激光焊接技术及焊接机器人简介
- 格式:pptx
- 大小:9.19 MB
- 文档页数:71
自动焊锡机
自动焊锡机由WELLER温控器+ WELLER发热芯+双轴/三轴/四轴运动平台+手持编程器组成。
大功率真加热控制器,保证焊接的稳定性。
具有侧点功能,防止由于针脚不齐面引起焊接不良的情况,具有自动清洗功能,程序更加优化,达到很高生产效率,高清密送锡机构,低噪音,高精度。
产品概述:
LHZ-300N自动焊锡机主要应用于电子制造业,主要针对回流焊、波峰焊等生产设备很难达到的工艺制程以及焊锡加工,特别适用于混装电路板、热敏感元器件、SMT后端工序中敏感器件的焊接,广泛应用于PCB焊线、充电器插头焊接、连接器焊接、DC端子加锡、LED灯带连接等领域。
自动焊锡机器人代替人工焊接,提高工作效率,改善焊接质量。
产品特写:
1、灵活多样的焊锡方式,具有点焊、拖焊(拉焊)等功能,并也内置打螺丝、点胶及搬运程式。
2、设备可存储操作程序,同一机器可对不同产品进行焊锡加工。
3、设备机械手臂均为铝型材开模铸造,不变形、不生锈、运行稳固。
4、设备编写工作程序可进行点到点、块到块的复制,缩短程序编写时间。
5、设备具有自动清洗功能,一定程度上稳定了焊锡加工质量与延长烙铁咀使用寿命。
6、多轴联动机械手,全部采用精密步进马达驱动及先进运动控制算法,有效提升运动定位精度和重复精度。
设备组成:
基本参数:
适用范围:
电子汽车、集成电路、印刷电路、彩包液晶屏、马达、对温度敏感的电子元件焊接、连接器(CONNECTOR)、排线、细小的CABLE、喇叭和马达等。
公司网站:东莞市塘厦领航者自动化设备厂,主要从事非标自动化设备的研发制造和销售为一体的企业。
激光焊接技术原理及工艺分析
激光焊接技术是一种高精密性焊接技术,其原理是利用高能量激光束对焊接材料进行
熔化并加热,使其达到熔化状态,然后使母材和焊材熔合,形成焊缝。
激光焊接技术具有
焊缝小、熔化深度浅、热影响区小、熔池凝固速度快、焊接速度快、成形美观等优点。
激光焊接工艺主要包括焊缝设计、焊接参数选择、设备调试、工艺控制等几个方面。
焊缝设计需要根据焊接材料的性质和焊接要求来确定焊缝的形状和尺寸。
焊接参数的选择
包括激光功率、焊缝速度、焊接气体种类和流量等,需要根据材料特性和焊接要求进行选择。
设备调试主要包括激光器的调试和光束传输系统的调试等。
工艺控制主要包括工件定位、焊接过程中的温度控制和焊接质量的检测等。
激光焊接工艺有很多种,其中比较常用的是峰值功率调制焊接、脉冲时间调制焊接和
连续波焊接等。
峰值功率调制焊接是在一定时间内增加激光功率,使焊接材料快速熔化和
凝固,从而实现焊接。
脉冲时间调制焊接是通过调节激光脉冲时间和脉冲频率,实现焊接
材料的熔化和凝固。
连续波焊接则是将激光束连续发射,通过控制焊接速度和功率,实现
材料融化和凝固。
激光焊接技术在飞机、船舶、汽车、机器人以及电子设备等领域的应用越来越广泛。
它不仅可以替代传统的焊接工艺,在提高焊接质量的同时,也能够提高生产效率和生产率。
未来,激光焊接技术有望进一步发展,成为高精度微观加工和大型结构焊接等领域的重要
工艺。
焊接机器人文献综述关节机器人对基于视觉反馈控制的激光焊接的焊缝追踪摘要:激光焊接对于机器人轨迹精度有相当高的要求。
为了提高机器人激光焊接时的动态轨迹精度,人们基于立体视觉反馈控制的原理提出一种新的三维焊缝追踪的方法。
这种方法建立了一种可视反馈控制系统,在该系统中有两个集中于一点的相机被安装在工业机器人的后面。
人们建造了一种具有坐标系统的工具以便把机器人最终环节的位置转移到该工具上。
人们提出了一种GPI 转移方法,这种方法是利用双目望远镜可视技术和一种逐行选配的修改法则来计算激光焦点和焊缝的位置,它使得激光焦点和焊缝之间的动态轨迹错误可以计算出来。
人们最终控制机器人的移动,并且在机器人运动学的基础上尽可能减少运动轨迹的错误。
实验结果表明,这种方法能有效改善用于激光焊接的工业机器人的运动轨迹的精度。
关键词:工业机器人,视觉反馈,焊缝跟踪,轨迹精度。
1 引言目前,卖给客户的关节机器人仅仅能够保证位置精度而不能保证运动轨迹。
然而,随着制造加工业的发展,一些高速和高精度的工作,例如激光焊接和切割,对轨迹精度有十分高的要求。
此外,在严格地结构化环境下目前的工业仅能够在预定的命令下移动,这限制了他们的应用范围。
人们提出了许多研究计划来改善机器人在人们所认识的环境下的能力。
作为一个重要的测量方法,视觉对改善工业机器人在人们所认识的不同的环境下的能力起着重要作用。
参照文献[1],人们以位置为基础建造了一种具有可视伺服系统的工业机器人,并且提出了一种运算法则,当事先知道物体一些特征点的距离时,利用这种法则就可以用一台照相机估计出物体的位置和外形。
参照文献[2],基于eye-in-hand的可视伺服结构,物体的平面移动轨迹实现了一种eye-on-object的方法。
参照文献[3],有这样一个问题:机器人最终环节的真实位置与人们用空间路径规划和图像基础控制的方法所预期的位置相差很远。
参照文献[4],人们开发了一种工业火焰跟踪系统来切割视觉上的平面图形。
自动化焊接技术及应用一、引言自动化焊接技术是现代工业制造中的重要环节之一,它能够提高焊接效率、保证焊接质量、降低劳动强度以及减少人为因素对焊接过程的影响。
本文将详细介绍自动化焊接技术的原理、分类以及在不同领域的应用。
二、自动化焊接技术的原理自动化焊接技术是通过将焊接过程中的各个环节实现自动化,从而实现焊接的高效、精确和稳定。
其原理主要包括以下几个方面:1. 焊接设备自动化:自动化焊接设备包括焊接机器人、焊接工作站等。
焊接机器人通过预先编程的路径和动作来实现焊接操作,可以根据不同的焊接任务进行灵活调整。
焊接工作站则是通过自动化的机械装置来完成焊接操作,提高生产效率。
2. 自动化控制系统:自动化控制系统是实现自动化焊接的核心部分,它可以监测和控制焊接过程中的各个参数,如电流、电压、速度等。
通过精确的控制,可以保证焊接质量的稳定性和一致性。
3. 感知和识别技术:自动化焊接中的感知和识别技术主要包括视觉系统、力传感器等。
视觉系统可以通过图像处理技术来实现焊缝的检测和定位,力传感器则可以实时监测焊接过程中的力的大小和方向,以保证焊接质量。
三、自动化焊接技术的分类根据焊接过程中的不同特点和要求,自动化焊接技术可以分为以下几类:1. 弧焊自动化技术:弧焊是目前应用最广泛的焊接方法之一,其自动化技术主要包括焊接机器人的应用和自动化控制系统的实现。
弧焊自动化技术可以适用于不同材料和焊接位置的焊接任务,具有高效、精确和稳定的特点。
2. 激光焊接技术:激光焊接是一种高能量密度焊接方法,其自动化技术主要包括激光焊接机器人的应用和自动化控制系统的实现。
激光焊接技术可以实现高速焊接和高质量焊接,适用于焊接薄板和复杂结构的工件。
3. 电阻焊接技术:电阻焊接是一种通过电流通过工件产生热量来实现焊接的方法,其自动化技术主要包括自动化电阻焊接机的应用和自动化控制系统的实现。
电阻焊接技术可以实现高速焊接和高强度焊接,适用于焊接金属工件。
什么叫做激光焊激光焊是一种利用激光束作为热源进行焊接的高科技焊接技术。
通过控制激光束的能量密度和焦点位置,将焊接接头处加热至熔化状态,从而实现材料的熔接。
激光焊具有焊接速度快、热影响区小、焊缝质量高等优点,因此在诸多工业领域应用广泛。
激光焊原理1.激光束产生:激光束是由激光器产生的一束聚焦光束,其具有高能量密度和方向性。
2.激光能量吸收:激光束照射到工件表面时,能量将被吸收并转化为热能。
3.材料熔化:高能激光束照射到焊接接头处,使其升至熔化温度。
4.熔池形成:材料熔化后形成熔池,在激光束作用下熔池深度逐渐增加。
5.焊缝形成:当激光束移动时,熔池逐渐凝固形成焊缝。
激光焊优点•高能量密度:可在短时间内提供高能量,加快焊接速度。
•小热影响区:激光焊热输入小,降低工件变形风险。
•高精度:激光焊焊缝质量高,具有较高的焊接质量。
•无接触焊接:激光焊是一种非接触焊接方法,适用于高精度焊接。
激光焊应用领域激光焊技术在多个领域得到了广泛应用,主要包括但不限于以下几个方面:1.汽车制造:激光焊用于汽车车身焊接,提高了焊接质量和生产效率。
2.航空航天:激光焊广泛应用于航空航天领域的零部件加工和修复。
3.电子制造:激光焊在电子零部件的微细焊接中发挥着重要作用。
4.医疗器械:激光焊被用于医疗器械的制造和装配,保证产品的质量和卫生标准。
结语总的来说,激光焊作为一种高效、高精度的焊接技术,在工业生产中具有重要意义。
随着技术的不断进步和应用范围的扩大,激光焊将继续发挥着重要作用,为各行各业的生产与制造提供更加高效、高质量的解决方案。
手持激光焊接机工作原理
1、手持激光焊接机的概述
手持激光焊接机是一种新兴的焊接设备,其焊接效果好、速度快、稳定性高、精度高等特点受到广泛的关注和应用。
手持激光焊接机具有便携、易操作、拓展性强等特点,可以用于航空、汽车、电子等行业的生产制造,大家在经济逐步发展的今天,它将会被更广泛地应用于工业领域。
2、手持激光焊接机的工作原理
手持激光焊接机的焊接过程是利用激光束把需要焊接的部分直接熔化,然后使用气体或者外部材料进行加固或填充。
手持激光焊接机的使用需要选好焊接材料和工艺。
手持激光焊接机采用高能量激光器,该激光器可以产生高能量密度的激光束,对被焊接材料进行加热和熔化,从而实现材料的焊接。
激光束的功率高,能量密度大,可以轻松穿透被加工材料的表面,从而达到熔化加工的目的。
手持激光焊接机的焊点非常小,冷却快,加工精度高。
3、手持激光焊接机的优点
1、焊接精度高,焊缝质量优。
2、激光束温度调节范围大,加工材料广泛。
3、焊接速度快,效率高。
4、可实现手持操作,加工范围广,适用性强。
5、加工过程无需使用气焊枪及气瓶。
4、手持激光焊接机的应用
手持激光焊接机的应用范围非常广,可以应用于航空、汽车、电子等行业的生产制造,也可以用于金属零部件、各种管道、金属薄板等的焊接加工。
手持激光焊接机可以用于高精密度、高要求的自动化生产线,也可以广泛应用于现场焊接,比如船舶维修、桥梁焊接、风力发电机塔座等。
手持激光焊接机的使用将会颠覆传统焊接方式,在工业领域不断的发挥着重要的作用。
激光焊接的工艺技术和性能特点介绍激光焊接的工艺技术和性能特点一、激光焊接的工艺参数。
1、功率密度。
功率密度是激光加工中最关键的参数之一。
采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。
因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。
对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。
因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。
2、激光脉冲波形。
激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。
当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。
在一个激光脉冲作用期间内,金属反射率的变化很大。
3、激光脉冲宽度。
脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。
4、离焦量对焊接质量的影响。
激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。
离开激光焦点的各平面上,功率密度分布相对均匀。
离焦方式有两种:正离焦与负离焦。
焦平面位于工件上方为正离焦,反之为负离焦。
按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。
负离焦时,可获得更大的熔深,这与熔池的形成过程有关。
实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。
与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。
当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。
所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。
二、激光焊接工艺方法:1、片与片间的焊接。
包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。
机器人焊的工作原理机器人焊接是指利用机器人自动执行焊接工作的技术。
机器人焊接的工作原理是通过将焊接任务编程到机器人控制系统中,机器人根据预先设定的程序自动执行焊接操作。
1. 传感器检测:机器人焊接的第一步是通过传感器检测焊接工件的位置和形状。
传感器可以是视觉传感器、激光传感器或者接触传感器等,用于获取焊接工件的几何信息。
2. 焊接路径规划:根据传感器获取的焊接工件信息,机器人控制系统会进行路径规划,确定焊接的路径和轨迹。
路径规划考虑到焊接工艺参数、焊接材料的性质以及焊接质量要求等因素。
3. 焊接电源控制:机器人焊接需要使用焊接电源来提供焊接能量。
焊接电源控制系统根据焊接工艺参数,调节焊接电流、电压和焊接时间等参数,确保焊接过程的稳定性和一致性。
4. 焊接枪控制:焊接枪是机器人焊接的关键部件。
焊接枪通过控制系统的指令,控制焊接电源的开关和焊接电流的大小。
焊接枪还可以根据焊接路径规划的要求,实现焊接速度的调节和焊接角度的控制。
5. 焊接过程监控:机器人焊接过程中,需要对焊接质量进行监控和控制。
通过传感器对焊缝进行实时检测,可以检测焊接缺陷如焊洞、焊裂等,并及时调整焊接参数,以保证焊接质量。
6. 焊接后处理:焊接完成后,机器人还可以进行焊接后处理工作,如清理焊渣、修整焊缝等。
这些后处理工作可以通过机器人手持工具或者其他辅助装置来完成。
总结:机器人焊接的工作原理是通过传感器检测焊接工件的位置和形状,进行路径规划,控制焊接电源和焊接枪,监控焊接过程,并进行焊接后处理。
机器人焊接技术的应用可以提高焊接效率和质量,减少人工操作的风险和劳动强度,广泛应用于汽车创造、航空航天、电子设备等领域。
焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。
研究表明激光焊接技术将逐步得到广泛应用。
越来越多的企业选择使用激光焊接机了,那么激光焊接机工作原理是什么呢:激光焊接机工作原理:激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。
功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。
其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。
激光焊接工艺流程及特点非接触加工,不需对工件加压和进行表面处理。
短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、特种材料。
焊点小、能量密度高、适合于高速加工。
不需要填充金属、不需要真空环境(可在空气中直接进行)、不会像电子束那样在空气中产生X射线的危险。
与接触焊工艺相比.无电极、工具等的磨损消耗。
微小工件也可加工。
此外,还可通过透明材料的壁进行焊接。
无加工噪音,对环境无污染。
可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。
很容易搭载到自动机、机器人装置上。
对带绝缘层的导体可直接进行焊接,对性能相差较大的异种金属也可焊接。
激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。
通过光学系统将激光束聚焦在很小的区域内,在极短时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。