .()m 338+C .()m 336-D .()m 336+3.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos ∠ADC 的值为( )A .13132 B .13133 C .32 D .35 4.如图,已知△ABC 内接于半径为1的⊙O ,∠BAC=θ(θ是锐角),则△ABC 的面积的最大值为( ) A .cos θ(1+cos θ) B .cos θ(1+sin θ) C .sin θ(1+sin θ) D .sin θ(1+cos θ)5.在中,、均为锐角,且,则是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 6.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为( )(精确到1m .参考数据:,,,)A .28mB .34mC .37mD .46m7.如图,AB 是半圆的直径,ABC ∠的平分线分别交弦AC 和半圆于E 和D ,若2BE DE =,4AB =,则AE 长为( ) A .2B .21+C .6D .4338.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为( )米A .5250600-B .2503600-C .3350350+D .35009.如图,等腰△ABC 的面积为2,AB=AC ,BC=2.作AE ∥BC 且AE=BC.点P 是线段AB 上一动点,连接PE ,过点E 作PE 的垂线交BC 的延长线于点F ,M 是线段EF 的中点.那么,当点P 从A 点运动到B 点时,点M 的运动路径长为( ) A .3B .3C .32D .410.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论:①∠BAE =∠EAF ;②射线FE 是∠AFC 的角平分线;③CF =14CD ;④AF =AB +CF .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.如图,在矩形ABCD 中,22==BC AB ,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD 上的点B '处,线段AB 扫过的面积为12.某校数学兴趣小组开展无人机测旗杆的活动:已知无人机的飞行高度为30m ,当无人机飞行至A 处时,观测旗杆顶部的俯角为30°,继续飞行20m 到达B 处,测得旗杆顶部的俯角为60°,则旗杆的高度约为 m .(参考数据:732.13≈,结果按四舍五八保留一位小数)13.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行m 30到达斜坡的底部点C 处,然后沿斜坡前行m 20到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为030,已知斜坡的斜面坡度3:1=i ,且点A ,B ,C ,D ,在同一平面内,小明同学测得古塔的高度是 .14.如图,在△ABC 中,AC =6,BC =8,点D 、E 分别在AC 、BC 上,点F 在△ABC 内.若四边形CDFE 是边长为2的正方形,则cos ∠ABF =15.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在Rt △ABC 中,∠C=90°,若Rt △ABC 是“好玩三角形”,则tanA=16.如图.点E 在正方形ABCD 的边BC 上,2BE=3CE ,过点D 作AE 的垂线交AB 于F ,点G 为垂足,若FG=3,则EG 的长为三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)计算下列各式:(1)000030cos 45cos 60tan 30cos ⋅- (2)0002030sin 30tan 2345sin 260cos -+-18.(本题8分)如图,在△ABC 中,∠C=90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF .(1)求证:∠1=∠F .(2)若55sin =B ,52=EF ,求CD 的长.19(本题8分)如图,在Rt △ABC 中,∠ACB=90°,AC=BC=3,点D 在边AC 上,且AD=2CD ,DE ⊥AB ,垂足为点E ,联结CE ,求:(1)线段BE 的长;(2)求ECB ∠tan20.(本题10分)如图,某大楼的顶部竖有一块广告牌CD ,小明与同学们在山坡的坡脚A 处测得广告牌底部D 的仰角为53°,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i =1:3,AB =10米,AE =21米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:2≈1.41,3≈1.73,sin53°≈54,cos53°≈53,tan53°≈34) (1)求点B 距水平地面AE 的高度;(2)求广告牌CD 的高度.(结果精确到0.1米)21.(本题10分)如图,“中国海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B 、C 两地相距120海里.(1)求出此时点A 到岛礁C 的距离; (2)若“中海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A ′时,测得点B 在A ′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)22.(本题12分)如图,抛物线y=﹣x 2+6x 与x 轴交于点O ,A ,顶点为B ,动点E 在抛物线对称轴上,点F 在对称轴右侧抛物线上,点C 在x 轴正半轴上,且OC EF //,连接OE ,CF 得四边形OCFE . (1)求B 点坐标;(2)当tan ∠EOC=34时,显然满足条件的四边形有两个,求出相应的点F 的坐标;(3)当0<tan ∠EOC <3时,对于每一个确定的tan ∠EOC 值,满足条件的四边形OCFE 有两个,当这两个四边形的面积之比为1:2时,求tan ∠EOC .23(本题12分).在△ABC 中,∠ABC=90°.(1)如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN ;(2)如图2,P 是边BC 上一点,∠BAP=∠C ,tan ∠PAC =552 ,求C tan 的值; (3)如图3,D 是边CA 延长线上一点,AE=AB ,∠DEB=90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值.。
浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。
浙教版2020九年级数学下册第1章解直角三角形单元综合基础测试题1(附答案详解)1.如图,BC为⊙O的直径,AB=OB.则∠C的度数为()A.30°B.45°C.60°D.90°2.如图所示,△ABC的顶点是正方形网格的格点,则sinB的值为().A.2 B. C. D.13.若Rt△ABC的各边都扩大4倍,得到Rt△A′B′C′,则锐角∠A、∠A′的正弦值的关系为( )A.sin A′=sin A B.4sin A′=sin A C.sin A′=4sin A D.不能确定4.在△ABC中,∠A、∠B都是锐角,且sinA=cosB=12,那么△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.无法确定5.Rt△ABC中,∠C=90°,sinA=12,则tanB的值是( )A.3B.22C.12D.36.如图,在中,,于点,则下列结论不正确的是( ).A.B.C.D.7.如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC 绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为()A .(2,6)或(﹣6,﹣2)B .(6,2)或(﹣6,﹣2)C .(﹣2,﹣6)或(6,2)D .(﹣2,﹣6)或(2,6)8.如图,在一个20米高的楼顶上有一信号塔DC ,某同学为了测量信号塔的高度,在地面的A 处测得信号塔下端D 的仰角为30°,然后他正对塔的方向前进了8米到达B 处,又测得信号塔顶端C 的仰角为45°,CE ⊥AB 于点E ,E 、B 、A 在一条直线上.则信号塔CD 的高度为( )A .203米B .(203-8)米C .(203-28)米D .(203-20)米9.sin45°的值等于( ) A . B .C .D .110.如图,在Rt ABC ∆中,90ACB ︒∠=,CD AB ⊥于点D ,3BC =,4AC =,设BCD α∠=,则tan α等于( )A .43B .34C .35D .4511.如图所示,某地下车库的人口处有一斜坡AB ,其坡度1:1.5i =,则斜坡AB 的长为________.12.如图,在正方形ABCD 中,43AD =把边BC 绕点B 逆时针旋转30°得到线段BP ,连接AP 并延长交CD 于点E ,连接PC ,则三角形PCE 的面积为__________.13.如图已知Rt ABC ∆中,斜边AB 的长为m ,40B ∠=,则直角边AC 的长是_________.14.如图,已知矩形ABCD ,AD=9,AB=6,若点G 、H 、M 、N 分别在AB 、CD 、AD 、BC 上,线段MN 与GH 交于点K .若∠GKM=45°,NM=35,则GH=__.15.如图,对折矩形纸片ABCD 使AD 与BC 重合,得到折痕MN ,再把纸片展平.E 是AD 上一点,将△ABE 沿BE 折叠,使点A 的对应点A ′落在MN 上.若CD =5,则BE 的长是_____.16.某人沿斜坡(坡度为i=1:3)前进了10米,则它升高了______米. 17.在Rt △ABC 中,∠C=90°. (1)若sinA=3,则∠A=______,tanA=______; (2)若tanA=3,则∠A=_______,cosA=_________. 18.在△ABC 中,AB=AC=5,BC=8,若∠BPC=12∠BAC ,tan ∠BPC=_______________.19.在ABC ∆中90C ∠=︒,A ∠、B 、C ∠所对的边分别为a 、b 、c . (1)若3a =,4b =,则tan A =______; (2)若21b =,29c =,则tan A =______; (3)若2a =,6b =,则tan A =______; (4)若9a =,15c =,则tan A =______; 20.如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x 轴和y 轴分别相交于A 、B 两点.动点P 从点A 出发,在线段AO 上以每秒3个单位长度的速度向点O 作匀速运动,到达点O 停止运动,点A 关于点P 的对称点为点Q ,以线段PQ 为边向上作正方形PQMN .设运动时间为t 秒.若正方形PQMN 对角线的交点为T ,请直接写出在运动过程中OT+PT 的最小值____.21.已知⊙O 的直径为10,点A ,点B ,点C 在⊙O 上,∠CAB 的平分线交⊙O 于点D . (I )如图①,若BC 为⊙O 的直径,求BD 、CD 的长; (II )如图②,若∠CAB=60°,求BD 、BC 的长.22.如图,港口A 在观测站C 的正东方向20km 处,某船从港口A 出发,沿东偏北75︒方向匀速航行2小时后到达B 处,此时从观测站C 处测得该船位于北偏东60︒的方向,求该船航行的速度.23.(本题满分10分)某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来到与建筑物AB 在同一平地且相距12米的建筑物CD 上的C 处观察,测得某建筑物顶部A 的仰角为30°、底部B 的俯角为45°.求建筑物AB 的高(精确到1米).(可供选用的数据:≈1.4,≈1.7).24.如图,河流的两岸PQ ,MN 互相平行,河岸PQ 上有一排小树,已知相邻两树之间的距离28CD =米,某人在河岸MN 的A 处测得45DAN ∠=︒,然后沿河岸走了43米到达B 处,测得64CBN ∠=︒,求河流的宽度CE.(参考数据:sin 640.90︒≈,cos640.44︒≈,tan64 2.0︒≈)25.(12sin30°+tan60°−cos45°+tan30°. (2) (13)-1+|13-2sin60°+(π-2017)08. 26.为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A 射出的光线AB 、AC 与地面MN 的夹角分别为22°和31°,AT⊥MN,垂足为T ,大灯照亮地面的宽度BC 的长为56m . (1)求BT 的长(不考虑其他因素). (2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s ,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h 的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是149m ,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈38,tan22°≈25,sin31°≈1325,tan31°≈35)27.如图,甲、乙两车在行驶、超车过程均近似地看作直线平移,已知甲、乙两车均以20米/秒的速度在右车道匀速行驶,甲车头D与乙车头A之间的距离AD=50米,车宽EC=1.8米,为保证安全,一般车子在行驶过程中与车行道分界线相距0.6米,甲、乙两车行驶路线与CD所在直线平行于道路分界线,现乙车加速,沿路线AB加速行驶到左车道,且∠BAC=1.5o,若B、C、E刚好在同一水平线上.(1)求CD的距离;(2)已知该高速路段限速110km/h,判断乙车在超车过程是否超速?请通过计算说明.(参考数据:tanl.5o≈0.015,sin1.5o≈0.014)28.如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=43,点E、F分别是线段AD、AC上的动点,(点E不与点A,D重合),且∠CEF=∠ACB.(1)求AC的长和点D的坐标;(2)求证:FE AE EC DC;(3)当△EFC为等腰三角形时,求点E的坐标.参考答案1.A 【解析】 【分析】利用圆周角定理得到∠BAC=90°,然后根据正弦的定义求∠C 的度数. 【详解】解:∵BC 为⊙O 的直径, ∴∠BAC=90°, ∵AB=OB , ∴BC=2AB ,∴在Rt△ABC 中,sinC=12AB BC , ∴∠C=30°. 故选:A . 【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 2.B . 【解析】试题分析:观察图形得知:∠B=45°,因为45度的正弦值是22,所以sinB 的值为22.故选B .考点:特殊角的三角函数值. 3.A 【解析】 【分析】根据相似三角形的判定和性质定理、正弦的定义判断即可. 【详解】Rt △ABC 的各边都扩大4倍,得到Rt △A′B′C′与Rt △ABC 相似, ∴∠A=A′,∴sinA′=sinA,故选:A.【点睛】本题考查了锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义与应用. 4.B【解析】【分析】根据∠A、∠B都是锐角,且sinA=cosB=12,可得出∠A和∠B的度数,继而可得出三角形ABC的形状.【详解】在△ABC中,∵∠A、∠B都是锐角,且sinA=cosB=12,∴∠A=30°,∠B=60°,则∠A=180°-30°-60°=90°.故△ABC为直角三角形.故选B.5.D【解析】【分析】根据30°的正弦值是12,求出∠A,根据直角三角形的性质求出∠B,根据60°的正切值计算.【详解】解:sinA=12,则∠A=30°,∵∠C=90°,∴∠B=60°,∴tanB=tan60°故选:D.【点睛】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键. 6.C 【解析】试题分析:由题意可知,三角形ABD ,三角形ACD 和三角形ABC 都是直角三角形,在直角三角形ABD 中,∠B 的正弦等于∠B 的对边AD 比斜边AB ,故A 正确;在直角三角形ABC 中,∠B 的正弦等于∠B 的对边AC 比斜边BC ,故B 正确;又因为∠B=∠DAC ,而sin ∠DAC=,所以sin ∠B=,故D 正确;而AD:AC 是∠DAC 的余弦,也是∠B 的余弦,故结论不正确的是C.选C. 考点:锐角三角函数. 7.C 【解析】 【分析】由A (1,﹣1),B (2,﹣2),可得O 、A 、B 在同一条直线上,且为一、三象限的平分线,△ABC 绕着原点O 旋转75°,可分顺时针和逆时针两种情况讨论,结合三角函数可得B 1 【详解】解:如图由A (1,﹣1),B (2,﹣2),可得直线OA 的解析式为:y=-x , OB 的解析式为:y=-x ,可得O 、A 、B 三点位于同一直线上,即y=-x , 且OAB 为第二、四象限的平分线,与x 轴、y 轴的夹角为o 45, 222(2)+-22当△ABC 绕着原点O 旋转75°,当为逆时针旋转时,1OB 与x 轴的夹角为o 30,1B X =o 22cos306,o 122sin302B Y =,此时1B 点坐标为62(,),同理可得当为顺时针旋转时,1OB 与y 轴的夹角为o 30, 可得1B 点坐标为-2-6(,), 故选C. 【点睛】本题主要考查一次函数与旋转及三角函数的综合,需灵活运用所学知识求解. 8.C 【解析】 【分析】利用30°的正切值即可求得AE 长,进而根据45°角的正切值可求得CE 长.根据△BEC 是等腰直角三角形可知CE=BE ,CE 减去DE 长即为信号塔CD 的高度. 【详解】∵AB=8米,DE=20米,∠A=30°,∠EBC=45°, ∴在Rt △ADE 中,tan30=DE AE =3,解得AE=203米, 在Rt △BCE 中,CE=BE•tan45°=(203-8)×1=203-8(米), ∴CD=CE-DE=203-8-20=203-28(米); 故选C. 【点睛】本题考查了解直角三角形-仰角俯角问题,能借助仰角构造直角三角形并解直角三角形是解题关键; 9.B 【解析】特殊角的三角函数值。
解直角三角形练习题1一. 选择题:(每小题2分,共20分)1. 在厶EFG 中,/ G=90° EG=6 , EF=10,贝U cotE=()A. B. C. D.2. 在厶ABC 中,/ A=105° / B=45° tanC 的值是()A. B. C. 1 D.3. 在厶ABC中,若,,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4. 如图18,在厶EFG中,/ EFG=90°, FH丄EG,下面等式中,错误的是()A. B.C. D.5. sin65与cos26之间的关系为()A. sin65 <Cos26 °B. sin65 >Cos26 °C. sin65 =Cos26 °D. sin65 +Cos26 =16. 已知30° <a <60下列各式正确的是()A. B. C. D.7. 在厶ABC中,/ C=90° ,,贝U sinB的值是()A. B. C. D.8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60 °则平行四边形的面积是()米2A. 150B.C. 9D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2 : 3,顶宽是3米,路基高是4米,则路基的下底宽是()A. 7 米B. 9 米C. 12 米D. 15 米10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为a,则它们重叠部分(图中阻影部分)的面积为()A. B. C. D. 1二. 填空题:(每小题2分,共10分)11. 已知0° <a <90 当a = _________ ,,当a = ____________ 时,Cota=.12. 若,则锐角a = __________13. 在Rt△ ABC 中,/ C=90°,,贝U a= ____________ , b= _________ , c= __________ , cotA= ________ 。
解直角三角形练习题 1姓名 2013.09一、填空题:1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则A sin = ;2、 在Rt △ABC 中,∠C =900,AB =,3,5cm BC cm =则A sin = ,B cos = ;3、 Rt △ABC 中,∠C =900,A sin =54,AB =10,则BC = ; 4、α是锐角,若︒=15cos sin α,则α= 若8018.0'1853sin =︒,则'4236cos ︒= ;5、∠B 为锐角,且01cos 2=-B ,则∠B = ;6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a 、b 、c ,12,9==b a 则A sin = ,B sin = ;7、Rt △ABC 中,∠C =900,21tan =A ,则=A sin ; 8、在Rt △ABC 中,∠C =900,若b a 32=则_____tan =A ;9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是 ;10、若∠A 为锐角,且03tan 2tan 2=-+A A ,则∠A =11、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;12、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =14、在△ABC 中,︒=∠90B ,AC 边上的中线BD =5,AB =8,则A C B ∠ta n = ;二、选择题1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( )(A ) 都扩大2倍 (B ) 都扩大4倍 (C ) 没有变化 (D ) 都缩小一半2、若∠A 为锐角,且tanA 3<,则∠ A ( ) (A ) 小于300 (B ) 大于300 (C ) 大于00且小于600 (D ) 大于6003、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( )(A ) 600 (B ) 900 (C ) 1200 (D ) 15004、在△ABC 中,A ,B 为锐角,且有 B A cos sin =,则这个三角形是 ( )(A ) 等腰三角形 (B ) 直角三角形 (C ) 钝角三角形 (D ) 锐角三角形5、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( )(A ) cm 41 (B ) cm 21 (C ) cm 43 (D ) cm 23 三、求下列各式的值 1、︒+︒60cos 60sin 22 2、︒︒-︒30cos 30sin 260sin3、︒-︒45cos 30sin 24、3245cos 2-+︒5、0045cos 360sin 2+ 6、 130sin 560cos 300-7、︒30sin 22·︒+︒60cos 30tan ·︒30cos 8、︒-︒30tan 45sin 22四、解答下列各题1、在Rt △ABC 中,∠C =900,,AB =13,BC =5,求A si n , A cos ,A tan ,A cot ;2. 在Rt △ABC 中,∠C =900,若1312sin =A 求 A cos ,B sin ,B cos ;3. 在Rt △ABC 中,︒=∠=︒=∠45,17,90B b C ,求a 、c 与A ∠;四、根据下列条件解直角三角形。
解直角三角形测验 2. 在中,,如果,那么的值是()
(A)1 (B) (C) (D)
5、若,那么锐角α的度数是()
A、15°
B、30°
C、45°
D、60°
6、AE、CF是△ABC的两条高,如果AE:CF=3:2,则sinA:sinC等于()
A、3:2
B、2:3
C、9:4
D、4:9
7、如图,在△ABC中,∠C=90,∠B=50,AB=10,则BC=的长为( )
A、10tan50
B、10cos50
C、10sin50
D、
8、王英同学从A地沿北偏西方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()
A、50m
B、100m
C、150m
D、100m
9、化简=()
A、1-
B、
C、-1
D、1-
10、一艘轮船由海平面上A地出发向南偏西40的方向行驶40海里到达B地,再由B地向北偏西20°方向行驶40海里到达C地,则A、C两地相距()
A、30海里
B、40海里
C、50海里
D、60、海里
10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()
A. B. C. D. 1
1. 如图6,在直角坐标平面内,为原点,点的坐标为,点在第一象限内,,.则= .
3. 如图是一山谷的横断面示意图,宽为,用曲尺(两直尺相交成直角)从山谷两侧测量出,,,(点在同一条水平线上)则该山谷的深为.
15. 酒店在装修时,在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图21所示,则购买地毯至少需要__________元。
4. 如图所示,直线,垂足为点,A、B是直线上的两点,且OB=2,AB=.直线绕点按逆时针方
向旋转,旋转角度为().
(1)当=60°时,在直线上找点P,使得△BPA是以∠B为顶角的等腰三角形,此时OP= .
(2)当在什么范围内变化时,直线上存在点P,使得△BPA是以∠B为顶角的等腰三角形,请用不等式表示的取值范围:.
5. 已知中,,,,将它的一个锐角翻折,使该锐角顶点落在其对边的中点处,折痕交另一直角边于,交斜边于,
15、图7是引拉线固定电线杆的示意图。
已知:CD⊥AB,CD=3m,∠CAD=∠DBC=60,
则拉线AC的长是 m。
16、如图,一艘轮船向正东方向航行,上午9时测得它在灯塔P的南偏西30方向,距离灯塔120海里的M处,上午11时到达这座灯塔的正南方向的N处,则这艘轮船在这段时间内航行的平均速度是海里/时。
16、如图,一艘轮船向正东方向航行,上午9时测得它在灯塔P的南偏西30方向,距离灯塔120海里的M处,上午11时到达这座灯塔的正南方向的N处,则这艘轮船在这段时间内航行的平均速度是海里/时。
17、计算题:sin45-++6 tan30
1. 去年夏季山洪暴发,某市好几所学校被山体滑坡推倒教学楼,为防止滑坡,经过地质人员勘测,当坡角不超过时,可以确保山体不滑坡.某小学紧挨一座山坡,如图所示,已知,斜坡长30米,坡角.改造后斜坡与地面成角,求至少是多少米?(精确到0.1米)
9. 如图23,ABCD为正方形,E为BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若。
(1)求△ANE的面积;(2)求sin∠ENB的值。
25.四边形ABCD中,BC⊥CD,∠BCA=600,∠CDA=1350,。
求AD边的长。
⑴求整修后背水坡面的面积;
⑵如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?
6. 如图,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端到水平地面的距离.
要求:
(1)画出测量示意图;
(2)写出测量步骤(测量数据用字母表示);
(3)根据(2)中的数据计算.
24、一高速铁路即将动工,工程需要测量某一段河的宽度。
如图1,一测量员在河岸边的A 处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.
(参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48);
1)求所测之河的宽度
2)除图1的测量方案外,请你再设计一种测量江宽的方案,并在图2中画出图形。