当前位置:文档之家› 污水中的氮处理

污水中的氮处理

污水中的氮处理
污水中的氮处理

污水中的氮一般以有机氮、氨氮、亚硝酸盐氰和硝酸盐氮四种形式存在。生活污水中氮的主要存在形态是有机氮和氨氮。通常采用的二级生化处理技术对氮的去除率是比较低的,一般将有机氮化合转化为氨氮,却不能有效地去除氮。污水脱氮,从原理看,可以分为物理法、化学法和生物法三大类。由于生物脱氮一般能够满足有关方面对污水净化的要求,而且价格低廉,产生的二次污染物较易处理,因此生物脱氮方法是当前最活跃的研究与投资开发领域。

一、生物脱氮技术

生物脱氮技术主要是利用污水中某些细菌的生物氧化与还原作用实现的。生物脱氮工艺从碳源的来源分,可分为外碳源工艺和内碳源工艺;从硝化和反硝化过程在工艺流程中的位置来分,可分为传统工艺和前置反硝化工艺;按照细菌的存在状态不同,可以分为活性污泥法和生物膜法生物脱氮工艺。前者的硝化菌、反硝化菌等微生物处于悬浮态,而后者的各种微生物却附着在生物膜上。

1.活性污泥法

活性污泥法是一种历史悠久、目前应用最广泛的生物脱氮技术,它有许多种形忒。

(1)活性污泥法传统流程这是一种传统的三级生物脱氮工艺,即有机物的氧化、硝化和反硝化作用分别在不同的构筑物中完成,如下图所示:

由于有机物去除、氨氧化和硝酸盐还原依次进行,彼此之间相对独立,并分别设置污泥沉淀及回流系统,系统运行的灵活性比较强,有机物降解菌、硝化菌和反硝化菌的生长环境均较佳,因而反应速度快,脱氮效果也比较好。但是,三级活性污泥法的流程长、构筑物多、附属设备多,因此基建费用高、管理难度大。此外,为了保持硝化所需的稳定pH值,往往两要向硝化池加碱,为了保证反硝化阶段有足够的电子受体,需要外加甲醇等碳源,为了除去尾水中剩余的有毒物质甲醇,又必须增设后曝气池,所以运行费用也很高。可以看出,这种工艺的确具有很大的局限性。

如果将有机物去除和硝化放在同一个反应器中进行,而将反硝化作用放在另一个反应器中进行,则可以将三级生物脱氮系统简化为两级生物脱氮系统。如下图:

与三级生物脱氮流程相比,两级生物脱氮流程的基建费用和占地面积均有所降低,但是仍然需要外加甲醇和碱源。

(2)前置反硝化生物脱氮系统又称缺氧-好氧活性污泥脱氮系统、A/0生物脱氮流程、改良LudMck-Euinger工艺等。前置反硝化是目前使用比较广泛的一种脱氮工艺(分建式缺氧好氧活性污泥脱氮系统如下图:)。

除分建式系统外,本工艺还可以建成合建式装置,即将缺氧和好氧环境放在-个构筑物内,中间以挡板隔开,挡板下端与池内壁之间以一定的缝隙相通,如下图所示:

采用合建式装置,对于现有推流式曝气池的改造来说更加方便。

与传统的生物脱氰流程相比较,该流程具有如下优势。

①由于构筑物数量减少,因而流程得以简化,占地面积减少,且缺氧段消耗原污水中的部分有机物,能够降低好氧段的有机物污泥负荷,不仅容易使硝化菌取得竞争优势,而且降低了曝气充氧的电耗,因而基建费用和运行费用均比较低。

②将缺氧段放在好氧段前边,可以起到生物选择器的作用,有利于防止污泥膨胀,改善活性污泥的沉降性能。

③反硝化过程能够充分利用原污水中有机物和内源代谢产物作为电子受体,既可以减少或取消外加碳源,从面省去后曝气池,提高处理水水质,又可以保证较高的碳比,有利于反硝化的充分进行。

④由于存在内循环,缺氧反硝化产生的碱度能够补偿硝化反应所造成的pH 值下降,大大降低了碱投加量。

前置反硝化生物脱氮系统也有自己的不足之处。一是处理出水中含有一定浓度的硝酸盐,可能污染受纳水体。第二,由于内回流比限制本工艺的脱氮率一般为70%~80%, 很难达到90%。而且,该工艺对运行管理人员的素质要求比较高。例如,如果系统运行不当,沉淀池内将发生反硝化反应,造成污泥上浮,使处理水恶化。

(3)氧化沟工艺从工艺、流态和构造方面看,氧化沟也非常适合于生物脱氮。

①氧化沟的污泥龄通常很长,一般可达15~30d,非常适合于世代时间长、增值缓慢的硝化菌存活与繁殖。

②氧化沟往往做成总长达几十米甚至上百米的环行构筑物。由于循环次数多达72次其至360次,混合液沿沟道方向近似于完全混合式。然而由于工艺状况不同,混合液中溶解氧的浓度在不同位置也存在很大差异:在曝气器的附近非常容易出现DO比较高的富氧区,而在远离曝气装置的地方,容易出现DO比较低的缺氧区,使硝化和反硝化能够在同一装置中順利进行,从而达到生物脱氮的目的。

据报道,Carrousel氧化沟、交替工作氧化沟、二次沉淀池交替运行氧化沟、Orbal型氧化沟、曝气-沉淀一体化氧化沟和刺渠型一体化氧化沟等均可以用于脱氮,其脱氮效率可以达到60%-90%,例如,Carrousel氧化沟的脱氮率为90%, Orbal型氧化沟的总氮去除率也以达到85%~90%。

氧化沟工艺构造简单,运行稳定,易于管理维护,出水水质好,基建费用和处理成本均较低,对原水水质水量的变化也有很强的适应性,是一种非常有竞争力的生物脱氮技术。

2.生物膜法

生物膜法是与活性污泥法并列的一种污水处理技术。由于生物污泥的生物固体平均停留时间与污水的水力停留时间无关,世代时间比较长、比增殖速度较小的硝化菌和亚硝化菌都能够很好的繁殖和增殖,因此各种生物膜处理工艺都具有一定的硝化功能,采用适当的运行方式,还能够达到反硝化脱氮的要求。而且,与活性污泥法相比,生物膜法还具有下列优点。

①微生物浓度高,处理效率高。据实测,如果折算成曝气池的MLVSS,珥以达到40?60g/L,远远高于活性污泥处理系统。

②污泥龄长,产泥量少。由于生物膜上存在的食物链较因此产泥量少,剩余污泥的处理量仅为活性污泥法的一半左右。在生物转盘上还可以生长世代时间较长的硝化菌,因此如果得当,除有效去除有机物外,还能够具有硝化和反硝化脱氮的作用,其工艺流程如下图:

该工艺的脱氮原理是:由于降解有机物的好氧氧化菌的生长繁殖优先于硝化菌与亚硝化菌,因此,在前两级转盘上去除有机物的能力较强,而后两级能够产

生比较充分的硝化反应,形成硝酸盐氮和亚硝酸盐氮。由于转盘低速旋转的传质作用.这些硝态氮随污水进人处于厌氧状态的淹没式转盘时,与外加甲醇充分接触,进行反硝化脱氮反应。而残留下来的甲醇再经过好氧生物转盘的处理后得到去除。

污水处理系统

14 污水处理系统 14.1废水处理概述 结合本项目处理处置工艺特点,废水来源主要为物化处理车间处理后废水、运输车清洗废水、厂区收集的受污染的场面雨水和各车间的地面冲洗水等。 本工程废水来源较复杂,设计遵循分类收集、分质处理的原则,采用物化与生化相结合的废水处理方式,生活污水和生产废水分类收集、分别处理,生产废水进入物化车间蒸发处理,最后进入污水站。废水经最终处理后回用于急冷塔、喷淋洗涤塔、蒸汽冷凝器等工段。 根据工程特点,废水处理能力应有一定的余量,以适应废水水量和水质的不均匀变化。 14.2 废水水量及水质 本项目总水量为157.3m3/d,废水水量见表14-1: 表14-1 废水产生量一览表

本项目处理总规模为157.3m3/d,同时考虑到厂区预留其他综合利用用地,本项目设计按200m3/d考虑。 14.3设计进出水质 本工程废水来源较复杂,设计应遵循分类收集、分质处理的原则,根据对各股废水水质的分析,冲洗废水、物化车间排水、化验室排水及初期雨水统一集中处理。生活污水单独收集处理。各股废水水质分析见下表: 表14-2 废水水质一览表 废水处理设计要求参照《城市污水再生利用工业用水水质标准》(GB19923-2005)中的“敞开式循环冷却水补水”和“工艺与产品用水”标准,见表14-3。

表14-3 废水回用标准限值 14.4处理工艺 (一)工艺流程 工艺流程图见下图14-1。

图14-1 废水处理工艺流程图

(二)工艺流程简述 (a)各股废水进入单独的调节池(初期雨水进入单独的雨水收集池),经过调节和均质的各股废水先进行分质预处理。 利用稀硫酸调节pH值到3,废水由水泵打入Fenton氧化池,投加Fe2+和双氧水,将废水中难降解有机物进行深度氧化,同时对有机物中络合的各种重金属离子进行释放。 Fenton氧化池确保试剂反应完全,之后出水自流进入还原池。在还原池中,利用NaHSO3将Cr6+离子还原为Cr3+离子,还原池出水自流进入一级沉淀池。 沉淀池内在反应区调节废水pH值至9.5,并投加适量的PAM、PAC,反应池出水自流进入沉淀区,废水中的大部分重金属离子(包括Cd、Cr、Pb、Ni、Cu等重金属)以氢氧化物的形式在一次沉淀池沉淀下来,同时在一级沉淀池之后设置二级沉淀池,用于投加重金属捕集剂,去除残余的各种重金属离子,实现重金属的有效去除。一、二级沉淀产生的污泥由污泥泵打入污泥池,沉淀池的上清液自流进入综合调节池。 (b)预处理系统的废水及生活污水进入生化系统进行处理。 水解酸化池采用上流式,依靠泵的大阻力布水确保泥水混合均匀。此外,考虑到废水可生化性不佳,上流式水解池具有较好的水解酸化处理效果和运行稳定性,并大大减小了堵塞和污泥床膨胀等现象发生的可能性,同时具有较强的抗冲击负荷性能,且不宜发生污泥流失现象。水解酸化出水自流进入后续好氧氧化系统。好氧氧化采用缺氧

浅谈水资源循环利用与污水处理

浅谈水资源循环利用与污水处理 摘要:当今时代,人类经济发展越来越快,经济的快速发展不仅使得需水量不断增加,而且使得现今的水污染也越来越严重,不仅如此,水资源的无节制开发与不合理的运 用使得水资源问题更加严峻。水资源正在被单方面地加速消耗,传统的节约水资源方 式以及理念已经跟不上急速减少的岁资源速度,所以,提出合理开发水资源与雾水处 理方式是当下之急,目的是节约水资源与加大水资源的循环利用率,并处理好污水。 关键词:水资源短缺循环利用污水处理 正文:水是人类社会经济发展的基础自然资源,也是人们生存、生活不可替代的生命源泉。但是目前全球一半的河流水量大幅减少或被严重污染,世界上80个国家占全球40%的人口严重缺水。水资源危机已经成为当今世界许多国家社会经济发展的制约因素。 建立循环型社会是人类永续生存和可持续发展的必然趋势。人类对水资源的健康循环 利用正是一切资源循环利用之首。创建水资源循环经济,是建立循环型社会所必需的基础。 1.水资源循环概念 水是循环性资源,亦是可以再生的资源。根据其客观规律和循环的方式,我们可 以把它分为自然循环与社会循环。 1.1自然水循环 水在自然界中以固态、液态、气态三种方式存在,在水圈、大气圈、岩石圈、生 物圈范围内处于往复不停的循环运动状态中。在太阳辐射和地心引力的作用下,水从 海洋蒸发变成云(水汽),又以雨、雪等方式降落到地面,部分蒸发,部分渗入地下 或汇成地下径流和地表径流,最终又回归大海。水的这种周而复始的循环运动称为水 的自然循环。 自然水循环的特点:①自然水循环是一个相对稳定的、而又错综复杂的动态系统,不论是大循环还是小循环,都和气候、土壤、地质地貌和植被条件等自然因素有关。 还受到山塘、水库等人为因素影响。水资源的质与量及其分布状况是自然历史发展的 产物;②在水的自然循环中,不但存在水量的平衡关系,而且还存在着水质的动态平 衡关系,即水质的可再生性。在大自然循环条件下,全球的水量循环是平衡的。据 近期资料报道,全球的循环水量为496000Km3。其中,海洋蒸发水量425000 Km3,陆地(包括陆地水面以及土地)蒸发水量71000 Km3;全球水分蒸发水量

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

一体化污水处理系统

一体化污水处理系统 摘要: 与传统污水处理工艺相比,一体化污水处理工艺具有占地少,投资小等特点。针对目前的污水处理技术应用与发展趋势,本文介绍了SBR工艺以及SBR 的变形工艺等一体化污水处理技术和近年来该类技术的发展概况,并就一体化污水处理工艺的主要发展和研究方向作了简要的分析。 关键字:一体化、污水处理、SBR工艺 1 一体化污水处理发展 伴随我国城市居住人口总量的迅猛提升以及工农业生产的快速发展,令排放污水总量不断增加、并呈现出较为严重的水体污染现象,该问题在全国各地均有所涉及。由此不难看出!我国为水资源污染问题较为严重的区域。再加上污水处理工作产业发展起步相对较晚,同时提速较为缓慢!应用处理技术较为滞后。在应用一体化污水处理工艺与装置前期、我国处理污水技术手段水平仍旧较低。面对生活污水问题逐步严峻的现状、处理污水市场逐步实现了飞速发展,为符合我国该行业领域的需要、促进一体化污水处理工艺与装置诞生。自引入一体化污水处理系统进行生活污水处理以来,我国生活污水导致的污染水资源问题得到了明显的改善。由整体层面来讲,我国处理污水正面临着时代变革。从规模较小、水平不高、种类单一、无法符合需求的状况发展形成了具备一定规模、技术水平持续提升、不断进步、各类处理工艺逐步更新,装置质量有效提升的全新局面、不断满足国民经济建设发展的需要、在处理污水装置投入应用以来、我国处理污水的工作需要逐步拜托对国际行业市场技术的全面依赖性、实现处理污水工艺与装置的真正自给。 同时由于大中型污水处理厂的规模效应,大型化长期以来一直是污水处理的发展方向。近年来,由于大中型污水处理厂投资大,占地大,需要配套建设庞大的污水收集管网等缺点,中小型污水处理工艺开始成为污水处理工艺的主要发展方向。污水的处理正在从集中化走向分散化,从大规模集中式向中小规模分散式的转变川。“以大型为主,中小型互补”的布局符合我国国情和发展形势,也为一体化污水处理设备的应用和发展提供了新的契机。

污水处理与循环经济

污水处理与循环经济 摘要我国人均水资源贫乏。随着经济增长和城镇化发展,城市的用水量和排水量都将相应增长,再生水回用已成为弥补城市水资源短缺的必然选择。文章以循环经济的视角简析了污水处理企业的运行,希望为我国城市大力推广再生水回用提供一点参考意见和建议。 关键词污水处理循环经济 一、我国水资源需求与污水处理的现状 当今全球人口不断增长,人类面临的资源供给与消耗之间的矛盾日趋尖锐。据资料显示,截至2011年底,我国水资源总量约占全球水资源总量的7%,人均水资源仅占世界平均水平的四分之一,属于世界人均水资源贫乏的国家之一。我国现有的660多个城市中,缺水的占60%以上,其中严重缺水的有110多个,甚至在多水的长江流域也有近60个城市缺水。一方面是水资源短缺,另一方面是水资源浪费和污染现象十分严重。在我国政府大力治污减排的推动下,近十年来我国污水处理能力有了很大提高,污水排放总量增速放缓,由“十五”期间的8%左右降到2010年的3%左右。据住建部发布的资料显示,2003年底,我国已建成运行的污水处理厂516座,污水处理能力3284万立方米/日。截至2013年3月底,全国累计建成城镇污水处理厂3451座,污水处理能力约1.45亿立方米/日。随着经济增长和城镇化发展,城市的用水量和排水量都将相应增长,再生水回用已成为弥补城市水资源短缺的必然选择。 二、从循环经济视角简析污水处理企业的运行 过去十年时间,我国各地新增了近三千个污水处理厂,污水处理能力增长一亿多立方米/日。伴随着各地污水处理新企业的建成,这个行业中的一些老问题也陆续在各地出现。从企业运行的入口端看,污水汇集量不足,管网配套滞后;电力需求大,能耗高。从企业运行的出口端看,再生水直排入水体;污泥,外运倾倒。据媒体报道,一些地方的污水处理厂因无序倾倒污泥引起公众的怨恨,因污泥含水份高,有臭气,且含重金属、病菌等,极易造成二次污染。以循环经济视角看污水处理企业的运行,能更好的理清发展思路。 循环经济的原理,是以资源的高效利用和循环利用为核心,以“减量化、再利用、资源化”为原则,以低消耗、低排放、高效率为基本特征,本质上是一种生态经济,源于人类摆脱环境污染的困扰和重新处理人与自然的关系。 以城市污水处理厂为例,其资源主要是生活污水;其主产品是再生水,又称中水;副产品是污泥;流向,大部分再生水直排入水体,绝大部分污泥未经处置外运倾倒。这个流程呈现的是传统经济模式,即由“资源-产品-污染排放”的单向流动。按照循环经济要求,污水处理厂的规划建设,要体现“资源-产品-再生资源”的反馈式流程的理念和布置,即要最大限度的实现再生水和污泥的资源化。目前污水处理项目规划建设中,主要是污水处理方面的投资,综合利用方面的投资比重很低,也没有预留资源化的发展空间,再生水没有被回用浪费了企业成本和社会成本。

水处理与循环利用

水处理与循环利用 1. 钢铁企业总排口综合污水处理与回用技术 该技术以多流向强化澄清池、V型滤池为核心技术,以超滤+反渗透为脱盐手段,实现了钢铁企业总排口综合污水处理与回用的科学性、多样性、可行性,是我单位承担的国家“十五”科技攻关项目《钢铁企业用水处理与污水回用技术集成研究与工程示范》的研究成果。 其特点是: ? 吸收了目前国内外先进的钢铁企业总排口综合污水处理与回用工程的经验; ? 实现了关键设备的国产化开发,与采用国外设备相比,降低工程总投资约40%; ? 实现了钢铁企业外排污水的综合利用,大幅度提高了水的重复利用率,降低了吨钢新水用量; ? 先进的澄清池工艺与结构,具有占地少、药剂投加量低、抗冲击能力强等特点; ? 污水经过超滤-反渗透深度处理后,可回用于对水质要求较高的用户; ? 已经成功应用于30000~150000m3/d规模的大、中型钢铁企业总排口污水处理厂,并且取得了良好的处理效果; ? 可以实现钢铁联合企业除焦化污水以外的其他所有污水的“零排放”及资源化。 2. 钢铁企业节水减排技术 2.1 炼钢转炉除尘循环水处理技术 针对炼钢转炉除尘循环水悬浮物含量高的特点,我公司开发的YJ型高效沉淀池,实现了污水澄清和污泥浓缩在一个设施内完成;出水效果好,沉泥含固率大于40%,远高于普通沉淀池;大幅度降低了污泥后处理的投资,节约了占地面积;运行稳定。 2.2 轧钢循环水处理技术 2.2.1热轧循环水 天津无缝钢管公司460轧管厂热轧循环水处理工程(处理水量220000m3/d) 2.2.2 冷轧废水

采用超滤膜技术处理冷轧乳化液,可达到良好的油水分离效果,使乳化油得以回收 2.3 钢铁企业供水处理技术 综合利用钢铁企业各主体生产工艺水处理技术,采用过程治理与集中治理相结合的总体水处理优化方案,提高循环水浓缩倍数,降低各生产工艺系统水排放量,最终达到钢铁企业内部废水处理与回用的最优化和最大量化,实现钢铁企业污水的“零排放”。 3.给水处理技术 宁波建龙钢铁有限公司中央供水工程(水量150000m3/d) 矿井水处理用作生活饮用水工程 4. 城市市政污水处理 ①采用悬链曝气器作为曝气设施,阻力小,产生的气泡直径小,氧的转移率和利用率高,能耗低,运行费用低; ②与一般生化处理工艺相比,污泥龄长,剩余污泥量少,净化效率高; ③采用阶段曝气,交替实现缺氧和好氧环境,可有效去除氨氮和磷; ④悬链曝气器安装不需水下固定,检修方便。 5. 高浓度有机污水处理技术

低碳氮比农村生活污水处理工艺

低碳氮比农村生活污水处理工艺 北极星节能环保网:近年来,随着我国农村经济发展与农村生活水平的提高,越来越多的农村生活污水进入水体,对水体环境产生严重污染。农村生活污水的随意排放是我国农村地区水环境污染的主要原因。如太湖水体富营养化的主要污染物中,25.1%的氮、60%的磷源于农村生活污水。 目前,国家已将《农村环境连片整治》列入环境保护“十二五”规划的重点治理项目,其中农村生活污水的治理列为重点。脱氮是污水处理的重要功能之一,而目前传统的生物脱氮方式主要是通过硝化过程将NH4+氧化成NO3-,再通过反硝化过程将NO3-还原为N2排入大气。 在反硝化过程中需要消耗大量的有机碳源,而目前的农村生活污水C/N较低,致使反硝化过程所需碳源不足,造成脱氮效率下降。因此研究和应用节能高效的废水脱氮工艺技术,已成为当今水污染控制领域的研究热点。 厌氧氨氧化(ANAMMOX)工艺,是由荷兰Delft理工大学根据厌氧氨氧化原理研究开发的一种新型污水生物脱氮工艺。在此基础上发展出了多种生物脱氮工艺,如:CANON、OLAND 等。但实际氨氮废水的产生中往往会有一定浓度的COD,限制了该技术在工程上的实际应用。 最近研究表明,ANAMMOX菌可成功的氧化丙酸,同时葡萄糖、甲酸、丙氨酸并不影响ANAMMOX过程,而且ANAMMOX菌能够与异养反硝化菌竞争利用有机物,例如丙酸。因此对ANAMMOX与硝化/反硝化的相互关系的研究相当活跃,出现了同时亚硝化、ANAMMOX 和反硝化工艺(SNAD)。 本文以模拟废水为原水,首先在厌氧水解酸化单元除去部分COD并同时将大分子碳源水解成小分子脂肪酸;然后进行SNAD处理单元,通过对其运行条件的控制,进行氮和COD 的同时去除。本研究首先驯化培养亚硝化与反硝化菌种,然后进行SNAD生物膜的驯化培养;然后通过水解酸化+考察氮和COD的去除能力,实现自养、异养脱氮工艺的高效、低耗及长期稳定运行。该组合工艺与传统生物脱氮工艺相比大大降低了运行成本,为农村生活污水的高效除碳脱氮的实现提供新工艺和新方法。以下为北极星节能环保网为您整理! 1、材料与方法 1.1、实验原水 原水采用人工模拟污水,其营养盐组成为:KHCO31.25,KH2PO40.025,CaCl2˙2H2O0.35,MgSO4˙7H2O0.2,FeSO40.00625,EDTA0.00625,KCl0.014,NaCl0.01g/L。 进行亚硝化菌培养与SNAD填料挂膜时通过投加NH4Cl、乙酸与丙酸以提供NH4+-N(100~150mg/L)与COD(100mg/L)。

佰锐洗车机污水循环系统

上海佰锐清洗机械有限公司 污水循环系统简介 1、水净化处理工艺流程 2、主要参数

3、水循环设备生产工艺标准 1、结构部分: 整体框架选用超强耐腐蚀的材料,有防护设备。运行轨道等配套配件也要符合整机的防腐设计要求。 2、控制系统: 采用全程电脑自动化智能控制。智能控制系统中所采用的控制器及各种电器元件,均是相关专业品牌产品,有相关质量保证,符合系统使用要求。 3、可循环利用系统: 新一代污水循环系统是一种高科技节能环保产品,与第一代水循环系统有所不同,最先第一代水循环系统采用了活性炭过滤网,通过多层过滤,再添加消泡剂进行消泡处理,这种水循环系统处理过的水不能更多次反复循环使用,还要经常撤换过滤网、添加消泡剂,使用复杂且达不到理想的处理净化效果;新一代的水循环系统采用密封式过滤罐分层填充多种不同粒径的石英砂滤料及颗粒状活性炭滤料,深层过滤带杂质的污水,再通过消泡密封罐进行消泡处理,有正洗行程和反洗行程,处理过的废水达到国家1级排污标准,PH值在6-9之间,且每小时达到处理5吨废水的能力,是最新一代环保节能产品。

4、污水排放: 为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》、促进城镇污水处理厂的建设和管理,加强城镇污水处理厂污染物的排放控制和污水资源化利用,保障人体健康,维护良好的生态环境,结合我国《城市污水处理及污染防治技术政策》,排入城镇污水应达到GB8978《污水综合排放标准》、相关行业的国家排放标准、地方排放标准的相应规定限值及地方总量控制的要求。居民小区和工业企业内独立的生活污水处理设施污染物的排放管理,也按本标准执行。 (国家对水的达标排放拟定了2个级别标准,分别为一级、二级标准) 附件: 《污水综合排放标准》(GB8978-1996)中石化工业COD标准值修改单 1997年12月31日之前建设(包括改、扩)的石化企业,COD一级标准值由100mg/l调整为120mg/l,有单独外排口的特殊石化装置的COD标准值按照一级:160mg/l,二级:250 mg/l执行,特殊石化装置指:丙烯腈-腈纶、己内酰胺、环氧氯丙烷、环氧丙烷、间甲酚、BHT、PTA、奈系列和催化剂生产装置。 1 pH 值 一切排污单位 6~9 2 色度(稀释倍数) 一切排污单位 50 80 3 悬浮物 (SS) 采矿、选矿、选煤工业 70 300 城镇二级污水处理厂 20 30 其他排污单位 70 150 400 而洗车后产生的废水不含氟化物、磷酸盐、苯胺类、硝基苯类、总铜、总锌、总锰、元素磷及有机磷类等化学成份,通过污水循环系统过滤后完全达到国家规定的1级排放标准,PH值绝对保持在6-9之间,呈弱碱性。

水处理技术在污水处理中的意义及其前景

水处理技术在污水处理中的意义及其前景我国的经济在近些年得到了快速的发展,但是与此同时也对环境造成了一定的污染,为了保护生态环境,我国积极的倡导节能减排,并且在污染物的处理上给予了足够的重视。在全球的水资源日益紧缺的形势下,对于污水的处理就显得尤为重要。将污水进行处理之后,可以对其进行循环使用,为我国的生产减少水资源的消耗。水处理技术利用相关的技术手段对污水进行净化,使其可以继续使用,所以水处理技术在我国未来的发展中具有广阔的发展前景。 在全球的水资源面临严重短缺的背景下,水资源的利用将成为各个行业中的热门话题,节约用水自然不必说,对于污水的处理将成为头等大事。在人们的日常生活中,在生产领域中对于水资源的消耗将是非常惊人的,在水资源利用过后都将作为污水排放到自然界中,那么对于这些污水如果可以使其循环利用,将会使一笔巨大的财富,并且可以使水资源的紧张局面得到缓解。在自然界的循环过程中,对于污水的治理工作已经是处于最末端的治理了。然后当污水排放后进入到地下时,它又成为了源头。在对污水的处理方面,我们国家作出了很大的努力,在污水处理方面制定了法律法规,保证水质不受污染,减少对环境的破坏。但是在经过一系列的改革中,所取得的效果并不十分理想,关于对污水的处理方面,不断的投入人力财力对污水处理技术和相关标准进行研究,所研究出来的工艺越来越复杂,在这方面所投入的资本也越来越多,当这种效果无法取得实际认同的时候就会出现逆反的现象。在现阶段的一些企业中,宁可受罚也不遵守标准,或者是对于相关标准阳奉阴违,这种结局将十分不利于污水处理,并且会形成恶性循环,对我国的水体污染将会越来越严重。 对于污水处理技术目前已经在很多的发达国家有所应用,并且取得了很好的成就,在各个行业中越来越多的应用到经过处理后的污水,为国家减少了很大一部分损失。之所以对污水回用如此重视主要是因为地球上的人口越来越多,并且生产用水增加,而面对有限的水资源却越来越少,在这种形势下,就要考虑对污水的回用,节省对净水的使用,减少污水对环境的污染。在对污水的回用过程中,人们越来越意识到它的重要性,觉得这是一项非常可靠的技术。在经过处理的污水越来越多的应用到行业建设中,使得这项技术能够长久的实施。在经济发展越来越快的时代背景下,对于水源的消耗也越来越多,那么污水的回用将会很好的

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

家庭污水处理系统

大理有了家庭污水处理系统 排出清水可灌溉自家农田对洱海将实现污水零排放 秦蒙琳《人民日报海外版》( 2010年1月25日第 02 版) 日前,记者在云南省大理市大理镇刘官厂村委会南经庄自然村村民黄学利家,看到了用于收集处理厨房、卫生间、牛圈生活污水、养殖污水、人畜粪便的庭院式生活污水处理设施。经过处理后排出的尾水,又回到田地里,再次利用,一滴污水都不流入洱海。大理市自2009年6月启动农村庭院式生活污水处理设施建设至今,洱海周边的上关镇、喜洲镇、大理经济开发区、大理旅游度假区、凤仪镇已有6611户农村家庭用上了庭院式生活污水处理设施。 处理后尾水可以浇花 黄学利说:“自从去年6月安起了庭院式生活污水处理设施以来,我们一家5口人煮饭洗衣洗澡的污水,还有卫生间的粪便,牛圈里的粪便,都集中在一起处理了,庭院里可干净了。安装这个设施,我们只是提供一个场所,一分钱都不出。为了保护环境,保护洱海,这

样做是应该的。”记者问他如果让他自己出钱,还安不安这个污水处理系统。黄学利说,“安,只是安不得现在那么全面。” 平均每个庭院式生活污水处理系统的建设费用约2200元。为了保证洱海周边8257户农户庭院式污水处理系统的建设需要,大理白族自治州政府共拨出了2064万元的建设专款。每一户农户都在不需要支出一分钱的前提下,享受到这个高科技的治污成果。农户庭院式污水处理系统的设计处理能力一般为日处理污水1.5方,人口多的可建设到日处理污水2方。设计图纸因地形而建,可大可小,一般都是利用农户房地基的剩余空间,因地制宜,不占用多余的土地和空间。第一道沉淀池里沉积的残渣,还可以用来作为农家肥使用。庭院式污水处理系统的除氮除磷率为15%。使用此系统的农户,离洱海边都有几公里的距离,处理后排出的清水,全部用于自家农田和庭院里灌溉花草植物。 有效降低洱海污染负荷 据大理市环保局工程师奎一平介绍,环洱海周边共有四级污水处理系统:市级污水处理厂、集镇污水处理厂、自然村村落污水处理厂、分散式农户庭院污水处理系统。目前,已建成一个市级污水处理厂,两个集镇污水处理厂,39个自然村村落污水处理厂,6611个分散式农户庭院污水处理系统。 “洱海周边共有既不能纳入集镇污水处理,也不能纳入村落污水处理的8257户农户,需要通过安装庭院式生活污水处理设施,来实现对洱海的零污染排放。”“四级污水处理系统的建设,大大减轻了洱海周边的面源污染。在连续多个月干旱少雨甚至无雨的情况下,2009年,洱海依然保持了3个月达到II类,总体保持在III类水质。” 作为从源头上控制污染源,有效降低进入洱海污染负荷的湾桥镇“中日小城镇分散型污水处理项目”,也在积极推进中。该项目为日本环境省与中国环保部合作项目。处理后排出的尾水,将达到I级A标国际排放标准(相当地表水III类)。尾水将先排入临海生态湿地,经过24小时的循环净化,再排入洱海。该项目今年7月建成后,将覆盖湾桥镇向阳溪村委

火电厂废水处理及循环利用

龙源期刊网 https://www.doczj.com/doc/ed12914762.html, 火电厂废水处理及循环利用 作者:赵伟 来源:《科学与财富》2018年第14期 摘要:我国是一个水资源较为短缺的国家,缺水问题对我国社会经济长远发展具有一定限制作用。当前社会经济发展过程中各类工业化生产仍旧存在粗放型用水方式、用水效率较低、水源浪费等问题,在扩大水源短缺问题的同时,也导致污水排放总量不断扩大,导致水体污染的问题。火电是我国当前主要发电源,实际能源输出稳定,各项技术较为完善,但是火电厂生产的同时对水资源要造成了较多负面问题。所以水电厂需要对原有的废水处理方法进行更改进,强化废水循环利用,更好地保护水资源,促进火电厂全面发展。 关键词:火电厂;废水处理;循环利用 随着我国社会经济的快速发展,社会生产生活导致水资源短缺问题日趋严重,在一定程度上限制了我国社会全面发展与进步。在目前火电厂发电过程中,产生的废水较多,所以当前需要全面提升水资源利用效率。通过较为先进的节水技术来强化水资源使用管理,能够更好地节约水源,明确废水处理主要方向。 一、火电厂废水主要来源概述 火电厂废水来源主要是生活用水、工业用水等,其中工业用水是废水主要来源,根据其持续性原则可以将其划分为非持续性以及持续性废水。持续性废水就是在火力发电厂日常生产运转过程中均会产生的废水,此类废水排放是持续性的,比如锅炉排污水、预处理装置废水、实验室废水等,都属于持续性废水。非持续性废水实际排放过程中没有具体规律,通过都是机械设备在实际自检过程中产生的废水,比如对火电厂设备进行化学性清洗时产生的废水、油区中的废水,都属于非持续性废水[1]。 二、火电厂废水处理措施分析 (一)脱硫废水处理 目前火电厂发电生产过程中会产生脱硫废水,脱硫废水的主要来源是烟气脱硫系统,主要污染物质诸多,有重金属、盐类、COD等。在石灰石湿法烟气脱硫工艺操作过程中要求PH值能够控制在5.0至5.5之间,所以当前需要将烟气脱硫排出的废水PH值控制在此范围当中。针对脱硫废水的处理,当前技术人员可以通过投入消石灰对废水中的酸性进行中和,通过足量消石灰能够与废水中改革类重金属离子进行反应,然后生成氢氧化物能够在碱性环境中进行沉淀,这样能够有效消除废水中产生的各类重金属物质。通过在脱硫废水中添加消石灰能够对各类重金属离子进行中和,但是也有部分重金属元素,例如汞元素就难以通过消石灰进行处理[2]。所以在对脱硫废水进行处理时,可以在中和反应之后添加相应的有机硫化物,与重金属

低碳氮比水质,总氮超标处理方法

低碳氮比水质,总氮超标处理方法 有人问: “低C/N比的水质,出水总氮不达标,该如何控制?” 在城镇市政管网不完善的情况下,导致进水负荷较低,就会产生该问题。 在低C/N比的废水中,硝化菌数量占比接近异养菌。相对于健康的活性污泥系统而言,硝化菌多,异养菌少。 由于硝化菌的絮凝性较差,难以在二沉池中沉淀,很多沉不下去的小絮团随着上清液流出,造成了硝化菌的大量流失。 此时若采取延长污泥龄的措施来控制氨氮,就会导致异养菌进一步减少,从而加剧硝化菌的流失。 遇到低C/N比的水质,应该如何控制总氮指标呢? 首先了解总氮调控的关键参数: 1、缺氧区停留时间; 2、污泥龄; 3、内、外回流比; 4、碳源的选择和投加; 这里重点看内回流比和碳源投加 内回流比:

内回流如果过低,硝态氮不能回流到缺氧区,反硝化反应就没办法正常进行,这个时候缺氧区的外加碳源没有被充分利用,就会进到好氧区,被好氧区的异养菌所消耗,这样就白白浪费了碳源,还消耗了溶解氧。 内回流如果过高,就会把好氧区的溶解氧带到缺氧区,破坏了反硝化所需要的缺氧条件。 外加碳源: 在进水碳源不足时,需要选择合适的碳源进行投加,并且为了节省成本,需要想办法尽可能降低碳源投加量。 举个例子: “对于进水COD100mg/L,氨氮25mg/L,TN30mg/L的废水,如何控制总氮指标呢?”(案例来源于水圈环保学院《废水生化处理工艺分析与应用》系列课程) 首先我们对这类废水的实际运行情况进行分析,可以得到4个信息: 1、一般出水COD会在20~30mg/L,TN在20mg/L左右,氨氮小于1 2、生化系统的DO大于2mg/L,而且一般远远大于2mg/L 3、需要额外投加碳源 4、污泥处于老化状态 总氮控制方案: 1、计算脱氮效率,以出水总氮12mg/L计算,则脱氮效率是60%; 2、计算内回流比,按100%外回流比计算,得出内回流比为50%;考虑到内回流泵开启时,最低也达到了120%的回流比,远远大于50%,可想而知,大量的溶解氧就会被带回到缺

日本污水处理系统的介绍

系统概要 - Aqua Make S 无排放型 Aqua Make Tape S (从上到下) 厌氧室、氧化池、沉淀室、送风机、第一过滤室、第二过滤室、沉淀过滤室、储存室(活性炭吸管)。循环泵、给水泵、余水储存室、余水再利用水泵。 远程监控系统、自动传送。 处理水BOD达到5ppm以下的,为无色、无味、大肠杆菌数为0。 牡蛎壳非常适合净化污水。 它具有很强的净化力,据广岛大学综合科学部 研究表明,牡蛎壳的去除率:BOD达90%以上, COD达90%左右,SS达到95%以上。为了使污水 水中的大肠杆菌数为0,Aqua Make公司采用牡 蛎壳净化,制造出BOD 5mg/l 以下的再生水。 由此可以看出: ◆其表面积越大,微生物的附着率越高。 ◆形状越是复杂,原生动物、后生动物越容易附着,还可阻止微生物的流失。 ◆微生物对普通塑料材质拥有很高的附着率。 ◆在氧化处理中,PH值下降,会导致滤材自我溶解,所以氧化处理有调解PH 的作用。

再利用(厕所用水) 厕所→厌氧室→氧化池→沉淀室→第一过滤室→第二过滤室→ 沉淀过滤室→(消毒)活性炭吸管、中水室→余水储存室 二次循环再利用 具有跨时代意义的利用价值 ●因无排放式,所以不受(日本)国家法律法规的管制。 ●无需下水管网、水源。 ●任何地理条件都可建设。 ●无需水费、定期维护、保养。 ●根据环境等条件设计外装。 ●两种式样可选,地埋式或地上式。 ●可租借。 ●可根据客户想法专门定制。 ●灾害时也可使用。 远程监控系统 发现异常,自动报警。管理简单,费用低廉。

Taisei Soil Syetem 无排放式 利用土壤固有的自然净化力的污水处理系统 TSS(Taisei Soil System)本处理系统是高度激活了土壤本身固有的自然净化力的污水处理系统。对流入前期处理装置的污水进行厌氧性处理,处理后再进入特殊土壤处理,由特殊土壤处理中的微生物进行好氧性分解。因与传统式地下浸透方式不同的无排放方式,所以无需担心污染环境。 ●利用自然净化力的污水处理系统 (高度激活了土壤本身固有的自然净化力的污水处理系统,无需担心污染地下水、河川等) ●适用于各种场所(居民住宅、别墅,公园、度假村等公共场所都可设置)●可设置在没电的场所(因本处理系统无需用电,所以可设置在没电的场所。 但如不能由高向低自然下流的话,需要借助水泵。) ●低成本、省力的节能处理系统(因本系统属于利用自然净化力的污水处理系 统,与旧式相比,大幅度节省了后期费用。而且规模越大效果越大。) ●高质量,可长久使用。(精密滤水装置所使用的器材均属于耐腐、抗压、抗碱 性材料,可长时间使用) ●地埋式,上部可种植植物。(因处理装置埋于地下,可以给地上植物提供充足 的养分,所以地上部分最适合种植植物。)

污水处理工艺脱氮

污水处理A/O工艺脱氮除磷 一般的活性污泥法以去除污水中可降解有机物和悬浮物为主要目的,对污水中氮、磷的去除有限。随着对水体环境质量要求的提高,对污水处理厂出水的氮、磷有控制也越来越严格,因此有必要采取脱氮除磷的措施。一般来说,对污水中氮、磷的处理有物化法和生物法,而生物法脱氮除磷具有高效低成本的优势,目前出现了许多采用生物脱氮除磷的新工艺。 一、生物脱氮除磷工艺的选择 按生物脱氮除磷的要求不同,生物脱氮除磷分为以下五个层次: (1)去除有机氮和氨氮; (2)去除总氮; (3)去除磷; (4)去除氨氮和磷; (5)去除总氮和磷。 对于不同的脱氮除磷要求,需要不同的处理工艺来完成,下表列出了生物脱氮除磷5个层次对工艺的选择。 生物脱氮除磷5个层次对工艺的选择 对于不同的TN出水水质要求,需要选择不同的脱氮工艺,不同的TN出水水质要求与脱氮工艺的选择见下表。 不同TN出水水质要求对脱氮工艺的选择 生物除磷工艺所需B0D5或COD与TP之间有一定的比例要求,生物除磷工艺所需BOD5或COD与T比例P的要求见下表。 生物除磷工艺所需BOD5或COD与TP的比例要求 二、A/O工艺生物脱氮工艺 (一)工艺流程 A/0工艺以除氮为主时,基本工艺流程如下图1。 图1 缺氧/好氧工艺流程 A/O工艺有分建式和合建式工艺两种,分别见图2、图3。分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。 合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的 要求,但受以下闲素影响:溶解氧 ~L)、污泥负荷[0. 1~ 0. 15kgBOD5/ (kgMLVSS?d)]、C/N 比(6 -7)、pH值( 7. 5~ ,而不易控制。 对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NOz-N还原成N2 ,不需外加碳源。反硝化池还原1gNOx -N 产生碱度,可补偿硝化池中氧化1gNH3-N 所需碱度(7. 14g)的一半,所以对含N浓度不高的废水,不必另行投碱调pH 值,反硝化池残留的有机物可在好氧硝化池中进一步去除。 一般来说分建式反应器(A/O工艺)硝化、反硝化的影响因素控制范围可以相应增大,更为有效地发挥和提高活性污泥中某些微生物(如硝化菌、反硝化菌等)所特有的处理能力,从而达到脱、处理难降解有机物的目的,减少了生化池的容积,提高了生化处理效率,同时也节省了环保投资及运行费用;而合建式A/O工艺便于对现有推流式曝气池进行改造。 图2 分建式缺氧一好氧活性污泥脱氮系统

污水处理与循环利用

龙威化工污水处理与循环利用项目上报材料 一、化工企业污水处理概况 化学工业是我国重要的基础原料产业,其规模和发展速度对社会各个部门有着重大影响,在国民经济中占有重要位置。改革开放以来,我国化学工业的发展取得了长足的进步,已形成乙烯、化纤、精细化工等多种行业,囊括4万多个品种的化工产品,主要化工产品产量已跃居世界前列:电石、染料、合成氨、化纤居世界第一位;化肥、农药、纯碱居世界第二位;硫酸、烧碱居世界第三位;乙烯、轮胎、涂料、合成材料等也名列前茅。中国化学工业的发展越来越引起世界瞩目。 然而,化工产业的发展加大了我国能源消耗总量,同时,也带来了环境污染和生态退化等诸多问题,而其中水污染问题尤为突出。化学工业门类繁多,化工产品成分复杂,排出的废水也多种多样。多数有毒性,不易净化,在生物体内有一定的积累作用,在水体中具有明显的耗氧性质,易使水质恶化。 随着经济的高速发展,化工产品生产过程对环境的污染加剧,对人类健康的危害也日益普遍和严重,其中特别是精细化工产品生产过程中排出的有机物质,大多都是结构复杂、有毒有害和生物难以降解的物质。因此,化工废水处理的难度较大。 化工废水的基本特征为极高的COD、高盐度、对微生物有毒性,是典型的难降解废水,是目前水处理技术方面的研究重点和热点。

化工废水的特征分析如下:(1)水质成分复杂,副产物多,反应原料常为溶剂类物质或环状结构的化合物,增加了废水的处理难度; (2)废水中污染物含量高,这是由于原料反应不完全和原料、或生产中使用的大量溶剂介质进入了废水体系所引起的;(3)有毒有害物质多,精细化工废水中有许多有机污染物对微生物是有毒有害的,如卤素化合物、硝基化合物、具有杀菌作用的分散剂或表面活性剂等;(4)生物难降解物质多,可生化性差;(5)废水色度高。 近年来我国化工行业的环境污染防治工作取得了较大进展,废水治理率、排放达标率逐年有所增长。但目前化工行业废水排放达标率仍不高,对高效、低成本的处理化工废水新工艺、新技术的研究,已经成为世界各国科学家和工程师研究的重点之一。 到目前为止,化工废水的主要处理方法有:物理法、化学法、生化法和物理化学法。 二、我公司项目概述 龙威化工公司的主要产品是氯化聚乙烯。 氯化聚乙烯(CPE)是由特殊型号的聚乙烯粉与氯气在一定的条件下,进行取代反应后而生成的一种新型高分子合成材料,是介于塑料和橡胶之间的一种材料,也可以单独做为橡胶使用,是塑料和橡胶优良的改性剂和添加剂,用途极其广泛。 根据生产方法不同,氯化聚乙烯可分为固相法和液相法,液相法又分为溶液法和悬浮法,而悬浮法又有酸相法和水相法之分。固相法因工艺难以控制,产品质量极不稳定;溶液法因生产成本及对环境影

城市污水处理厂污水再生利用论文

城市污水处理厂污水再生利用 摘要:城市污水资源的控制和再生利用的最佳模式应适合当地经济和社会的发展,结合实际情况,推动国内城市污水再生利用研究的进展,逐步形成与国情相适应的城市水体良性社会循环体系,实现城市与污水资源再生利用的共同可持续发展。本文探讨了城市污水处理厂污水再生利用。 关键词:城市;污水处理;再生利用 abstract: urban sewage resources control and recycling best mode should be adapted to the local economic and social development, and connecting with the practice, promote domestic urban sewage reuse research progress, and gradually form and national conditions to adapt the city water cycle system virtuous society, realize the city and sewage resources recycling to sustainable development. this paper discusses the urban sewage treatment plants sewage reuse. key words: the city; sewage treatment; recycling 中图分类号:[r123.3] 文献标识码:a文章编号: 进入 21世纪以来, 世界性的水危机逐渐凸现,水资源紧缺和水环境退化已经成为人类社会生存发展的制约因素。水环境退化的控制和恢复研究是市政、环境工程领域的前沿课题。水环境恢复与维系的基础是建立起健康的社会水循环。污水再生利用已经成为水

相关主题
文本预览
相关文档 最新文档