一类约束满足问题的LINGO算法
- 格式:pdf
- 大小:78.48 KB
- 文档页数:2
lingo整数规划整数规划是运筹学中的一种优化方法,用于解决决策问题中存在离散决策变量的数学规划问题。
在整数规划中,决策变量的取值只能是整数。
整数规划的应用非常广泛,包括生产计划、资源分配、货物运输等领域。
下面将介绍一些与整数规划相关的术语和技巧。
1. 最优解:整数规划的目标是找到使目标函数最大或最小的整数解。
最优解指的是在满足约束条件的前提下,使目标函数的取值达到最优的决策变量取值。
2. 整数线性规划:整数线性规划是整数规划的一种特殊情况,其中目标函数和约束条件都是线性的。
3. 整数非线性规划:整数非线性规划是整数规划的另一种形式,其中目标函数或约束条件中至少有一项是非线性的。
4. 分枝定界法:分枝定界法是求解整数规划问题的一种常用方法。
它通过将整数规划问题划分为多个子问题,并对每个子问题进行求解,直到找到最优解。
5. 割平面法:割平面法是求解整数规划问题的另一种方法。
它通过加入额外的线性不等式约束,逐步削减可行解空间,直到找到最优解。
6. 整数规划松弛:整数规划松弛是指将整数规划问题中的整数约束条件松弛为连续变量的约束条件,从而将整数规划问题转化为线性规划问题。
7. 整数规划可行解:整数规划问题的可行解是指满足所有约束条件的整数取值。
8. 整数规划解的整数性:整数规划解的整数性是指整数规划问题的解是否满足整数约束条件。
9. 混合整数规划:混合整数规划是一类更一般的整数规划问题,其中决策变量可以是整数或连续变量。
10. 整数规划的应用:整数规划在各种领域中都有广泛的应用,包括生产计划、资源分配、货物运输等。
通过合理的建模和求解技巧,整数规划可以帮助企业优化决策,提高效益。
总之,整数规划是一种应用十分广泛的优化方法,通过对决策变量的整数约束进行建模,帮助解决实际问题中存在的离散决策变量的优化问题。
整数规划及Lingo 求解一、 概论1.1 整数规划的定义在工程设计和企业管理中,常常会遇到要求决策变量取整数值的规划问题。
安排生产时,投入的人力与机器数量必须是整数,生产的 某些产品(如汽车、机床、船舶等)的数量也是整数。
整数规划就是用于研究、处理这一类问题的数学规划。
如果在线性规划的基础上,把规划中的变量(部分或全部)限制为整数时,就称之为线性整数规划。
大部分的整数规划都是线性的所以我们也称线性整数规划为整数规划。
在许多情况下,我们都可以把规划问题的决策变量看成是连续的变量;但在某些情况下,规划问题的决策变量却被要求一定是整数。
例如,完成某项工作所需要的人数或设备台数,进入市场销售的商品件数,以及某一机械设备维修的次数等。
当连续的决策变量变为离散变量时非线性优化问题通常会难解得多。
但是应用软件就方便多了,本文给了Lingo 在规划中的常用方法和程序。
1.2 整数规划的分类在线性规划的基础上,要求所有变量都取整的规划问题称为纯整数规划问题;如果仅仅是要求一部分变量取整,则称为混合整数规划问题。
全部或部分决策变量只能取0,1值的规划问题称为10-规划问题。
1.3 整数规划的一般模型目标函数约束条件决策集 x 为整数如果用集合表示上面的式子目标函数: Cx =max(min)约束条件为: b Ax =例 1.1 飞船装载问题设有n 种不同类型的科学仪器希望装在登月飞船上, 令0>j c 表示每件第j 类仪器的科学价值;0>j a 表示每件第j 类仪器的重量。
每类仪器件数不限, 但装载件数只能是整数。
飞船总载荷不得超过数b 。
设计一种方案, 使得被装载仪器的科学价值之和最大。
建模 记j x 为第j 类仪器的装载数。
目标函数 ∑=j j x c m a x约束条件 ∑≤b x a j j决策集 j x 为正整数⎪⎪⎩⎪⎪⎨⎧≤+++≤+++≤+++m n mm m m n n n n k x a x a x a k x a x a x a k x a x a x a t s22112222212111212111..n n x c x c x c +++= 2211m ax (m in)二、 算法简介及应用举例2.1 解整数规划的一般算法通常解整数规划有三种方法,下面只介绍算法思想不具体讲解,在限制条件少的情况下分支定界法最为常用。
实验1 用LINGO求解线性规划问题LINGO使用简介LINGO软件是美国的LINDO系统公司(Lindo System Inc)开发的一套用于求解最优化问题的软件包.LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法.LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等.一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了.LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据.LINGO的语法规定:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4)可以给语句加上标号,例如[OBJ] MAX=200*X1+300*X2;(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.实验数据与内容问题1.1某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?.问题1.2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g ,矿物质3g ,维生素8mg ,该公司能买到5种不同的饲料,每种饲料1kg 所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg ,求既能满足动物生长需要,又使总成本最低的饲料配方.实验指导问题1.1设计划生产两种产品分别为,则建立线性规划问题数学模型B A ,21,x x ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,12416482.32max 21212121x x x x x x t s x x S 在LINGO 的MODEL 窗口内输入如下模型:model :max =2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message ”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO 的Help ).改正错误以后再求解,如果语法通过,LINGO 用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status ”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close 关闭窗口,屏幕上出现标题为“Solution Report ”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5Objective value: 14.00000Variable Value Reduced CostX1 4.000000 0.000000X2 2.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 1.0000002 0.000000 1.5000003 0.000000 0.12500004 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为.“Reduced Cost ”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost 值等于零).“Row ”是输入模型中的行号,目标函数是第一行;“Slack or Surplus ”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“124,2==x x ≤”的不等式,右边减左边的差值为Slack (松弛),对于“”的不等式,左边减右边的差值为Surplus (剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price ”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.≥问题1.2设需要饲料分别为 kg ,则建立线性规划数学模型:54321,,,,A A A A A 54321,,,,x x x x x 123451234512345123451234512345min 0.20.70.40.30.50.320.6 1.8600.10.050.020.20.0530.050.10.020.20.088.52,,,,0S x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++≥⎧⎪++++⎪⎪≥++++⎨⎪++++≤⎪≥⎪⎩≥ 在LINGO 的MODEL 窗口内输入如下模型:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8;x1+x2+x3+x4+x5<52;求解输出结果如下:Global optimal solution found at iteration: 4Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333因此,每周每个动物的配料为饲料、、分别为12、30和10kg ,合计为52,可使得饲养成本达到最小,最小成本为22.4元;不选用饲料和的原因是因为这两种饲料的价格太高了,没有竞争力.“Reduced Cost ”分别等于0.7和0.617,说明当这两种饲料的价格分别降低0.7元和0.62元以上时,不仅选用这两种饲料而且使得饲养成本降低.从“Slack or Surplus”可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准4.12A 4A 5A kg kg kg 1A 3A g ;从“Dual Price”可以得到降低标准蛋白质1单位可使饲养成本降低0.583元,降低标准维生素1单位可使饲养成本降低4.167元,但降低矿物质的标准不会降低饲养成本,如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1可使得饲养成本增加0.88元.kg 对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO 软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options …命令,选择Gengral Solver ,在Dual Computation 列表框中,选择Prices and Ranges 选项并确定.对于例1.1问题进行灵敏度分析,结果如下:以下是灵敏度分析的结果Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 2.000000 INFINITY 0.5000000X2 3.000000 1.000000 3.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 8.000000 2.000000 4.0000003 16.00000 16.00000 8.0000004 12.00000 INFINITY 4.000000对于例1.2问题进行灵敏度分析,结果如下:Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 0.2000000 INFINITY 0.7000000X2 0.7000000 INFINITY 0.1358974X3 0.4000000 INFINITY 0.6166667X4 0.3000000 1.400000 1.000000X5 0.5000000 0.1247059 INFINITYRighthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 60.00000 4.800000 4.8000003 3.000000 4.100000 INFINITY4 8.000000 0.3428571 0.48000005 52.00000 1.846154 1.411765思考题某投资公司拟制定今后5年的投资计划,初步考虑下面四个投资项目:项目A:从第1年到第4年每年年初可以投资,于次年年末收回成本,并可获利润15%;项目B:第3年年初可以投资,到第5年年末可以收回成本,并获得利润25%,但为了保证足够的资金流动,规定该项目的投资金额上限为不超过总金额的40%;项目C:第2年年初可以投资,到第5年年末可以收回成本,并获得利润40%,但公司规定该项目的最大投资金额不超过总金额的30%;项目D:5年内每年年初可以购买公债,于当年年末可以归还本金,并获利息6%.该公司现有投资金额100万元,请帮助该公司制定这些项目每年的投资计划,使公司到第5年年末核算这5年投资的收益率达到最大.建立线性规划问题的数学模型,并用LINGO求解.。
实验报告课程名称:运筹学项目名称:线性规划问题的求解姓名:专业:班级:1班学号:同组成员:一、实验准备:1.线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
研究线性约束条件下线性目标函数的极值问题的数学理论和方法。
英文缩写LP。
它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。
为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。
从实际问题中建立数学模型一般有以下三个步骤;(1)根据影响所要达到目的的因素找到决策变量;(2)由决策变量和所在达到目的之间的函数关系确定目标函数;(3)由决策变量所受的限制条件确定决策变量所要满足的约束条件。
2.所建立的数学模型具有以下特点:(1)每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。
决策变量的一组值表示一种方案,同时决策变量一般是非负的。
(2)目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或实际中,为保证完成100套工架,所使用原材料最省,可以混合使用各种下料方案。
设按方案A,B,C,D,E下料的原材料数分别为x1,x2,x3,x4,x5根据表可以得到下面的线性规划模型:解:虽然连续投资问题属于动态优化问题,但可以用静态优化的方法解决,用决策变量xi1,xi2,xi3,xi4(i=12…,5)分别表示第i年年初为项目A,B,C,D,的投资额,根据问题的要求各变量的对应关系如表,表中空白处表示当年不能为该项目投资,也可认为投资额为0.实验报告成绩(百分制)__________ 实验指导教师签字:__________。
LINGO的使用简介LINGO软件是美国的LINGO系统公司开发的一套专门用于求解最优化问题的软件包.LINGO除了能够用于求解线性规划和二次规划外,还可以用于非线性规划求解、以及一些线性和非线性方程(组)的求解等.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,即可以求解整数规划,而且执行速度快.LINGO是用来求解线性和非线性优化问题的简易工具.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.在这里仅简单介绍LINGO的使用方法.LINGO(Linear INteractive and General Optimizer )的基本含义是交互式的线性和通过优化求解器.它是美国芝加哥大学的 Linus Schrage 教授于1980年开发了一套用于求解最优化问题的工具包,后来经过完善成何扩充,并成立了LINDO系统公司.这套软件主要产品有:LINDO,LINGO,LINDO API和What’sBest.它们在求解最优化问题上,与同类软件相比有着绝对的优势.软件有演示版和正式版.正式版包括:求解包(solver suite)、高级版(super)、超级版(hyper)、工业版(industrial)、扩展版(extended).不同版本的LINGO对求解问题的规模有限制,如附表3-1所示.附表3-1 不同版本LINGO对求解规模的限制版本类型总变量数整数变量数非线性变量数约束数演示版 300 30 30 150求解包 500 50 50 250高级版 2000 200 200 1000超级版 8000 800 800 4000工业版 32000 3200 32000 16000扩展版无限无限无限无限3.1 LINGO程序框架LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络最优化问题和最大最小求解问题,以及排队论模型中最优化等问题.一个LINGO程序一般会包括以下几个部分:(1) 集合段:集部分是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(2) 数据段:在处理模型的数据时,需要为集部分定义的某些元素在LINGO求解模型之前为其指定值.数据部分以关键字“data:”开始,以关键字“enddata”结束.(3) 目标和约束段:这部分用来定义目标函数和约束条件等.该部分没有开始和结束的标记.主要是要用到LINGO的内部函数,尤其是与集合有关的求和与循环函数等.(4)初始段:这个部分要以关键字“INIT:”开始,以关键字“ENDINIT”结束,它的作用是对集合的属性定义一个初值.在一般的迭代算法中,如果可以给一个接近最优解的初始值,会大大减少程序运行的时间.(5) 数据预处理段:这一部分是以关键字“CALC:”开始,以关键字“ENDCALC”结束.它的作用是把原始数据处理成程序模型需要的数据,它的处理是在数据段输入完以后、开始正式求解模型之前进行的,程序语句是按顺序执行的.3.2 LINGO中集合的概念在对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等.LINGO允许把这些相联系的对象聚合成集(sets).一旦把对象聚合成集,就可以利用集来最大限度地发挥LINGO建模语言的优势.现在将深入介绍如何创建集,并用数据初始化集的属性.3.2.1集的构成集是LINGO建模语言的基础,是程序设计最强有力的基本构件.借助于集能够用一个单一的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型.集是一群相联系的对象,这些对象也称为集的元素.一个集可能是一系列产品、卡车或雇员.每个集的元素可能有一个或多个与之有关联的特征,把这些特征称为属性.属性值可以预先给定,也可以是未知的,有待于LINGO求解的.LINGO有两种类型的集:原始集(primitive set)和派生集(derived set).一个原始集是由一些最基本的对象组成的.一个派生集是用一个或多个其它集来定义的,也就是说,它的元素来自于其它已存在的集.3.2.2模型的集部分集部分在程序中又称为集合段,它是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(1)原始集的定义为了定义一个原始集,必须详细说明集的名字,而集的元素和相应的属性是可选的.定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分内容是可选的(下同).Setname是用来标记集的名字,最好具有较强的可读性.集名字必须严格符合标准命名规则:以拉丁字母或下划线为首字符,其后由拉丁字母、下划线、阿拉伯数字组成的总长度不超过32个字符的字符串,且不区分大小写.注意:该命名规则同样适用于集元素名和属性名等的命名.Member_list是集元素的列表.如果集元素放在集定义中,那么对它们可采取显式和隐式罗列两种方式.如果集元素不放在集定义中,那么可以在随后的数据部分定义.①当显式罗列元素时,必须为每个元素输入一个不同的名字,中间用空格或逗号隔开,允许混合使用.例3.1 定义一个名为friends的原始集,它具有元素John,Jill,Rose和Mike,其属性有sex和age:sets:friends/John Jill, Rose Mike/: sex, age;endsets②当隐式罗列元素时,不必罗列出每个集元素.可采用如下语法:setname/member1..member N/[: attribute_list];这里的member1是集的第一个元素名,member N是集的最后一个元素名.LINGO将自动产生中间的所有元素名.LINGO也接受一些特定的首元素名和末元素名,用于创建一些特殊的集.③集元素不放在集定义中,而在随后的数据部分来定义.例3.2!集部分;sets:friends:sex,age;endsets!数据部分;data:friends,sex,age=John,1,16 Jill,0,14 Rose,0,17 Mike,1,13;enddata注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行.在集部分只定义了一个集friends,并未指定元素.在数据部分罗列了集元素John,Jill,Rose和Mike,并对属性sex和age分别给出了值.集元素无论用何种字符标记,它的索引都是从1开始连续计数.在attribute_ list可以指定一个或多个集元素的属性,属性之间必须用逗号隔开.LINGO内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后再借助于LINGO 求解器求解.因此,集属性的值一旦在模型中被确定,就不可能再更改.只有在初始部分中给出的集属性值在以后的求解中可更改.这与前面并不矛盾,初始部分是LINGO求解器的需要,并不是描述问题所必须的.(2) 定义派生集为了定义一个派生集,必须详细说明集的名字和父集的名字,而集元素和属性是可选的.可用下面的语法定义一个派生集:setname(parent_set_list)[/member_list/][:attribute_list];setname是集的名字.parent_set_list是已定义的集的列表,多个时要用逗号隔开.如果没有指定成员列表,那么LINGO会自动创建父集元素的所有组合作为派生集的元素.派生集的父集既可以是原始集,也可以是其它的派生集.例3.3sets:product/A,B/;machine/M,N/;week/1..2/;allowed(product,machine,week):x;endsetsLINGO生成了三个父集的所有组合共八组作为allowed集的元素,列表如下:编号元素1 (A,M,1)2 (A,M,2)3 (A,N,1)4 (A,N,2)5 (B,M,1)6 (B,M,2)7 (B,N,1)8 (B,N,2)元素列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集.如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集.同原始集一样,派生集元素的说明也可以放在数据部分.一个派生集的元素列表有两种方式生成:①显式罗列;②设置元素选择的过滤器.当采用方式①时,必须显式罗列出所有要包含在派生集中的元素,并且罗列的每个元素要属于稠密集.使用前面的例子,显式罗列派生集的元素,如:allowed(product,machine,week)/A M 1,A N 2,B N 1/;如果需要生成一个大的、稀疏的集,那么显式罗列就十分麻烦.但是许多稀疏集的元素都满足一些条件,可以把这些逻辑条件看作过滤器,在LINGO生成派生集的元素时把使逻辑条件为假的元素从稠密集中过滤掉.例3.4sets:!学生集:性别属性sex,1表示男性,0表示女性;年龄属性age;students/John,Jill,Rose,Mike/:sex,age;!男学生和女学生的联系集:友好程度属性friend![0,1]之间的数;linkmf(students,students)|sex(&1)#eq#1#and#sex(&2)#eq#0: friend;!男学生和女学生的友好程度大于0.5的集;linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x;endsetsdata:sex,age =1 16,0 14,0 17,0 13;friend =0.3,0.5,0.6;enddata用竖线(|)来标记一个元素过滤器的开始.#eq#是逻辑运算符,用来判断是否“相等”. &1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有元素;&2可看作派生集的第2 个原始父集的索引,它取遍该原始父集的所有元素;&3,&4,…,依此类推.注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效.因此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作限制的总和.3.3 LINGO数据部分和初始部分在处理模型的数据时,需要为集指定一些元素并且在LINGO求解模型之前为集的某些属性指定数值.为此,LINGO为用户提供了两个可选部分:输入集元素数值的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section).3.3.1数据部分(1) 数据部分入门数据部分以关键字“data:”开始,“enddata”结束.在这里,可以指定集元素和集的属性.其语法如下:object_list = value_list;对象列(object_list)包含要指定值的属性名、要设置集元素的集名,用逗号或空格隔开.一个对象列中只能有一个集名,而属性名可以有任意多个.如果对象列中有多个属性名,那么它们的类型必须一致.数值列(value_list)包含要分配给对象列中对象的值,用逗号或空格隔开.注意属性值的个数必须等于集元素的个数.例3.5sets:SET0/A,B,C/: X,Y;endsetsdata:X=1,2,3;Y=4,5,6;enddata在集SET0中定义了两个属性X和Y.X的三个值是1,2,3,Y的三个值是4,5,6.也可采用如下例子中的复合数据说明(data statement)实现同样的功能.例3.6sets:SET0/A,B,C/: X,Y;endsetsdata:X,Y=1 4 2,5 3 6;enddata如果对象列中有n个对象,LINGO在为对象指定值时,首先在n个对象的第1个索引处依次分配数值列中的前n个对象,然后在n个对象的第2个索引处依次分配数值列中紧接着的n个对象,…,依此类推.(2) 参数输入在数据部分也可以指定一些标量变量(scalar variables).当一个标量变量在数据部分确定时,称之为参数.例如,假设模型中用利率9%作为一个参数,就可以输入一个利率作为参数.例3.7data:interest_rate = .09;enddata实际中也可以同时指定多个参数.如:data:interest_rate,inflation_rate = .09, .025;enddata(3) 实时数据处理在某些情况下,模型中的某些数据并不是定值.譬如模型中有一个参数在2%至6%范围内,对不同的值求解模型,观察模型的结果对参数依赖的程度,那么把这种情况称为实时数据处理.处理方法是在该语句的数值后面输入一个问号(?).data:interest_rate,inflation_rate = .09 ?;enddata在每一次求解模型时,LINGO都会提示为参数inflation_rate输入一个值.在WINDOWS操作系统下,将会看到一个如下面的对话框:直接输入一个值再点击OK按钮,LINGO就会把输入的值指定赋给inflation_rate,然后继续求解模型.除了参数之外,也可以实时输入集的属性值,但不允许实时输入集元素名.(4) 指定属性为一个值可以在数据定义的右边输入一个值来把所有的元素的该属性指定为一个值.如下面的例子.例3.9sets:days /MO,TU,WE,TH,FR,SA,SU/:needs;endsetsdata:needs = 40;enddataLINGO将用40指定days集的所有元素的needs属性.对于多个属性的情形如下:sets:days /MO,TU,WE,TH,FR,SA,SU/:needs,cost;endsetsdata:needs cost = 40 90;enddata(5) 数据部分的未知数值表示法有时候只需为一个集的部分元素的某个属性指定数值,而让其余元素的该属性是未知的,以便让LINGO 去求出它们的最优值.在数据定义中输入两个相连的逗号表示该位置对应元素的属性值未知,两个逗号间可以有空格.例3.10sets:years/1..6/: capacity;endsetsdata:capacity = ,24,40,,,;属性capacity的第2个和第3个值分别为24和40,其余的未知.3.3.2初始部分初始部分是LINGO提供的另一个可选内容.在初始部分中,与数据部分中的数据定义相同,可以输入初始定义(initialization statement).在对实际问题的建模时,初始部分并不起到描述模型的作用,初始部分输入的值仅被LINGO求解器当作初始值来使用,并且仅仅对非线性模型有用.这与数据部分指定变量的值不同,LINGO求解器可以自由改变初始部分初始化变量的数值.一个初始部分以关键字“init:”开始,以关键字“endinit”结束.初始部分的初始定义规则和数据部分的数据定义规则相同.也就是说,可以在定义的左边同时初始化多个集属性,即可以把集属性初始化为一个数值,也可以用问号定义为实时数据,还可以用逗号指定为未知数值.例3.11init:X,Y = 1,0;endinitY=@log(X);X^2+Y^2<=1;3.4 LINGO函数3.4.1运算符及其优先级LINGO 中的运算符可以分为三类:算数运算符、逻辑运算符和关系运算符.(1) 算数运算符算数运算符分为5种: (加法), (减法), (乘法), (除法), (求幂).(2) 逻辑运算符逻辑运算符分为两类:#AND#(与),#OR#(或),#NOT#(非):这3个运算符是参与逻辑值之间的运算,其结果还是逻辑值.运算符#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于)是用于“数与数之间”的比较,其结果是实逻辑值.(3) 关系运算符LINGO中有3种关系运算符:<(小于等于),>(大于等于),=(等于).注意LINGO中优化模型的约束一般没有严格大于、严格小于,要和逻辑运算符区分开.运算符的优先等级如附表3-2所示.附表3-2 运算符的优先级3.4.2 LINGO数学函数(1) 基本数学函数LINGO中有相当丰富的数学函数,这些函数的用法简单.下面列表对各个函数的用法做简单的介绍,具体情况如附表3-3所示.(2) 集合循环函数集合循环是指对集合上的元素(下标)进行循环操作的函数,它的一般用法如下:@function(setname[(set_index_list)[|condition]]:expression_list);其中function是集合函数名,是FOR,MAX,MIN,PROD,SUM五种之一.setname是集合名;set_index_list 是集合索引列表(可以省略);condition是实用逻辑表达式描述的过滤条件(通常含有索引,可以省略);expression_list是一个表达式(对@FOR可以是一组表达式).下面对具体的集合函数作如下解释:@FOR(集合元素的循环函数):对集合setname的每个元素独立生成表达式,表达式由expression_list 描述.@MAX(集合属性的最大值):返回集合setname上的表达式的最大值.@MIN(集合属性的最小值) :返回集合setname上的表达式的最小值.@PROD(集合元素的乘积函数):返回集合setname上的表达式的积.@SUM(集合元素的求和函数) :返回集合setname上的表达式的和.(3) 集合操作函数集合操作函数是对集合进行操作的函数,主要有4种,下面分别介绍它们的一般用法.1)@INDEX([set_name,]primitive_set_element)这个函数给出元素primitive_set_element在集合set_name中的索引值(即按定义集合时元素出现顺序的位置编号).如果省略编号set_name,LINGO按模型中定义的集合顺序找到第一个含有元素primitive_set_element的集合,并返回索引值.通过下面例子解释函数的使用方法.例如,假设定义一个女孩的姓名集合和一个男孩的姓名集合:SETS:GIRLS/DEBBLE,SUE,ALICE/;BOYS/BOB,JOE,SUE,FRED/;ENDSETS注意到女孩集和男孩集中都有一个为SUE的元素,如果要调用此函数@INDEX(SUE),则得到返回索引值是2.因为集合GIRLS在集合BOYS之前,则索引函数只对集合GIRLS检索.如果想查找男孩集中的SUE,则应该使用@INDEX(BOYS,SUE),则此时得到的索引值是3.2)@IN(set_name,primitive_index_1[,primitive_index_2 …])这个函数用于判断一个集合中是否含有某个索引值.它的返回值是1(逻辑值“真”),或是0(逻辑值“假”).例3.12全集为I,B是I的一个子集,C是B的补集.sets:I/x1..x4/;B(I)/x2/;C(I)|#not#@in(B,&1):;endsets3)@wrap(index,limit)该函数返回j=index-k*limit,其中k是一个整数,取适当值保证j落在区间[1,limit]内.该函数相当于index模limit再加1.该函数在循环、多阶段计划编制中特别有用.4)@size(set_name)该函数返回集set_name的元素个数.在LINGO模型中,如果没有明确给出集的大小,则使用该函数能够使模型中的数据变化和集的大小改变更加方便.(4) 变量定界函数变量界定函数能够实现对变量取值范围的附加限制,共4种:1)@bin(x)表示限制就是x为0或1;2)@bnd(L,x,U)表示限制变量x满足;3)@free(x)表示取消对变量x的默认下界为0的限制,即x可以取任意实数;4)@gin(x)表示限制变量x为整数.在默认情况下,LINGO规定变量是非负的,即下界值为0,上界为+∞.@free取消了默认的下界为0的限制,使变量也可以取负值.@bnd用于设定一个变量的上下界,它也可以取消默认下界为0的约束.(5) 概率论中相关函数1)@pbn(p,n,x)二项分布的分布函数,当n和(或)x不是整数时,用线性插值法进行计算.2)@pcx(n,x)自由度为n的χ2分布的分布函数在x点的取值.3)@peb(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,且系统容量无限时的Erlang繁忙概率,多用于解决排队问题.4)@pel(load,x)当到达负荷(平均服务强度)为load,服务系统有x个服务台,系统容量为有限时的Erlang繁忙概率,多用于解决排队问题.5)@pfd(n,d,x)自由度为n和d的F分布的分布函数在x点的取值.6)@pfs(load,x,c)当负荷上限为load,顾客数为c,平行服务台数量为x时,顾客源有限的Poisson服务系统的等待或有返回顾客数的期望值.load是顾客数乘以平均服务时间,再除以平均返回时间.当c和(或)x不是整数时,采用线性插值进行计算.7)@phg(pop,g,n,x)超几何(Hypergeometric)分布的分布函数.pop表示产品总数,g是正品数.从所有产品中任意取出n(n≤pop)件.pop,g,n和x都可以是非整数,这时采用线性插值进行计算.8)@ppl(a,x)Poisson分布的线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从均值为a的Poisson 分布.9)@pps(a,x)均值为a的Poisson分布的分布函数在x点的取值.当x不是整数时,采用线性插值进行计算.10)@psl(x)单位正态线性损失函数,即返回max(0,z-x)的期望值,其中随机变量z服从标准正态分布.11)@psn(x)标准正态分布的分布函数在x点的取值.12)@ptd(n,x)自由度为n的t分布的分布函数在x点的取值.13)@qrand(seed)产生(0,1)区间的拟随机数.@qrand只允许在模型的数据部分使用,它将用拟随机数填满集属性.通常定义一个m×n的二维表,m表示运行实验的次数,n表示每次实验所需的随机数的个数.在行内,随机数是独立分布的;在行间,随机数是非均匀的.这些随机数是用“分层取样”的方法产生的.(6) 金融函数目前LINGO提供了两个金融函数.1)@fpa(I,n)返回如下情形的净现值:单位时段利率为I,连续n个时段支付,每个时段支付单位费用.若每个时段支付x单位的费用,则净现值可用x乘以@fpa(I,n)得到.@fpa的计算公式为.净现值就是在一定时期内为了获得一定收益,在该时期初所支付的实际费用.2)@fpl(I,n)返回如下情形的净现值:单位时段利率为I,第n个时段支付单位费用.@fpl(I,n)的计算公式为.这两个函数间的关系:.(7)输入和输出函数输入和输出函数可以把模型与外部数据(如文本文件、数据库和电子表格等)连接起来.1)@file函数该函数用于从外部数据文件中输入数据,它可以放在模型中任何地方.该函数的语法格式为@file(’’).这里是文件名,可以采用相对路径和绝对路径两种表示方式.记录结束标记(~)之间的数据文件部分称为记录.如果数据文件中没有记录结束标记,那么整个文件被看作单个记录.除了记录结束标记外,从模型外部调用的文本和数据同在模型里是一样的.下面介绍一下在数据文件中的记录结束标记连同模型中@file函数调用是如何工作的.当在模型中第一次调用@file函数时,LINGO打开数据文件,然后读取第一个记录;第二次调用@file 函数时,LINGO读取第二个记录等等.文件的最后一条记录可以没有记录结束标记,当遇到文件结束标记时,LINGO会读取最后一条记录,然后关闭文件.如果最后一条记录也有记录结束标记,那么直到LINGO 求解完成模型后关闭该文件.注意,如果有多个文件同时保持打开状态,可能就会导致一些问题,LINGO允许同时打开文件的上限数是16.在LINGO中不允许嵌套调用@file函数.2)@text函数该函数被用在数据部分,用来把求解结果输出至文本文件中.它可以输出集元素和集属性值.其语法为@text([’’])这里是文件名,可以采用相对路径和绝对路径两种表示方式.如果忽略,那么数据就被输出到标准输出设备(大多数情形都是屏幕).@text函数仅能出现在模型数据部分的一条语句的左边,右边是集名(用来输出该集的所有元素名)或集属性名(用来输出该集属性的值).用接口函数产生输出的数据定义称为输出操作.输出操作仅当求解器求解完模型后才执行,执行次序取决于其在模型中出现的先后.3)@ole函数@OLE是从EXCEL中引入或输出数据的接口函数,它是基于传输的OLE技术.OLE传输直接在内存中传输数据,并不借助于中间文件.当使用@OLE时,LINGO先装载EXCEL,再通知EXCEL装载指定的电子数据表,最后从电子数据表中获得Ranges.为了使用@OLE函数,必须有EXCEL5及其以上版本.@OLE函数可在数据部分和初始部分引入数据.@OLE可以同时读集元素和集属性,集元素最好使用文本格式,集属性最好使用数值格式.原始集每个集元素需要一个单元(cell),而对于n元的派生集每个集元素需要n个单元,这里第一行的n个单元对应派生集的第一个集元素,第二行的n个单元对应派生集的第二个集元素,依此类推.4)@ranged(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许减少的量.5)@rangeu(variable_or_row_name)为了保持最优基不变,变量的费用系数或约束行的右端项允许增加的量.6)@status()返回LINGO求解模型后的结束状态:0 --- Global Optimum(全局最优);1 --- Infeasible(不可行);2 --- Unbounded(无界);3 --- Undetermined(不确定);4 --- Feasible(可行);5 --- Infeasible or Unbounded(通常需要关闭“预处理”选项后重新求解模型,以确定模型究竟是不可行还是无界)6 --- Local Optimum(局部最优);7 --- Locally Infeasible(局部不可行,尽管可行解可能存在,但是LINGO并没有找到一个);8 --- Cutoff(目标函数的截断值被达到);9 --- Numeric Error(求解器因在某约束中遇到无定义的算术运算而停止).通常,如果返回值不是0,4或6时,那么解将不可信,几乎不能用.该函数仅被用在模型的数据部分来输出数据.7)@dual(variable_or_row_name)返回变量的判别数(检验数)或约束行的对偶(影子)价格(dual prices).(8) 辅助函数1)@if(logical_condition,true_result,false_result)@if函数将评价一个逻辑表达式logical_condition是否为真,如果为真,返回true_ result,否则返回false_result.2)@warn(’text’,logical_condition)如果逻辑条件logical_condition为真,则产生一个内容为’text’的信息框.3)@user(user_determined_arguments)该函数允许用户自己编写函数,可以用c语言等编写,返回值为用户函数计算的结果.3.5 LINGO程序出错信息在LINGO模型求解时,系统会对程序进行编译、求解或是执行于程序相关的命令,这都有可能出现一些语法或运行的错误.当出现时,系统会弹出一个出错报告框,显示错误代码,并且大致指出错误的所在位置.这些错误信息报告对于用户发现及改正程序中的错误有很大帮助.如附表3-4就出错提示信息,进行说明(没有说明的错误编号目前还没有使用).。
Lingo、lindo简介一、软件概述 (1)二、快速入门 (4)三、Mathematica函数大全--运算符及特殊符号 (11)参见网址: /一、软件概述(一)简介LINGO软件是由美国LINDO系统公司研发的主要产品。
LINGO是Linear Interactive and General Optimizer的缩写,即交互式的线性和通用优化求解器。
LINGO可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。
其特色在于内置建模语言,提供十几个内部函数,可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。
能方便与EXCEL,数据库等其他软件交换数据。
LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel 电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。
(二)LINGO的主要特点:Lingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。
Lingo 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。
1 简单的模型表示LINGO 可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。
LINGO的建模语言允许您使用汇总和下标变量以一种易懂的直观的方式来表达模型,非常类似您在使用纸和笔。
模型更加容易构建,更容易理解,因此也更容易维护。
2 方便的数据输入和输出选择LINGO 建立的模型可以直接从数据库或工作表获取资料。
同样地,LINGO 可以将求解结果直接输出到数据库或工作表。
使得您能够在您选择的应用程序中生成报告。
3 强大的求解器LINGO拥有一整套快速的,内建的求解器用来求解线性的,非线性的(球面&非球面的),二次的,二次约束的,和整数优化问题。
13
一类约束满足问题的LINGO算法
a Class of Constraint Satisafaction Problems and LINGO Algorithms
李朝阳
Li Zhaoyang
(北京工商大学数理系, 北京100037)
(Department of Mathematics and Physics,Beijing Technology and Business University, Beijing100037)
摘要: LINGO主要用来求解大型数学规划问题,而利用它求解约束满足问题尚未见到文献报道。本文以著名的“斑
马”问题为例,将这类约束满足问题转化为0-1规划求可行解的问题,利用LINGO求解,取得了满意的结果。
关键词: 约束满足问题;LINGO;斑马问题;0-1规划;可行解
中图分类号:O221.1文献标识码:A文章编号:1671-4792-(2006)7-0047-02
Abstract: LINGO is mainly used for solving large scale linear programming, but to solve a constraint
satisafaction problem with LINGO has never been reported before. This paper take a well-known problem-zebra
problem as an example, converted the constraint satisafaction problem of this class to a finding feasible
solution of binary integer programming, and the result was satisfactory.
Keywords: Constraint Satisafaction Problem;LINGO;Zebra Problem;Binary Integer Programming;Feasible
Solution
1约束满足问题
求解约束满足问题就是寻找该问题的可行解。约束满足
问题在不同的领域均有着广泛的应用,如资源配置、地图着
色等。“斑马”问题[1]是一个著名的约束满足问题: 在五
个颜色各异的房子中,居住着不同国籍的人,他们饲养的宠
物、喜欢的饮料以及拥有的汽车各不相同,且有如下信息:
①英国人住在红房子里; ②西班牙人养狗; ③居住在绿房子
里的人喝可乐; ④乌克兰人喝酒; ⑤绿房子是白色房子的右
邻; ⑥拥有老爷车的人养蜗牛; ⑦拥有福特汽车的人住在黄
房子里; ⑧住在中间房子里的人喝牛奶; ⑨挪威人住在最左
边的房子里; ⑩拥有雪佛莱汽车的人与养狐狸的人是邻居;
⑾拥有福特汽车的人与养马的人是邻居; ⑿拥有奔驰汽车的
人爱喝橙汁; ⒀日本人开大众汽车; ⒁挪威人的邻居住在蓝
房子里。问题是: 斑马属于谁?谁爱喝矿泉水?
2“斑马”问题的LINGO模型
根据问题所给的条件,将五种颜色、国籍、饮料、车及
宠物分别标号(如表一所示)。
房间的标号为1-5,且规定从左至右的顺序为1、2、3、
4、5。
定义0-1变量如下: x(i,j)表示房子j的颜色是否为i
(若是则其值为1,否则其值为0,下同),y(i,j)表示住在房
子j的人的国籍是否为i,z(i,j)表示住在房子j的人喝的饮
料是否为i,v(i,j)表示住在房子j的人拥有的车是否为i,
w(i,j)表示住在房子j的人养的宠物是否为i。显然这些变
量须满足如下两组基本约束:
这里A(i,j)分别取x(i,j)、y(i,j)、z(i,j)、v(i,j)和
w(i,j)。下面用等式和不等式表示问题所给的各个约束:
约束(1)英国人住在红房子里可表示为:
;
同理,约束(3)、(4)可分别表示为:
14
和
和