实验二 编程实现进程(线程)同步和互斥
- 格式:docx
- 大小:15.58 KB
- 文档页数:1
实验、进程的同步与互斥——⽣产者消费者1. 1. 实验⽬的两个或两个以上的进程,不能同时进⼊关于同⼀组共享变量的临界区域,否则可能发⽣与时间有关的错误,这种现象被称作进程互斥。
对CPU的速度和数⽬不做出任何假设的前提下,并发进程互斥访问临界资源,是⼀个较好的解决⽅案。
另外,还需要解决异步环境下的进程同步问题。
所谓异步环境是指:相互合作的⼀组并发进程,其中每⼀个进程都以各⾃独⽴的、不可预知的速度向前推进;但它们⼜需要密切合作,以实现⼀个共同的任务,即彼此“知道”相互的存在和作⽤。
实验⽬的:分析进程争⽤资源的现象,学习解决进程同步与互斥的⽅法。
本实验属于设计型实验,实验者可根据⾃⾝情况选⽤合适的开发环境和程序架构。
1. 2. 实验原理信号量的PV操作与处理相关,P表⽰通过的意思,V表⽰释放的意思。
1962年,狄克斯特拉离开数学中⼼进⼊位于荷兰南部的艾恩德霍芬技术⼤学(Eindhoven Technical University)任数学教授。
在这⾥,他参加了X8计算机的开发,设计与实现了具有多道程序运⾏能⼒的操作系统——THE Multiprogramming System。
THE是艾恩德霍芬技术⼤学的荷兰⽂Tchnische Hoogeschool Eindhov –en的词头缩写。
狄克斯特拉在THE这个系统中所提出的⼀系统⽅法和技术奠定了计算机现代操作系统的基础,尤其是关于多层体系结构,顺序进程之间的同步和互斥机制这样⼀些重要的思想和概念都是狄克斯特拉在THE中⾸先提出并为以后的操作系统如UNIX等所采⽤的。
为了在单处理机的情况下确定进程(process)能否占有处理机,狄克斯特拉将每个进程分为“就绪”(ready)、“运⾏”(running)和“阻塞”(blocking)三个⼯作状态。
由于在任⼀时刻最多只有⼀个进程可以使⽤处理机,正占⽤着处理机的进程称为“运⾏”进程。
当某进程已具备了使⽤处理机的条件,⽽当前⼜没有处理机供其使⽤,则使该进程处于“就绪”状态。
实验1编程实现进程(线程)同步和互斥一、实验目的①通过编写程序实现进程同步和互斥,使学生掌握有关进程(线程)同步与互斥的原理,以及解决进程(线程)同步和互斥的算法,从而进一步巩固进程(线程)同步和互斥②等有关的内容。
③了解Windows2000/XP中多线程的并发执行机制,线程间的同步和互斥。
④学习使用Windows2000/XP中基本的同步对象,掌握相应的⑤API函数。
⑥掌握进程和线程的概念,进程(线程)的控制原语或系统调用的使用。
⑦掌握多道程序设计的基本理论、方法和技术,培养学生多道程序设计的能力。
二、实验内容在Windows XP、Windows 2000等操作系统下,使用的VC、VB、java或C等编程语言,采用进程(线程)同步和互斥的技术编写程序实现生产者消费者问题或哲学家进餐问题或读者-写者问题或自己设计一个简单进程(线程)同步和互斥的实际问题。
三、实验要求①经调试后程序能够正常运行。
②采用多进程或多线程方式运行,体现了进程(线程)同步和互斥的关系。
③程序界面美观。
四、实验步骤、过程让写者与读者、读者与读者之间互斥的访问同一数据集,在无写者进程到来时各读者可同时的访问数据集,在读者和写者同时等待时写者优先唤醒。
设置两个全局变量readcount 和writecount来记录读者与写者的数目,设置了3个信号量。
h_mutex1表示互斥对象对阻塞在read这一个过程实现互斥,h_mutex2实现全局变量readcount操作上的互斥,h_mutex3实现对全局变量writecount的互斥访问。
设置了两个临界区,为了实现写者优先,用了临界区read。
数据结构:(1)用了两个临界区(2)自定义结构ThreadInfo记录一条线程信息,多个线程对应一个ThreadInfo数组。
(3)设置了互斥量h_mutex1,实现了互斥对象对阻塞read这一过程,h_mutex2实现对readcount操作的互斥,h_mutex3实现对writecount的互斥访问。
进程的同步与互斥实验报告1.实验目的进程(线程)的同步与互斥是操作系统中非常重要的概念,本实验旨在通过实际操作,加深对这些概念的理解和掌握。
通过编写多个进程(线程),并在其间进行同步与互斥操作,验证同步与互斥的实际效果。
2.实验环境本实验在Linux系统下进行,使用C/C++语言编程。
3.实验内容3.1同步在实验中,我们编写了两个进程A和B,这两个进程需要按照特定的顺序执行。
为了实现同步,我们使用信号量机制来确保进程A和B按照正确的顺序执行。
3.2互斥在实验中,我们编写了多个进程C和D,这些进程需要同时对一个共享资源进行访问。
为了实现互斥,我们使用互斥锁机制来确保同一时刻只有一个进程访问共享资源。
4.实验过程4.1同步实验编写进程A和进程B的代码,使用信号量机制实现同步。
进程A先运行,然后通过信号量唤醒进程B,进程B再开始执行。
通过观察进程的运行顺序,验证同步机制是否起作用。
4.2互斥实验编写进程C和进程D的代码,使用互斥锁机制实现互斥。
进程C和进程D同时对一个共享资源进行访问,通过互斥锁来确保同一时刻只有一个进程访问共享资源。
观察进程的输出结果,验证互斥机制是否起作用。
5.实验结果5.1同步实验结果进程A开始执行进程A执行完毕进程B开始执行进程B执行完毕5.2互斥实验结果进程C开始执行进程C访问共享资源进程C执行完毕进程D开始执行进程D访问共享资源进程D执行完毕6.实验分析通过上述结果可以看出,同步实验中进程A和进程B按照正确的顺序执行,证明了同步机制的有效性。
互斥实验中进程C和进程D能够正确地交替访问共享资源,证明了互斥机制的有效性。
7.实验总结通过本次实验,我深刻理解了进程(线程)的同步与互斥,并通过实际操作加深了对这些概念的理解。
同步和互斥是操作系统中非常重要的概念,对于应对资源竞争和提高程序性能具有重要意义。
在实际开发中,我们应该合理使用同步和互斥机制,以确保程序的正确性和并发执行的效率。
计算机操作系统实验二一、实验目的本实验旨在通过实际操作,深入理解和掌握计算机操作系统中的进程与线程管理。
通过实验,我们将了解进程的创建、执行、阻塞、唤醒等状态以及线程的创建、同步、通信等操作。
同时,通过实验,我们将学习如何利用进程和线程提高程序的并发性和效率。
二、实验内容1、进程管理a.进程的创建与执行:通过编程语言(如C/C++)编写一个程序,创建一个新的进程并执行。
观察和记录进程的创建、执行过程。
b.进程的阻塞与唤醒:编写一个程序,使一个进程在执行过程中发生阻塞,并观察和记录阻塞状态。
然后,通过其他进程唤醒该进程,并观察和记录唤醒过程。
c.进程的状态转换:根据实际操作,理解和分析进程的状态转换(就绪状态、阻塞状态、执行状态)以及转换的条件和过程。
2、线程管理a.线程的创建与同步:编写一个多线程程序,创建多个线程并观察和记录线程的创建过程。
同时,使用同步机制(如互斥锁或信号量)实现线程间的同步操作。
b.线程的通信:通过消息队列或其他通信机制,实现多个线程间的通信。
观察和记录线程间的通信过程以及通信对程序执行的影响。
c.线程的状态转换:根据实际操作,理解和分析线程的状态转换(新建状态、就绪状态、阻塞状态、终止状态)以及转换的条件和过程。
三、实验步骤1、按照实验内容的要求,编写相应的程序代码。
2、编译并运行程序,观察程序的执行过程。
3、根据程序的输出和实际操作情况,分析和理解进程与线程的状态转换以及进程与线程管理的相关原理。
4、修改程序代码,尝试不同的操作方式,观察程序执行结果的变化,进一步深入理解和掌握进程与线程管理。
5、完成实验报告,总结实验过程和结果,提出问题和建议。
四、实验总结通过本次实验,我们深入了解了计算机操作系统中的进程与线程管理原理和实践操作。
在实验过程中,我们不仅学习了如何利用编程语言实现进程和线程的操作,还通过实际操作观察和分析了进程与线程的状态转换以及进程与线程管理的基本原理。
操作系统实验进程同步与互斥操作系统实验进程同步与互斥实验目的1.掌握进程同步和互斥原理,理解生产者-消费者模型;2.学习Windows2000/xp中的多线程并发执行机制;3.学习使用Windows SDK解决读者-写者问题。
试验内容1依据生产者-消费者模型,在Windows 2000/xp环境下创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥,分析、熟悉生产者消费者问题仿真的原理和实现技术。
(见附件2)试验内容2参考实验内容1和附件2伪码,编程解决读者-写者问题的程序。
(具体要求和读写者问题原始伪码内容见附件1)相关知识Windows 2000/XP的线程控制CreateThread完成线程创建,在调用进程的地址空间上创建一个线程,以执行指定的函数;它的返回值为所创建线程的句柄。
ExitThread用于结束当前线程。
SuspendThread可挂起指定的线程。
ResumeThread可激活指定线程,它的对应操作是递减指定线程的挂起计数,当挂起计数减为0时,线程恢复执行。
Windows 2000/XP的进程互斥和同步在Windows 2000/XP中提供了临界区、互斥对象、信号量对象同步对象和相应的系统调用,用于进程和线程同步。
临界区对象(Critical Section)只能用于在同一进程内使用的临界区,同一进程内各线程对它的访问是互斥进行的。
相关API包括:InitializeCriticalSection对临界区对象进行初始化;EnterCriticalSection等待占用临界区的使用权,得到使用权时返回;TryEnterCriticalSection非等待方式申请临界区的使用权;申请失败时,返回0;LeaveCriticalSection释放临界区的使用权;DeleteCriticalSection释放与临界区对象相关的所有系统资源。
互斥对象(Mutex)互斥对象相当于互斥信号量,在一个时刻只能被一个线程使用。
同步与互斥实现方法一、同步与互斥的概念同步是指多个线程或进程之间按照一定的顺序执行,以达到其中一种约定或要求。
在同步的过程中,程序等待其他线程或进程完成一些操作后再继续执行。
互斥是指多个线程或进程之间访问共享资源时,要互相排斥,避免冲突和竞争。
互斥的目的是保证多个线程或进程对共享资源的操作是互斥的,即同一时刻只有一个线程或进程可以访问共享资源。
二、实现同步的方法1. 互斥锁(Mutex)互斥锁是一种最常用的同步机制,通过对一些代码块或函数的访问加上互斥锁的操作,可以保证只有一个线程能够执行该代码块或函数。
当一些线程获得互斥锁时,其他线程在获得该锁之前会被阻塞。
2. 信号量(Semaphore)信号量是一种更为复杂的同步机制,用于实现一些资源的访问控制。
一个信号量有一个整型值和两个原子操作:P和V。
P操作(也称为wait或down)会使信号量的值减1,如果值小于0,当前线程或进程就会被阻塞。
V操作(也称为signal或up)会使信号量的值加1,如果值小于等于0,就会唤醒等待的线程或进程。
信号量可以用于解决生产者-消费者问题、读者-写者问题等并发编程中的资源竞争问题。
3. 条件变量(Condition Variable)条件变量是一种同步机制,用于在多个线程或进程之间同步共享资源的状态。
条件变量对应一个条件,并提供了等待和通知的机制。
等待操作可以使一个线程或进程等待一些条件成立,直到其他线程或进程通知条件变量,使得等待的线程或进程被唤醒。
通知操作可以使等待中的线程或进程被唤醒,继续执行。
条件变量常和互斥锁一起使用,互斥锁用于保护共享资源,条件变量用于同步共享资源的状态。
三、实现互斥的方法1. Peterson算法Peterson算法是一种经典的软件方法,用于解决两个进程之间的互斥访问问题。
该算法使用了两个布尔型变量flag和turn,通过交替使用这两个变量,实现了两个进程之间的互斥。
2. 印章(Semaphores)信号量也可以用于实现互斥操作。
实训二操作系统中的经典线程同步问题一、实训目的:1、通过对“生产者-消费者”问题编程实现,了解线程创建、同步信号量、互斥信号量、临界区的创建和使用。
2、了解线程互斥和同步机制。
3、了解PV 原语和信号量在线程互斥和同步机制中的运用。
二、实训环境:一台PC 机/人三、预习内容:1、进程的控制。
2、进程同步。
3、本实验内容主要对应于教材第 2 章中关于进程的各节四、实训内容:1、编写进程控制程序并运行,理解进程控制的各操作。
2、生产者和消费者问题,本实验用到几个API 函数:CreatThread, CreatMutex, CreatSemaphore, WaitForSingleObject, ReleaseSemaphore, ReleaseMutex, InitializeCriticalSection, EnterCriticalSection, LeaveCriticalSection这些函数的作用:CreatThread: 创建一个线程,该线程在调用进程的地址空间中执CreatMutex : 产生一个命名的或者匿名的互斥量对象。
WaitForSingleObject (对应p 操作)锁上互斥锁,ReleaseMutex (对应v 操作)打开互斥锁。
CreateSemaphore:创建一个命名的或者匿名的信号对象信号量可以看作是在互斥量上的一个扩展。
WaitForSingleObject :使程序处于等待状态,直到信号量(或互斥量)hHandle出现或者超过规定的等待最长时间,信号量出现指信号量大于或等于1,互斥量出现指打开互斥锁。
在返回之前将信号量减1或者锁上互斥锁。
Releasesemaphore将所指信号量加上指定大小的一个量,执行成功,则返回非0值。
ReleaseMutex :用来打开互斥量,即将互斥量加1。
成功调用则返回0。
InitializeCriticalSection :该函数初始化临界区对象。
线程互斥的实验报告线程互斥是操作系统中重要的概念之一。
在线程并发执行的情况下,多个线程可能会同时访问共享资源,如果没有互斥机制进行控制,就会出现数据竞争和不确定性的情况。
为了避免这种情况的发生,需要通过互斥机制对多个线程的并发访问进行合理控制。
二、实验目的本实验旨在通过编写程序,实现线程互斥的功能,进一步理解和掌握线程互斥的概念和原理,并验证互斥机制的有效性。
三、实验过程1. 创建共享资源:首先,我们创建一个共享资源,例如全局变量x。
2. 创建多个线程并发执行:通过创建多个线程来模拟多个并发执行的场景,每个线程都有访问共享资源的需求。
3. 创建互斥锁:使用操作系统提供的互斥锁实现机制来实现线程互斥,确保同时只有一个线程可以访问共享资源。
4. 设置互斥锁的加锁和解锁:在线程访问共享资源之前使用互斥锁进行加锁,在访问完共享资源之后进行解锁,以确保资源的正确性和完整性。
5. 运行程序并观察结果:运行多个线程并发执行的程序,通过打印输出等方式观察线程的执行情况,确保互斥机制的有效性。
四、实验结果与分析在实验过程中,我们创建了一个全局变量x作为共享资源,并创建了两个线程t1和t2来同时访问该变量。
通过使用互斥锁的机制,我们保证了同时只有一个线程可以访问变量x。
在线程t1对变量x进行操作之前,需要先获得互斥锁的加锁,操作完成后再进行解锁。
同样地,线程t2在操作变量x之前也需要获得互斥锁的加锁,操作完成后再进行解锁。
经过多次运行实验,观察到线程t1和t2的执行顺序是随机的,有时t1先执行,有时t2先执行。
这是因为线程的调度和执行是由操作系统决定的,而与我们代码编写的顺序无关。
但无论线程t1和t2的执行顺序如何,由于我们使用了互斥锁的机制,保证了对变量x的访问是互斥的,即同时只能有一个线程在操作变量x。
这也是我们对互斥机制的期望结果。
五、实验总结通过本实验,我们深入理解了线程互斥的概念和原理,并成功实现了线程互斥的功能。
一、实验目的1. 理解进程的概念和进程状态转换。
2. 掌握进程同步与互斥的基本方法。
3. 学习使用信号量实现进程同步与互斥。
4. 熟悉进程调度算法。
二、实验环境1. 操作系统:Windows/Linux2. 编程语言:C/C++3. 开发工具:Visual Studio/Code::Blocks三、实验内容1. 进程状态转换2. 进程同步与互斥3. 信号量实现进程同步与互斥4. 进程调度算法四、实验步骤1. 进程状态转换```c#include <stdio.h>#include <unistd.h>void print_status(int state) {switch (state) {case 1: printf("创建状态\n"); break; case 2: printf("就绪状态\n"); break;case 3: printf("运行状态\n"); break; case 4: printf("阻塞状态\n"); break; case 5: printf("终止状态\n"); break; default: printf("未知状态\n"); break; }}int main() {int state = 1;print_status(state);sleep(1);state = 2;print_status(state);sleep(1);state = 3;print_status(state);sleep(1);state = 4;print_status(state);sleep(1);state = 5;print_status(state);return 0;}```2. 进程同步与互斥```c#include <stdio.h>#include <pthread.h>pthread_mutex_t lock;void thread_func(void arg) {pthread_mutex_lock(&lock);printf("线程 %d 进入临界区\n", (int )arg);sleep(2);printf("线程 %d 离开临界区\n", (int )arg);pthread_mutex_unlock(&lock);return NULL;}int main() {pthread_t tid1, tid2;int arg1 = 1, arg2 = 2;pthread_mutex_init(&lock, NULL);pthread_create(&tid1, NULL, thread_func, &arg1); pthread_create(&tid2, NULL, thread_func, &arg2); pthread_join(tid1, NULL);pthread_join(tid2, NULL);pthread_mutex_destroy(&lock);return 0;}```3. 信号量实现进程同步与互斥```c#include <stdio.h>#include <pthread.h>#include <semaphore.h>sem_t sem;void thread_func(void arg) {sem_wait(&sem);printf("线程 %d 进入临界区\n", (int )arg);sleep(2);printf("线程 %d 离开临界区\n", (int )arg);sem_post(&sem);return NULL;}int main() {pthread_t tid1, tid2;int arg1 = 1, arg2 = 2;sem_init(&sem, 0, 1);pthread_create(&tid1, NULL, thread_func, &arg1); pthread_create(&tid2, NULL, thread_func, &arg2);pthread_join(tid1, NULL);pthread_join(tid2, NULL);sem_destroy(&sem);return 0;}```4. 进程调度算法```c#include <stdio.h>#include <stdlib.h>#include <unistd.h>#define MAX_PROCESSES 5typedef struct {int pid;int arrival_time;int burst_time;int wait_time;int turnaround_time;} Process;int compare(const void a, const void b) {Process proc1 = (Process )a;Process proc2 = (Process )b;return proc1->arrival_time - proc2->arrival_time;}void fcfs(Process processes[], int n) {processes[0].wait_time = 0;processes[0].turnaround_time = processes[0].burst_time;for (int i = 1; i < n; i++) {processes[i].wait_time = processes[i - 1].turnaround_time + processes[i].arrival_time - processes[i].burst_time;processes[i].turnaround_time = processes[i].wait_time + processes[i].burst_time;}}int main() {Process processes[MAX_PROCESSES] = {{1, 0, 3, 0, 0},{2, 1, 6, 0, 0},{3, 4, 4, 0, 0},{4, 6, 5, 0, 0},{5, 8, 2, 0, 0}};qsort(processes, MAX_PROCESSES, sizeof(Process), compare);fcfs(processes, MAX_PROCESSES);for (int i = 0; i < MAX_PROCESSES; i++) {printf("PID: %d, Wait Time: %d, Turnaround Time: %d\n", processes[i].pid, processes[i].wait_time, processes[i].turnaround_time);}return 0;}```五、实验结果与分析通过以上实验,我们了解了进程状态转换、进程同步与互斥、信号量实现进程同步与互斥以及进程调度算法。
操作系统实验报告——进程同步与互斥一、实验内容本实验主要内容是通过编写程序来实现进程的同步与互斥。
具体来说,是通过使用信号量来实现不同进程之间的同步和互斥。
我们将编写两个进程,一个进程负责打印奇数,另一个进程负责打印偶数,两个进程交替打印,要求打印的数字从1开始,直到100结束。
二、实验原理进程的同步是指多个进程之间按照一定的顺序执行,进程之间互相等待的关系。
而进程的互斥是指多个进程竞争同一个资源,需要通过其中一种方式来避免同时访问共享资源,以免造成数据错乱。
在本实验中,我们使用信号量来实现进程的同步与互斥。
信号量是一个计数器,用于表示一些共享资源的可用数量。
进程在访问共享资源时,需要先对信号量进行操作,当信号量大于0时,表示资源可用,进程可以访问;当信号量等于0时,表示资源不可用,进程需要等待。
进程同步的实现可以通过信号量的P操作与V操作来完成。
P操作用于申请资源,当资源可用时,将计数器减一,并进入临界区;V操作用于释放资源,当资源使用完毕时,将计数器加一,使等待资源的进程能够申请。
进程互斥的实现可以通过信号量的P操作与V操作结合临界区来完成。
当多个进程需要访问共享资源时,需要先进行P操作,进入临界区,访问完毕后进行V操作,离开临界区。
三、实验步骤1.首先,我们需要创建两个进程,一个进程负责打印奇数,另一个进程负责打印偶数。
2. 然后,我们创建一个共享变量count,用来记录打印的数字。
3. 接着,我们创建两个信号量odd和even,用来控制进程的同步与互斥。
odd信号量初始值为1,表示打印奇数的进程可以访问;even信号量初始值为0,表示打印偶数的进程需要等待。
4.编写奇数打印进程的代码,首先进行P操作,判断奇数信号量是否大于0,如果大于0,表示可以打印奇数。
5. 如果可以打印奇数,将count加一,并输出当前的奇数,然后进行V操作,释放偶数打印进程的等待。
6.同样的,编写偶数打印进程的代码,首先进行P操作,判断偶数信号量是否大于0,如果大于0,表示可以打印偶数。
一、实验目的1. 理解进程同步与互斥的基本概念。
2. 掌握进程同步与互斥的常用方法。
3. 通过实验加深对操作系统进程管理的理解。
二、实验环境1. 操作系统:Windows 102. 开发工具:Visual Studio 20193. 编程语言:C++三、实验内容1. 实现进程同步与互斥的基本方法。
2. 利用互斥锁实现进程同步。
3. 利用信号量实现进程同步。
四、实验步骤1. 创建项目(1)打开Visual Studio 2019,创建一个名为“进程同步与互斥实验”的控制台项目。
(2)在项目文件夹中创建一个名为“main.cpp”的源文件。
2. 实现进程同步与互斥的基本方法(1)定义两个全局变量,分别表示互斥锁和信号量。
```cpp#include <iostream>#include <thread>#include <mutex>#include <semaphore.h>std::mutex mtx;sem_t semaphore;void process1() {// 获取互斥锁mtx.lock();std::cout << "进程1正在执行" << std::endl; // 释放互斥锁mtx.unlock();}void process2() {// 等待信号量sem_wait(&semaphore);std::cout << "进程2正在执行" << std::endl; // 释放信号量sem_post(&semaphore);}```(2)在主函数中创建线程,并调用相应的函数。
```cppint main() {// 初始化互斥锁和信号量mtx.lock();sem_init(&semaphore, 0, 1);// 创建线程std::thread t1(process1);std::thread t2(process2);// 等待线程结束t1.join();t2.join();// 销毁信号量sem_destroy(&semaphore);return 0;}```3. 运行程序(1)编译并运行程序。
实验二:编程实现经典互斥和同步问题1.实验目的:加深对信号量、PV操作、进程同步和互斥等概念的理解,掌握PV操作的具体实现方法,熟练掌握进程同步和互斥的实现办法,能利用信号量机制解决实际生活中的同步和互斥问题。
2.实验内容(1)、编程实现P操作原语、V操作原语,(2)、用所定义的PV操作解决下面的问题:设学院某教室共有座位30个,任何时刻最多可容纳30名同学进入自习,当教室内人数少于30名时,则教室外等待的同学可立即进入,否则需在外面等待。
把一个欲进入教室自习的同学看作一个进程。
3、实验具体内容和步骤的说明(1)用户进程的定义(2)信号量的定义及初始化(3)PV操作的定义P操作顺序执行下述两个动作:①信号量的值减1,即S=S-1;②如果S≥0,则该进程继续执行(挂入就绪队列);如果S<0,则把该进程的状态置为阻塞态,把相应的PCB连入该信号量队列的末尾,并放弃处理机,进行等待(直至其它进程在S上执行V操作,把它释放出来为止)。
(挂入阻塞队列)V操作顺序执行下述两个动作:①S值加1,即S=S+1;②如果S>0,则该进程继续运行;(直接挂入就绪队列)如果S≤0,则释放信号量队列上的第一个PCB(即信号量指针项所指向的PCB)所对应的进程(把阻塞态改为就绪态),执行V操作的进程继续运行。
从阻塞队列唤醒一个进程,即从阻塞队列删除,挂入就绪队列(4)写出对应的主函数,解决多名同学之间的同步问题提示:设置2个进程队列,一是已经进入教室的,即就绪队列二是等待进入教室的,即阻塞队列程序:#include <stdio.h>#include <stdlib.h>typedef struct node{int name; //进程IDchar state;//进程状态struct node *next;}PCB;int s=3;//资源数PCB *stophead=NULL,*stoptail=NULL,*readyhead=NULL,*readytail=NULL;//阻塞就绪队列头尾指针void block(PCB *q)//无资源尾插入阻塞队列{q->state='B';if(stophead==NULL){stophead=q;stoptail=q;}else{stoptail->next=q;stoptail=q;}}void wakeup()//唤醒阻塞队列头节点尾插入就绪队列{stophead->state='R';if(readyhead==NULL){readyhead=stophead;readytail=stophead;stophead=stophead->next;readytail->next=NULL;}else{readytail->next=stophead;readytail=stophead;stophead=stophead->next;readytail->next=NULL;}}void p(PCB *q)//p操作{s=s-1;if(s<0)//无资源则插入阻塞队列block(q);else//尾插入就绪队列{q->state='R';if(readyhead==NULL){readyhead=q;readytail=q;}else{readytail->next=q;readytail=q;}}}int v(int b)//v操作{PCB *q,*pre;if(readyhead==NULL)//无就绪进程返回{printf(" 无就绪进程!\n\n");return 0;}pre=readyhead;q=readyhead;while(q->name!=b)//寻找就绪队列中v操作节点{if(q->next==NULL)//无当前查找节点{printf(" 查无此就绪进程!\n\n");return 1;}pre=q;q=q->next;//查找成功if(readyhead==readytail)//就绪队列仅有一个节点{readyhead=readytail=NULL;free(q);s=s+1;return 0;}else//就绪队列有多个节点{if(q==readyhead){readyhead=readyhead->next;free(q);//释放节点}else if(q==readytail){readytail=pre;pre->next=NULL;free(q);}else{pre->next=q->next;free(q);}s=s+1;if(s<=0)//如有阻塞进程则唤醒加入就绪队列wakeup();return 1;}}void show()//输出当前所有进程状态{PCB *q;q=readyhead;printf("\n");printf(" ID STATE\n");while(q!=NULL)printf("%5d%5c\n",q->name,q->state);q=q->next;}q=stophead;while(q!=NULL){printf("%5d%5c\n",q->name,q->state);q=q->next;}}void main(void){PCB *q;char a;int b;printf("\n剩余资源数%d ",s);printf("PLEASE INPUT:");scanf("%c %d",&a,&b);getchar();//输入当前操作类型进程ID (如p 1)while(a!='0')// (0 0)退出{if(a=='p')//执行p操作{q=(PCB *)malloc(sizeof(PCB));//进程初始化q->name=b;q->next=NULL;p(q);}else if(a=='v')//执行v操作b=v(b);if(b!=0)show();//显示当前进程状态printf("\n剩余资源数%d ",s);printf("PLEASE INPUT:");scanf("%c %d",&a,&b);getchar();}}。
实验二线程的同步和互斥问题一.实验内容:编写程序实现并发线程之间的同步和互斥问题。
线程间的互斥:并发执行的线程共享某些类临界资源,对临界资源的访问应当采取互斥的机制。
线程间的同步:并发执行的线程间通常存在相互制约的关系,线程必须遵循一定的规则来执行,同步机制可以协调相互制约的关系。
二.实验目的和要求1)了解进程同步与互斥的概念,掌握编写进程同步、互斥的实例。
2)解决一类典型的进程间同步问题,如生产者-消费者问题,读者-写者问题等。
三.实验方法和步骤1.实验方法掌握同步与互斥的机制,选取合适的问题,给出演示程序的设计思想,包括流程图的形式;选取C、C++、VC、JA V A等计算机语言,编程调试,最终给出运行正确的程序。
2.程序设计(1)线程间互斥:分析问题,创建多个线程,找出临界资源,划出正确的临界区,根据互斥机制的操作模式,编写程序。
互斥机制的操作模式:p(mutex);/*关锁*/临界区的操作;v(mutex);/*开锁*/(2)线程间同步——读者-写者问题示例:在Windows 2000 环境下,创建一个包含n 个线程的控制台进程。
用这n 个线程来表示n个读者或写者。
每个线程按相应测试数据文件的要求,进行读写操作。
请用信号量机制分别实现读者优先和写者优先的读者-写者问题。
读者-写者问题的读写操作限制:1)写-写互斥;2)读-写互斥;3)读-读允许;运行结果显示要求:要求在每个线程创建、发出读写操作申请、开始读写操作和结束读写操作时分别显示一行提示信息,以确信所有处理都遵守相应的读写操作限制。
测试数据文件格式测试数据文件包括n 行测试数据,分别描述创建的n 个线程是读者还是写者,以及读写操作的开始时间和持续时间。
每行测试数据包括四个字段,各字段间用空格分隔。
第一字段为一个正整数,表示线程序号。
第二字段表示相应线程角色,R 表示读者是,W 表示写者。
第三字段为一个正数,表示读写操作的开始时间。
实验一进程同步和互斥(建议4学时)一、实验目的1.掌握临界资源、临界区概念及并发进程互斥、同步访问原理。
2.学会使用高级语言进行多线程编程的方法。
3.掌握利用VC++或Java语言线程库实现线程的互斥、条件竞争,并编码实现P、V 操作,利用P、V操作实现两个并发线程对有界临界区的同步访问。
4.通过该实验,学生可在源代码级完成进程同步互斥方案的分析、功能设计、编程实现,控制进程间的同步、互斥关系。
二、实验要求1.知识基础:学生应在完成进程和线程及调度等章节的学习后进行。
2.开发环境与工具:硬件平台——个人计算机。
软件平台-Windows操作系统,vc++语言或Java语言开发环境。
3.运用高级语言VC++或Java语言线程库及多线程编程技术进行设计实现。
三、实验内容1.实现临界资源、临界区、进程或线程的定义与创建。
2.利用两个并发运行的进程,实现互斥算法和有界缓冲区同步算法。
四、实验方案指导该实验方案由以下几个关键设计项目组成:1.并发访问出错。
即设计一个共享资源,创建两个并发线程,二者并发访问该共享资源。
当没有采用同步算法设计时,线程所要完成的某些操作会丢失。
2.互斥锁。
并发线程使用线程库提供的互斥锁,对共享资源进行访问。
3.软件方法。
设计并编程实现计数信号量、P操作函数、V操作函数,并发线程通过调用P,V操作函数实现线程的互斥。
4.同步访问多缓冲区。
利用上面的软件方法完成P,V操作,可实现两个线程对多缓冲区的同步访问。
五、实验方案实现范例以下是对该项目中包含的部分设计功能的实现方法、实现过程、技术手段的描述,供师生参考。
1.模拟线程并发运行。
假设我们使用POSIX线程库,而POSIX并没有真正提供线程间的并发运行需求。
我们设计的系统应支持符合RR调度策略的并发线程,每个线程运行一段时间后自动挂起,另一个线程开始运行。
这样一个进程内所有线程以不确定的速度并发执行。
2.模拟一个竞争条件——全局变量。
操作系统实验报告-进程同步与互斥(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《进程同步与互斥》实验报告学号姓名专业、班实验地点指导教师时间一、实验目的1、掌握基本的进程同步与互斥算法,理解生产者-消费者问题。
2、学习使用Windows 2000/XP中基本的同步对象,掌握相关API的使用方法。
3、了解Windows 2000/XP中多线程的并发执行机制,实现进程的同步与互斥。
4、设计程序,实现生产者-消费者进程(线程)的同步与互斥;二、实验环境Windows 2000/XP + Visual C++三、实验内容以生产者-消费者模型为依据,在Windows 2000/XP环境下创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。
四、设计思路和流程框图生产者进程的功能:生产东西,供消费者消费;消费者进程的功能:消费生产者生产的东西。
生产者生产产品并存入缓冲区供消费者取走使用,消费者从缓冲器内取出产品去消费。
在生产者和消费者同时工作时,必须禁止生产者将产品放入已装满的缓冲器内,禁止消费者从空缓冲器内取产品。
五、源程序(含注释)清单六、测试结果以及实验总结1、通过实验进一步了解了基本的进程同步与互斥算法,理解生产者-消费者问题2、掌握了相关API的使用方法。
3、了解到进程是一个可以拥有资源的基本单位,是一个可以独立调度和分派的基本单位。
而线程是进程中的一个实体,是被系统独立调度和分配的基本单位,故又称为轻权(轻型)进程(Light Weight Process)。
4、了解到同步对象是指Windows中用于实现同步与互斥的实体,包括信号量(Semaphore)、互斥量(Mutex)、临界区(Critical Section)和事件(Events)等。
本实验中使用到信号量、互斥量和临界区三个同步对象。
成绩备注:实验报告文档的名称:姓名_实验编号(例如:张三_1、张三_2);实验报告发送到。
线程的同步姓名:蒙吉学号:20072411603实验名称:线程的同步实验目的:1)进一步掌握Windows系统环境下线程的创建与撤消。
2)熟悉Windows系统提供的线程同步API。
3)使用Windows系统提供的线程同步API解决实际问题。
实验准备知识:1)等待一个对象:WaitForMultipleObject( )用于等待一个对象。
2)等待多个对象:WaitForMultipleObject( )在指定时间内等待多个对象,等待的对象与WaitForSingleObject( )相同。
3)信号量对象:创建信号量CreateSemaphore();打开信号量Open Semaphore ()增加信号量Releasesemaphore()。
实验内容:完成主、子两线程之间的同步,要求子线程先执行。
在主线程中使用系统调用CreatThread()创建一个子线程,主线程创建了线程后进入阻塞状态,直到了线程运行完毕后唤醒主线程。
实验要求:能正确使用等待对象WaitForMultipleObject( )或WaitForSingleObject( )及信号量对象:CreateSemaphore():Open Semaphore:Releasesemaphore()等系统调用,进一步理解线程的同步。
//Semaphore.cpp:defines the entry point for the console applecation.#include "stdafx.h"#include "semaphore1.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[]=_FILE_;#endif/////////////////////////////////////////////////////////////////////////////// The one and only application objectCWinApp theApp;using namespace std;static HANDLE h1;static HANDLE hHandle1=NULL;void func();int _tmain(int argc,TCHAR* argv[],TCHAR* envp[]){int nRetCode=0;DWORD dwThreadID1;DWORD dRes,err;hHandle1=CreateSemaphore(NULL,0,1,"SemaphoreName1"); //创建一个信号量if(hHandle1==NULL)printf("Semaphore Create Fail!\n");else printf("Semaphore Create Success!\n");hHandle1=OpenSemaphore(SYNCHRONIZE|SEMAPHORE_MODIFY_STATE,NULL,"Semaph oreName1");if(hHandle1==NULL)printf("Semaphore Open Fail!\n");else printf("Semaphore Open Success!\n");h1=CreateThread((LPSECURITY_A TTRIBUTES)NULL,0,(LPTHREAD_START_ROUTINE)func,(LPVOID)NULL,0,&dwThreadID1); //创建子线程if(h1==NULL)printf("Thread1 create Fail!\n");else printf("Thread1 create Success!\n");dRes=WaitForSingleObject(hHandle1,INFINITE); //主线程等待了线程结束err=GetLastError();printf("WaitForSingleObject err=%d\n",err);if(dRes==W AIT_TIMEOUT) printf("TIMEOUT!dRes=%d\n",dRes);else if(dRes==W AIT_OBJECT_0)printf("WAIT??_OBJECT!dRes=%d\n",dRes);elseif(dRes==W AIT_ABANDONED)printf("WAIT_ABANDONED!dRes=%d\n",dRes);else printf("dRes=%d\n",dRes);CloseHandle(h1);CloseHandle(hHandle1);ExitThread(0);return nRetCode;}void func(){BOOL rc;DWORD err;printf("Now In Thread !\n");//子线程唤醒主线程rc=ReleaseSemaphore(hHandle1,1,NULL);err=GetLastError();printf("ReleaseSemaphore err=%d\n",err);if(rc==0)printf("Semaphore Release Fail!\n");else printf("Semaphore Release Success!rc=%d\n",rc);}实验步骤:1)工程文件创建过程2)对工程进行“设置”过程3)classview底下状态4)fileview底下状态5)实验结果实验总结:1)总的实验步骤和线程的创建和撤销的大致相同2) 在实验一线程的创建和撤销的基础上进一步掌握了线程同步的实验过程以及具体步骤。
学生实验报告姓名:年级专业班级学号成绩#define N 1 //N定义为临界资源!printf("请输入三个进程:\n"); //初始状态为:临界资源处于空闲状态!loop:scanf("%d %d %d",&a,&b,&c); //输入的进程名为:a,b,c!进程名输入的先后代表进程的访问顺序!if(a==N) //判断进程a是否占据临界资源!若a==N,表明a访问临界资源!{printf("a=%d\n",a); //a正在访问临界资源!printf("b=0,c=0\n"); //b,c不能进入自己的临界区,需等待a释放临界资源!printf(“临界资源正在被进程a访问,进程b,c必须等待.\n”);}else if(b==N){printf("b=%d\n",b); //b正在访问临界资源!printf("a=0,c=0\n"); //a,c不能进入自己的临界区,需等待b释放临界资源!printf(“临界资源正在被进程b访问,进程a,c必须等待.\n”);}5.编译链接所编写的程序,在编译正确的情况下执行程序.6.记录程序执行的结果(如下图所示).注意:初始状态为:临界资源处于空闲状20 10年12 月16 日【实验结果或总结】(对实验结果进行相应分析,或总结实验的心得体会,并提出实验的改进意见)1.进程a,b,c分别访问临界资源时程序执行的结果如下.(a) (b) (c)2.该程序初始化N为临界资源,根据输入a,b,c,的值是否等于N来判断进程分别是否进入自己的临界区。
当a=N 表明进程a正在访问临界资源。
此时程序执行的输出为:a=1,b=c=0表示进程b,c不能进入自己的临界区。
3.该程序能较好地体现程序并发执行时的一种制约关系-互斥,但不能较好的反映进程的同步关系,所以该算法有待改进,用以同时实现进程的同步和互斥。
C语言同步与互斥技术在多线程编程中,同步与互斥是非常重要的概念。
同步指的是协调多个线程之间的执行顺序,而互斥则是为了保护共享资源,避免多个线程同时访问造成数据不一致的问题。
C语言提供了一些同步与互斥技术的函数和机制,本文将介绍其中的几种常用的方法。
1. 互斥锁互斥锁是最常见的同步机制之一。
它的作用是确保同一时间只有一个线程可以访问被保护的资源。
在C语言中,可以使用互斥锁来实现对临界区的访问控制。
互斥锁的使用通常分为两个步骤:初始化和加锁。
下面是互斥锁的示例代码:```#include <pthread.h>pthread_mutex_t mutex;int main() {// 初始化互斥锁pthread_mutex_init(&mutex, NULL);// 加锁pthread_mutex_lock(&mutex);// 临界区操作// 解锁pthread_mutex_unlock(&mutex);// 销毁互斥锁pthread_mutex_destroy(&mutex);return 0;}```2. 信号量信号量是一种更为通用的同步与互斥工具。
它可以用于控制对资源的访问,也可以用于线程之间的通信。
C语言中提供了信号量的相关函数,如sem_init、sem_wait和sem_post等。
下面是信号量的示例代码:```#include <semaphore.h>sem_t semaphore;void* thread_function(void* arg) {while (1) {// 等待信号量sem_wait(&semaphore);// 临界区操作// 发送信号量sem_post(&semaphore);}}int main() {// 初始化信号量sem_init(&semaphore, 0, 1);// 创建线程pthread_t thread;pthread_create(&thread, NULL, thread_function, NULL); // 主线程操作// 销毁信号量sem_destroy(&semaphore);return 0;}```3. 条件变量条件变量通过线程之间的等待与唤醒机制实现同步与互斥。
《操作系统》实验内容
实验二编程实现进程(线程)同步和互斥
1.实验的目的
(1)通过编写程序实现进程同步和互斥,使学生掌握有关进程(线程)同步与互斥的原理,以及解决进程(线程)同步和互斥的算法,从而进一步巩固进程(线程)同步和互斥等有关的内容。
(2)了解Windows2000/XP中多线程的并发执行机制,线程间的同步和互斥。
(3)学习使用Windows2000/XP中基本的同步对象,掌握相应的API函数。
(4)掌握进程和线程的概念,进程(线程)的控制原语或系统调用的使用。
(5)掌握多道程序设计的基本理论、方法和技术,培养学生多道程序设计的能力。
2.实验内容
在Windows XP、Windows 2000等操作系统下,使用的VC、VB、java或C等编程语言,采用进程(线程)同步和互斥的技术编写程序实现生产者-消费者问题或哲学家进餐问题或读者-写者问题或自己设计一个简单进程(线程)同步和互斥的实际问题。
3.实验要求
(1)经调试后程序能够正常运行。
(2)采用多进程或多线程方式运行,体现了进程(线程)同步和互斥的关系。
(3)程序界面美观。
4.实验步骤
(1)需求分析:了解基本原理,确定程序的基本功能,查找相关资料,画出基本的数据流图;
(2)概要设计:确定程序的总体结构、模块关系和总体流程;
(3)详细设计:确定模块内部的流程和实现算法;
(4)上机编码和调试;
(5)运行测试;
(6)编写实验报告。
5.实验报告要求
格式符合《实验报告格式》书;书写规范,排版美观,有较强的文字表达能力,能够正确地表达自己的思想,图表符合规范。
6.实验说明
本实验分两次进行,每次要求填写一份实验报告,报告中的实验名分别为:编程实现进程同步和互斥1和编程实现进程同步和互斥2,其他内容依据实验进度具体填写。