当前位置:文档之家› 实验一线程的创建与撤消

实验一线程的创建与撤消

实验一线程的创建与撤消
实验一线程的创建与撤消

实验一线程的使用

一、实验目的

通过此实验,掌握线程创建与撤消的实质,分析线程争用临界资源的现象,学习解决线程互斥的方法,从而对线程的工作方式有更深的了解。

二、实验内容

用多线程使用不同的排序算法对数据进行排序,每一个线程使用不同的算法。主线程里使用快速排序,其他二个算法分别建立二个子线程,在子线程中进行排序(可选择冒泡排序和选择排序)。因为每一个线程都要调用函数且一个线程要把结果输出到显示器上,所以不同的线程就会争夺着向显示器输出,这样,不同线程的输出就会混合在一起,所以必须让线程一个接着一个输出。也就是必须对每一个输出进行互斥控制。要进行互斥控制,则必须用到event、Mutex、Crititicalsection等互斥控制量。你可以根据提示修改代码使用其中的一种互斥量进行测试。

三、实验准备

1、编程工具:C++(推荐)或其他

2、基本win32 API函数

(1)HANDLE CreateThread(

LPSECURITY_ATTRIBUTES lpThreadAttributes, // 安全属性结构指针,可为NUL;DWORD dwStackSize, // 线程栈大小,若为0表示使用默认值;

LPTHREAD_START_ROUTINE lpStartAddress, // 指向线程函数的指针

LPVOID lpParameter, // 传递给线程函数的参数,可以保存一个指针值

DWORD dwCreationFlags, // 线程建立的初始标记,运行或挂起

LPDWORD lpThreadId // 指向接收线程的线程号);

(2)InitializeCriticalSection:创建临界区;

(3)EnterCriticalSection:进入临界区;

(4)LeaveCriticalSection:离开临界区;

(5)DeleteCriticalSection:删除临界区;

(6)DWORD WaitForMultipleObjects( DWORD nCount,

//对象句柄数组中的句柄数;

CONST HANDLE *lpHandles,

// 指向对象句柄数组的指针,数组中可包括多种对象句柄;

BOOL bWaitAll,

// 等待标志:TRUE表示所有对象同时可用,FALSE表示至少一个对象可用;

DWORD dwMilliseconds // 等待超时时限;

);

3、相关技术

(1)CRITICAL_SECTION:临界区对象,实现线程之间互斥进入临界区

4、API函数介绍

https://www.doczj.com/doc/ed17959016.html,/library/default.asp?url=/library/en-us/dllproc/base/using_synchronizati on.asp

进程的控制 1 .实验目的 通过进程的创建、撤消和运行加深对进程概念和进程并发执行的理解,明确进程与程序之间的区别。 【答:进程概念和程序概念最大的不同之处在于: (1)进程是动态的,而程序是静态的。 (2)进程有一定的生命期,而程序是指令的集合,本身无“运动”的含义。没有建立进程的程序不能作为1个独立单位得到操作系统的认可。 (3)1个程序可以对应多个进程,但1个进程只能对应1个程序。进程和程序的关系犹如演出和剧本的关系。 (4)进程和程序的组成不同。从静态角度看,进程由程序、数据和进程控制块(PCB)三部分组成。而程序是一组有序的指令集合。】2 .实验内容 (1) 了解系统调用fork()、execvp()和wait()的功能和实现过程。 (2) 编写一段程序,使用系统调用fork()来创建两个子进程,并由父进程重复显示字符串“parent:”和自己的标识数,而子进程则重复显示字符串“child:”和自己的标识数。 (3) 编写一段程序,使用系统调用fork()来创建一个子进程。子进程通过系统调用execvp()更换自己的执行代码,新的代码显示“new

program.”。而父进程则调用wait()等待子进程结束,并在子进程结束后显示子进程的标识符,然后正常结束。 3 .实验步骤 (1)gedit创建进程1.c (2)使用gcc 1.c -o 1编译并./1运行程序1.c #include #include #include #include void mian(){ int id; if(fork()==0) {printf(“child id is %d\n”,getpid()); } else if(fork()==0) {printf(“child2 id %d\n”,getpid()); } else {id=wait(); printf(“parent id is %d\n”,getpid()); }

java多线程实验报告 篇一:西北农林科技大学java多线程实验报告 实验7 多线程 1.实验目的 (1) 掌握Java多线程的概念和实现方法 (2) 掌握Java多线程的同步问题 2.实验内容 任务一:火车售票 假设有火车票1000张,创建10个线程模拟10个售票点,每个售票点100毫秒买一张票。打印出售票过程,注意使用synchronized确保同一张票只能卖出一次。程序运行结果见左图。 打开Eclipse Tickets.java public class Ticket extends Thread { int ticket =1000; String name =""; public void run(){ while(true){synchronized(name){ if(ticket "第" + Thread.currentThread().getName()+ "售票点卖出了第" + ticket-- + "张票"); } } } }} try{ } catch(InterruptedException e){ }

Thread.sleep(100); Test.java public class Test { } public static void main(String args[]){} Ticket t = new Ticket(); new Thread(t,"1").start(); new Thread(t,"2").start(); new Thread(t,"3").start(); new Thread(t,"4").start(); new Thread(t,"5").start(); new Thread(t,"6").start(); new Thread(t,"7").start(); new Thread(t,"8").start(); new Thread(t,"9").start(); new Thread(t,"10").start(); 任务二:银行存款 假设某家银行,它可接受顾客的汇款,每做一次汇款,便可计算出汇款的总额。现有两个顾客,每人都分3次,每次100元将钱到入。试编写一个程序,模拟实际作业。 程序如下: classCBank { private static int sum=0; public static void add(int n){ inttmp=sum; tmp=tmp+n;// 累加汇款总额 try{ Thread.sleep((int)(10000*Math.random())); //

实验七:Linux多线程编程(实验报告)

————————————————————————————————作者:————————————————————————————————日期:

实验七:Linux多线程编程(4课时) 实验目的:掌握线程的概念;熟悉Linux下线程程序编译的过程;掌握多线程程序编写方法。 实验原理:为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题。 1 多线程概念 使用多线程的理由之一是和进程相比,它是一种非常"节俭"的多任务操作方式。运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间。 使用多线程的理由之二是线程间方便的通信机制。同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。2多线程编程函数 Linux系统下的多线程遵循POSIX线程接口,称为pthread。编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。pthread_t在头文件/usr/include/bits/pthreadtypes.h中定义: typedef unsigned long int pthread_t; 它是一个线程的标识符。 函数pthread_create用来创建一个线程,它的原型为: extern int pthread_create((pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg)); 第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。 函数pthread_join用来等待一个线程的结束。函数原型为: extern int pthread_join(pthread_t th, void **thread_return); 第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。 函数pthread_exit的函数原型为: extern void pthread_exit(void *retval); 唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给thread_return。 3 修改线程的属性 线程属性结构为pthread_attr_t,它在头文件/usr/include/pthread.h中定义。属性值不能直接设置,须使用相关函数进行操作,初始化的函数为pthread_attr_init,这个函数必须在pthread_create函数之前调用。 设置线程绑定状态的函数为pthread_attr_setscope,它有两个参数,第一个是指向属性结构的指针,第二个是绑定类型,它有两个取值:PTHREAD_SCOPE_SYSTEM(绑定的)和PTHREAD_SCOPE_PROCESS(非绑定的)。 另外一个可能常用的属性是线程的优先级,它存放在结构sched_param中。用函数pthread_attr_getschedparam和函数pthread_attr_setschedparam进行存放,一般说来,我们总是先取优先级,对取得的值修改后再存放回去。 4 线程的数据处理

师范大学 操作系统(本科) 实验报告 院系:计算机科学技术学院班级: 学生姓名: 学号:20141602141041 指导教师: 教师评阅结果: 教师评语: 实验日期年月日

实验名称: 实验二:线程的创建与撤销 一、实验目的和要求: 熟悉windows系统提供线程的创建与撤销系统调用。 掌握windows系统环境下的线程的创建与撤销方法。 二、实验内容: 使用系统调用createthread()创建一个子线程,并在子线程中显示:thread is runing!,并使用sleep()使线程挂起5s之后使用exitthread(0)撤销线程。 三、实验技术和方法: 1.创建线程 2.撤销线程 3.终止线程 四、实验环境: 使用vc++ 6.0

五、实验步骤和结果:

实验代码: #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif ///////////////////////////////////////////////////////////////////// //////// // The one and only application object CWinApp theApp;

using namespace std; void ThreadName1(); static HANDLE hHandle1=NULL; DWORD dwThreadID1; int _tmain(int argc, TCHAR* argv[], TCHAR* envp[]) { int nRetCode = 0; hHandle1=CreateThread((LPSECURITY_ATTRIBUTES) NULL, 0, (LPTHREAD_START_ROUTINE) ThreadName1, (LPVOID) NULL, 0, &dwThreadID1); Sleep(5000); CloseHandle(hHandle1); ExitThread(0); return nRetCode; }

实验2 并发与调度 2.2 Windows 2000线程同步 (实验估计时间:120分钟) 背景知识 实验目的 工具/准备工作 实验内容与步骤 背景知识 Windows 2000提供的常用对象可分成三类:核心应用服务、线程同步和线程间通讯。其中,开发人员可以使用线程同步对象来协调线程和进程的工作,以使其共享信息并执行任务。此类对象包括互锁数据、临界段、事件、互斥体和信号等。 多线程编程中关键的一步是保护所有的共享资源,工具主要有互锁函数、临界段和互斥体等;另一个实质性部分是协调线程使其完成应用程序的任务,为此,可利用内核中的事件对象和信号。 在进程内或进程间实现线程同步的最方便的方法是使用事件对象,这一组内核对象允许一个线程对其受信状态进行直接控制 (见表4-1) 。 而互斥体则是另一个可命名且安全的内核对象,其主要目的是引导对共享资源的访问。拥有单一访问资源的线程创建互斥体,所有想要访问该资源的线程应该在实际执行操作之前获得互斥体,而在访问结束时立即释放互斥体,以允许下一个等待线程获得互斥体,然后接着进行下去。 与事件对象类似,互斥体容易创建、打开、使用并清除。利用CreateMutex() API 可创建互斥体,创建时还可以指定一个初始的拥有权标志,通过使用这个标志,只有当线程完成了资源的所有的初始化工作时,才允许创建线程释放互斥体。

为了获得互斥体,首先,想要访问调用的线程可使用OpenMutex() API来获得指向对象的句柄;然后,线程将这个句柄提供给一个等待函数。当内核将互斥体对象发送给等待线程时,就表明该线程获得了互斥体的拥有权。当线程获得拥有权时,线程控制了对共享资源的访问——必须设法尽快地放弃互斥体。放弃共享资源时需要在该对象上调用ReleaseMute() API。然后系统负责将互斥体拥有权传递给下一个等待着的线程(由到达时间决定顺序) 。 实验目的 在本实验中,通过对事件和互斥体对象的了解,来加深对Windows 2000线程同步的理解。 1) 回顾系统进程、线程的有关概念,加深对Windows 2000线程的理解。 2) 了解事件和互斥体对象。 3) 通过分析实验程序,了解管理事件对象的API。 4) 了解在进程中如何使用事件对象。 5) 了解在进程中如何使用互斥体对象。 6) 了解父进程创建子进程的程序设计方法。 工具/准备工作 在开始本实验之前,请回顾教科书的相关内容。 您需要做以下准备: 1) 一台运行Windows 2000 Professional操作系统的计算机。 2) 计算机中需安装Visual C++ 6.0专业版或企业版。 实验内容与步骤 1. 事件对象 2. 互斥体对象 1. 事件对象 清单2-1程序展示了如何在进程间使用事件。父进程启动时,利用CreateEvent() API创建一个命名的、可共享的事件和子进程,然后等待子进程向事件发出信号并终止父进程。在创建时,子进程通过OpenEvent() API打开事件对象,调用SetEvent() API使其转化为已接受信号状态。两个进程在发出信号之后几乎立即终止。 步骤1:登录进入Windows 2000 Professional。 步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。

操作系统 实验报告 哈尔滨工程大学 计算机科学与技术学院

一、实验概述 1. 实验名称 进程的同步 2. 实验目的 ⑴使用EOS的信号量,编程解决生产者 消费者问题,理解进程同步的意义。 ⑵调试跟踪EOS信号量的工作过程,理解进程同步的原理。 ⑶修改EOS的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。 3. 实验类型 验证+设计 4. 实验内容 ⑴准备实验 ⑵使用EOS的信号量解决生产者-消费者问题 ⑶调试EOS信号量的工作过程 ①创建信号量 ②等待释放信号量 ③等待信号量(不阻塞) ④释放信号量(不唤醒) ⑤等待信号量(阻塞) ⑥释放信号量(唤醒) ⑷修改EOS的信号量算法 二、实验环境 WindowsXP + EOS集成实验环境 三、实验过程 1. 设计思路和流程图

图4-1.整体试验流程图

图4-2.Main 函数流程图、生产者消费、消费者流程图 2. 算法实现 3. 需要解决的问题及解答 (1). 思考在ps/semaphore.c 文件内的PsWaitForSemaphore 和PsReleaseSemaphore 函数中,为什么要使用原子操作?

答:在执行等待信号量和释放信号量的时候,是不允许cpu响应外部中断的,如果此时cpu响应了外部中断,会产生不可预料的结果,无法正常完成原子操作。 (2). 绘制ps/semaphore.c文件内PsWaitForSemaphore和PsReleaseSemaphore函数的流程图。 (3).P143生产者在生产了13号产品后本来要继续生产14号产品,可此时生产者为什么必须等待消费者消费了4号产品后,才能生产14号产品呢?生产者和消费者是怎样使用同步对象来实现该同步过程的呢? 答:这是因为临界资源的限制。临界资源就像产品仓库,只有“产品仓库”空闲生产者才能生产东西,有权向里面放东西。所以它必须等到消费者,取走产品,“产品空间”(临界资源)空闲时,才继续生产14号产品。 (4). 根据本实验3.3.2节中设置断点和调试的方法,自己设计一个类似的调试方案来验证消费者线程在消费24号产品时会被阻塞,直到生产者线程生产了24号产品后,消费者线程才被唤醒并继续执行的过程。 答:可以按照下面的步骤进行调试 (1) 删除所有的断点。 (2) 按F5启动调试。OS Lab会首先弹出一个调试异常对话框。 (3) 在调试异常对话框中选择“是”,调试会中断。 (4) 在Consumer函数中等待Full信号量的代码行(第173行)WaitForSingleObject(FullSemaphoreHandle, INFINITE); 添加一个断点。 (5) 在“断点”窗口(按Alt+F9打开)中此断点的名称上点击右键。 (6) 在弹出的快捷菜单中选择“条件”。 (7) 在“断点条件”对话框(按F1获得帮助)的表达式编辑框中,输入表达式“i == 24”。 (8) 点击“断点条件”对话框中的“确定”按钮。 (9) 按F5继续调试。只有当消费者线程尝试消费24号产品时才会在该条件断点处中断。 4. 主要数据结构、实现代码及其说明 修改PsWaitForSemaphore函数 if (Semaphore->Count>0){ Semaphore->Count--; flag=STATUS_SUCCESS; }//如果信号量大于零,说明尚有资源,可以为线程分配 else flag=PspWait(&Semaphore->WaitListHead, Milliseconds); KeEnableInterrupts(IntState); // 原子操作完成,恢复中断。 return flag; }//否则,说明资源数量不够,不能再为线程分配资源,因此要使线程等待 修改PsReleaseSemaphore函数 if (Semaphore->Count + ReleaseCount > Semaphore->MaximumCount) {

实验:进程与线程 一、实验目的 通过函数调用掌握进程之间的通信。 体会线程的存在,了解线程与进程的关系。 二、实验环境 PC+Win7操作系统 三、实验方法和实验步骤 1.准备工作 打开VC++6.0环境。 2.在程序编辑区内输入程序,实现两个数互换。 3. 在VC环境下建立一个控制台应用程序P1。系统启动一个进程(因为支持线程,OS会在进程中主动创建一个主线程)来运行该程序。输出该进程的ID号、以及该进程下面主线程的ID号。多运行几次,观察结果。 四、实验结果

补充:在VC环境下建立一个控制台应用程序P1。系统启动一个进程(因为支持线程,OS会在进程中主动创建一个主线程)来运行该程序。 在进程中,我们自己再创建一个子线程(子线程1),该子线程做的事情很简单,就是让它不停地输出如下信息: 子线程1正在运行第1次,其进程的ID号=~, 子线程1的ID号=~ 子线程1正在运行第2次,其进程的ID号=~, 子线程1的ID号=~ 。。。。。。 。。。。。。 子线程1正在运行第20次,其进程的ID号=~, 子线程1的ID号=~ 只要启动了一个子线程,实际上系统中是主线程和子线程1在并发执行。 主线程的功能是输出这样形式的内容: 主线程正在运行第1次,其进程的ID号=~,主线程的ID号=~ 主线程正在运行第2次,其进程ID号=~, 主线程的ID号=~ 。。。。。。 。。。。。。 主线程正在运行第20次,其进程ID号=~, 主线程的ID号=~ 多运行几次,观察主线程和子线程并发调动的次序。每次调度都一样吗?为什么?进程ID、主线程ID和子线程ID每次都一样吗? 体会操作系统中并发的异步性。 程序代码如下: #include #include DWORD WINAPI Thread1(LPVOID lpparameter){ int i; for(i=1;i<=20;i++){ printf("子线程1在运行中,它正在运行第%d times,所属进程的ID号=%ld, 本线程的ID号=%ld\n",i,GetCurrentProcessId(),GetCurrentThreadId());} return 0;} int main(){ int j; printf("一个进程在运行中\n"); printf("主线程在运行中\n"); HANDLE hThread1=CreateThread(NULL,0,Thread1,NULL,0,NULL); for(j=1;j<=20;j++){ printf("主线程正在运行第%d次;进程的ID号=%ld,线程ID号=%ld\n", j,GetCurrentProcessId(),GetCurrentThreadId()); Sleep(500); } return 0; } 多次运行的结果显示,每次调度是不一样的,因为操作系统中程序并发运行时的异步性原则,进程ID、主线程ID和子线程ID每次也都是不一样的。

实验2 线程同步机制 一、实验目的: 通过观察共享数据资源但不受控制的两个线程的并发运行输出结果,体会同步机制的必要性和重要性。然后利用现有操作系统提供的同步机制编程实现关于该两个线程的有序控制,同时要求根据同步机制的Peterson软件解决方案尝试自己编程实现同步机制和用于同一问题的解决,并基于程序运行时间长短比较两种同步机制。 二、实验设计 I基于给定银行账户间转账操作模拟代码作为线程执行代码,在主线程中创建两个并发线程,编程实现并观察程序运行结果和予以解释说明。 II利用Windows互斥信号量操作函数解决上述线程并发问题,并分析、尝试和讨论线程执行体中有关信号量操作函数调用的正确位置。 III根据同步机制的Peterson软件解决方案尝试自己编程实现线程同步机制和用于上述线程并发问题的解决,并基于程序运行时间长短

将其与基于Windows互斥信号量的线程同步机制的效率展开比较。其间,可规定线程主体代码循环执行1000000次 三、源程序清单和说明 1未利用互斥信号量 #include #include #include int nAccount1 = 0, nAccount2 = 0; int nLoop = 0; int nTemp1, nTemp2, nRandom; DWORD WINAPI ThreadFunc(HANDLE Thread) { do { nTemp1 = nAccount1; nTemp2 = nAccount2; nRandom = rand(); nAccount1 = nTemp1 + nRandom; nAccount2 = nTemp2 - nRandom; nLoop++; } while ((nAccount1 + nAccount2) == 0); printf("循环次数为%d\n", nLoop); return 0; } int main() { HANDLE Thread[2]; Thread[0] = CreateThread(NULL,0,ThreadFunc,NULL,0,NULL); Thread[1] = CreateThread(NULL,0,ThreadFunc,NULL,0,NULL); WaitForMultipleObjects(2,Thread,TRUE,INFINITE); CloseHandle(Thread); return 0; }

实验报告 课程名称: Java语言程序设计 姓名: 学号: 班级: 数学与计算机科学学院

数学与计算机科学学院实验报告实验名称:多线程 指导教师:日期:

if (isPrime) count++; } System.out.println(st + "~" + en + "之间共有" + count + "个质数"); } public static void main(String[] args) { UseThread thread1 = new UseThread(2, 1000); UseThread thread2 = new UseThread(1000, 2000); thread1.start(); thread2.start(); } } 第2题代码: public class Experiment14_2 { public static void main(String[] args) { MyThread t1 = new MyThread("T1"); MyThread t2 = new MyThread("T2"); t1.start(); t2.start(); System.out.println("活动线程数:" + Thread.activeCount()); System.out.println("main()运行完毕"); } } class MyThread extends Thread { public MyThread(String s) { super(s); } public void run() { for (int i = 1; i <= 3; i++) { System.out.println(getName() + "第" + i + "次运行"); try { sleep((int) (Math.random() * 100)); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println(getName() + "结束"); } }

实验一熟悉Windows2000/XP中的进程和线程 一、实验目的 1、熟悉Windows2000/XP中任务管理器的使用。 2、通过任务管理器识别操作系统中的进程和线程的相关信息。 3、掌握利用spy++.exe来察看Windows中各个任务的更详细信息。 二、实验理论基础 1、实验理论基础: (1)操作系统中的进程和线程的概念; (2)进程PCB的各项指标含意; (3)操作系统中的进程和线程的概念; (4)进程的各种控制; 三、实验内容与步骤 1、启动操作系统自带的任务管理器: 方法:直接按组合键Ctrl+Alt+Del,或者是在点击任务条上的“开始”“运行”,并输入“taskmgr.exe”。如下图所示:

2、调整任务管理器的“查看”中的相关设置,显示关于进程的以下各项信息, 并完成下表(填满即可): 表一:统计进程的各项主要信息

3、从桌面启动办公软件“Word”,在任务管理器中找到该软件的登记,并将其结 束掉。再从任务管理器中分别找到下列程序:winlogon.exe、lsass.exe、csrss.exe、smss.exe,试着结束它们,观察到的反应是无法中止进程,原因是该程序为关键系统进程,任务管理器无法结束进程。 4、在任务管理器中找到进程“explorer.exe”,将之结束掉,并将桌面上你打开 的所有窗口最小化,看看你的计算机系统起来什么样的变化桌面所有的快捷图标消失,任务栏消失、得到的结论是这个进程用于显示桌面上的图标和开始菜单(说出explorer.exe进程的作用)。 5、运行“spy++.exe”应用软件,点击按钮“”,切换到进程显示栏上,查看进程“explorer.exe”的各项信息,并填写下表: 表二:统计线程的各项信息 进程:explorer.exe 中的各个线程

实验二创建线程 一、实验目的 1. 通过创建线程、观察正在运行的线程和终止线程的程序设计和调试操作,进一步熟悉操作系统的线程概念,理解进程与线程之间的关系。 2. 通过阅读和分析实验程序,学习创建线程、观察线程和终止线程的程序设计方法。 二、实验内容 1. 创建线程 创建线程并因而成就一个多线程程序,是以CreateThread()作为一切行动的开始.此函数的原型如下: HANDLE CreateThread{ LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId}; 如果CreateThread()成功,返回一个新创建的线程的handle。 如果CreateThread()失败,返回一个NULL。可以调用GetLastError()获知原因。

2. 终止线程 线程结束代码可以依靠调用GetExitCodeThread()完成。 BOOL GetExitCodeThread{ HANDLE hThread, /*由CreateThread()传回的线程handle*/ LPDWORD lpExitCode /*指向一个DWORD,用于接受结束代码*/ }; 如果成功,GetExitCodeThread()传回TRUE,否则传回FALSE.如果线程已结束,那么线程的结束代码会被放在lpExitCode参数中带回来.如果线程尚未结束,lpExitCode带回来的值是STILL_ACTIVE。 如果需要用更强制性的手法结束一个线程,可以使用ExitThread()。 三、实验步骤 (1)开启五个线程,设计一个基于Win32多线程应用程序。 (2)基于Win32多线程应用程序,启动两个线程,当用户按下任意键时,试图退出。 (3)验证Thread 使用自己的 Stack 存放 function 中的 local variable。四.程序设计 (1)声明线程标准函数形式,创建等待对象的句柄hThrd,创建接收新线程ID的DWORD变量。进行for循环,执行线程内容ThreadFunc并返回每个核心对象hThrd。之后等待线程全部完成,结束程序。 (2)声明线程标准函数形式,创建等待对象的句柄hThrd1、hThrd2,创建获取线程退出代码的exitCode1、exitCode2,创建接收新线程ID的DWORD变量。执行线程内容ThreadFunc并返回每个核心对象hThrd并输出相关提示信息。进行for循环,接收用户按下的任意键信息,调用GetExitCodeThread等待一个线程的结束,使用GetExitCodeThread传回线程函数ThreadFunc的返回值。函数中用一个死循环,保证两个线程能够完整的运行完成,getch()函数接收用户输入,尝试打断线程,但后面代码保护了线程的继续执行,直至两个线程都执行完成,输出各自的返回值并退出。 (3)验证性程序。

实验三进程同步的经典算法 背景知识 Windows提供的常用对象可分成三类:核心应用服务、线程同步和线程间通讯。其中,开发人员可以使用线程同步对象来协调线程和进程的工作,以使其共享信息并执行任务。此类对象包括互锁数据、临界段、事件、互斥体和信号等。 多线程编程中关键的一步是保护所有的共享资源,工具主要有互锁函数、临界段和互斥体等;另一个实质性部分是协调线程使其完成应用程序的任务,为此,可利用内核中的事件对象和信号。 在进程内或进程间实现线程同步的最方便的方法是使用事件对象,这一组内核对象允许一个线程对其受信状态进行直接控制(见表3-1) 。 而互斥体则是另一个可命名且安全的内核对象,其主要目的是引导对共享资源的访问。拥有单一访问资源的线程创建互斥体,所有想要访问该资源的线程应该在实际执行操作之前获得互斥体,而在访问结束时立即释放互斥体,以允许下一个等待线程获得互斥体,然后接着进行下去。 与事件对象类似,互斥体容易创建、打开、使用并清除。利用CreateMutex() API可创建互斥体,创建时还可以指定一个初始的拥有权标志,通过使用这个标志,只有当线程完成了资源的所有的初始化工作时,才允许创建线程释放互斥体。 为了获得互斥体,首先,想要访问调用的线程可使用OpenMutex() API来获得指向对象的句柄;然后,线程将这个句柄提供给一个等待函数。当内核将互斥体对象发送给等待线程时,就表明该线程获得了互斥体的拥有权。当线程获得拥有权时,线程控制了对共享资源的访问——必须设法尽快地放弃互斥体。放弃共享资源时需要在该对象上调用ReleaseMute() API。然后系统负责将互斥体拥有权传递给下一个等待着的线程(由到达时间决定顺序) 。

操作系统实验报告 课程名称操作系统实验名称进程(线程)的同步与互斥成绩 学生姓名作业君专业软件工程班级、学号 同组者姓名无实验日期2020 一、实验题目:进程(线程)的同步与互斥 二、实验目的: 自行编制模拟程序,通过形象化的状态显示,加深理解进程的概念、进程之间的状态转换及其所带来的PCB内容、组织的变化,理解进程与其PCB间的一一对应关系。1.掌握基本的同步与互斥算法,理解生产者消费者模型。 2.学习使用Windows中基本的同步对象,掌握相关API的使用方法。 3.了解Windows中多线程的并发执行机制,实现进程的同步与互斥 三、实验内容与要求: 1.实验内容 以生产者/消费者模型为依据,在Windows 环境下创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。 2.实验要求 学习并理解生产者/消费者模型及其同步/互斥规则; 学习了解Windows同步对象及其特性; 熟悉实验环境,掌握相关API的使用方法; 设计程序,实现生产者/消费者进程(线程)的同步与互斥; 四、算法描述(含数据结构定义)或流程图 #include #include #include #include #include #include using namespace std;

#define MAX_THREAD_NUM 64 //最大线程数 #define INTE_PER_SEC 1000 //延迟时间的毫秒值 const int SIZE_OF_BUFFER = 10; //缓冲区长度 int ProductID = 0; //产品号 int ConsumeID = 0; //将被消耗的产品号 int in = 0; //产品进缓冲区时的缓冲区下标 int out = 0; //产品出缓冲区时的缓冲区下标 bool running = true; //判断程序能否继续执行的逻辑值 int g_buffer[SIZE_OF_BUFFER]; //缓冲区是个循环队列 HANDLE g_hMutex; //公有信号量,用于线程间的互斥HANDLE g_hFullSemaphore; //生产者的私有信号量,当缓冲区满时迫使生产者等待 HANDLE g_hEmptySemaphore; //消费者的私有信号量,当缓冲区空时迫使消费者等待 //定义一个结构体用于存储线程的信息 struct ThreadInfo { int serial; //线程号 char entity; //线程类别(生产者或消费者) double delay; //等待时间 double persist; //操作时间 }; //生产者 void Producer(void* p) { //定义变量用于存储当前线程的信息 DWORD m_delay; DWORD m_persist; int m_serial; //从参数中获得信息 m_serial = ((ThreadInfo*)(p))->serial; m_delay = (DWORD)(((ThreadInfo*)(p))->delay * INTE_PER_SEC); m_persist = (DWORD)(((ThreadInfo*)(p))->persist * INTE_PER_SEC); while (running) { //P操作 cout << "生产者线程 " << m_serial << " 请求生产." << endl; WaitForSingleObject(g_hEmptySemaphore, INFINITE);

查看程序的进程和线程实验报告 篇一:程序实验2:11-多线程编程---实验报告 程序实验二:11-多线程编程实验 专业班级实验日期 5.21 姓名学号实验一(p284:11-thread.c) 1、软件功能描述 创建3个线程,让3个线程重用同一个执行函数,每个线程都有5次循环,可以看成5个小任务,每次循环之间会有随即等待时间(1-10s)意义在于模拟每个任务到达的时间是随机的没有任何的特定规律。 2、程序流程设计 3.部分程序代码注释(关键函数或代码) #include #include #include #define T_NUMBER 3 #define P_NUMBER 5 #define TIME 10.0

void *thrd_func(void *arg ) { (本文来自:https://www.doczj.com/doc/ed17959016.html, 小草范文网:查看程序的进程和线程实验报告) int thrd_num=(int)arg; int delay_time =0; int count =0; printf("Thread %d is staraing\n",thrd_num); for(count=0;count { delay_time =(int)(rand()*TIME/(RAND_MAX))+1; sleep(delay_time); printf("\tTH%d:job%d delay =%d\n",thrd_num,count,delay_time); } printf("%d finished\n",thrd_num); pthread_exit(NULL); } int main()

多线程编程之一——问题提出 一、问题的提出 编写一个耗时的单线程程序: 新建一个基于对话框的应用程序SingleThread,在主对话框IDD_SINGLETHREAD_DIALOG 添加一个按钮,ID为IDC_SLEEP_SIX_SECOND,标题为“延时6秒”,添加按钮的响应函数,代码如下: 1.void CSingleThreadDlg::OnSleepSixSecond() 2.{ 3.Sleep(6000);//延时6秒 4.} 编译并运行应用程序,单击“延时6秒”按钮,你就会发现在这6秒期间程序就象“死机”一样,不在响应其它消息。为了更好地处理这种耗时的操作,我们有必要学习——多线程编程。 二、多线程概述 进程和线程都是操作系统的概念。进程是应用程序的执行实例,每个进程是由私有的虚拟地址空间、代码、数据和其它各种系统资源组成,进程在运行过程中创建的资源随着进程的终止而被销毁,所使用的系统资源在进程终止时被释放或关闭。 线程是进程内部的一个执行单元。系统创建好进程后,实际上就启动执行了该进程的主执行线程,主执行线程以函数地址形式,比如说main或WinMain函数,将程序的启动点提供给Windows 系统。主执行线程终止了,进程也就随之终止。 每一个进程至少有一个主执行线程,它无需由用户去主动创建,是由系统自动创建的。用户根据需要在应用程序中创建其它线程,多个线程并发地运行于同一个进程中。一个进程中的所有线程都在该进程的虚拟地址空间中,共同使用这些虚拟地址空间、全局变量和系统资源,所以线程间的通讯非常方便,多线程技术的应用也较为广泛。 多线程可以实现并行处理,避免了某项任务长时间占用CPU时间。要说明的一点是,目前大多数的计算机都是单处理器(CPU)的,为了运行所有这些线程,操作系统为每个独立线程安排一些CPU时间,操作系统以轮换方式向线程提供时间片,这就给人一种假象,好象这些线程都在同时运行。由此可见,如果两个非常活跃的线程为了抢夺对CPU的控制权,在线程切换时会消耗很多的CPU资源,反而会降低系统的性能。这一点在多线程编程时应该注意。 Win32SDK函数支持进行多线程的程序设计,并提供了操作系统原理中的各种同步、互斥和临界区等操作。Visual C++6.0中,使用MFC类库也实现了多线程的程序设计,使得多线程编程更加方便。 三、Win32API对多线程编程的支持 Win32提供了一系列的API函数来完成线程的创建、挂起、恢复、终结以及通信等工作。下面将选取其中的一些重要函数进行说明。

实验2:线程同步 一、实验目的 (1)掌握Windows2000环境下,线程同步。 (2)熟悉Windows2000提供的线程同步与互斥API。 (3)用Windows2000提供的线程同步与互斥API解决实际问题 (producer-consumer)。 二、实验内容 生产者与消费者问题的实现。在Windows 2000环境下,创建一组“生产者”线程和一组“消费者”线程,并建立一个长度为N的全局数组作为共享缓冲区。“生产者”向缓冲区输入数据,“消费者”从缓冲区读出数据。当缓冲区满时,“生产者”必须阻塞,等待“消费者”取走缓冲区数据后将其唤醒。当缓冲区空时,“消费者”阻塞,等待“生产者”生产了产品后将其唤醒。试用信号量实现“生产者”与“消费者”线程之间的同步。 三、实验环境 (1)使用的操作系统及版本。 Windows xp professional (2)使用的编译系统及版本。 Visual c++ 6.0 四、实验步骤 1.等待一个对象(相当于p操作) WaitForSingleObject用于等待一个对象。它等待的对象可以为: Change notification:变化通知。 Console input:控制台输入。 Event:事件。 Job:作业。 Mutex:互斥信号量。 Process:进程。 Semaphore:计数信号量。

Thread:线程。 Waitable timer:定时器。 返回值: 如果成功返回,其返回值说明是何种事件导致函数返回。 访问描述 WAIT_ABANDONED 等待的对象是一个互斥(mutex)对象,该互斥对 象没有被拥有它的线程释放,它被设置为不能被唤 醒。 WAIT_OBJECT_0 指定对象被唤醒。 WAIT_TIMEOUT 超时。 2.创建信号量 CreateSemaphore用于创建一个信号量。 返回值: 信号量创建成功,将返回该信号量的句柄。如果给出的信号量名是系统已经存在的信号量,将返回这个已存在信号量的句柄。如果失败,系统返回NULL,可以调用函数GetLastError查询失败的原因。 3.打开信号量 OpenSemaphore用于打开一个信号量。 返回值: 信号量打开成功,将返回该信号量的句柄。如果失败,系统返回NULL,可以调用函数GetLastError查询失败的原因。 4.增加信号量的值 ReleaseSemaphore用于增加信号量的值。 返回值: 如果成功,将返回一个非0值。如果失败,系统返回0,可以调用函数GetLastError 查询失败的原因。 方法一: 程序代码: #include #include

相关主题
文本预览
相关文档 最新文档