自由基及检测方法

  • 格式:doc
  • 大小:61.00 KB
  • 文档页数:8

下载文档原格式

  / 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ESR

电子顺磁共振(EPR)或称电子自旋共振(ESR)现象最早发现于1944年。它利用具有未成对电子的物质在磁场作用下吸收电磁波的能量使电子发生能级间的跃迁的特征,对顺磁性物质进行检测与分析。

自旋捕集方法是将不饱和的抗磁性化合物(自旋捕集剂)加入反应体系,与反应体系中产生的各种活性高、寿命短的自由基结合形成相对稳定的自旋加合物,以适于ESR检测其原理是利用适当的自旋捕捉剂与活泼的短寿命自由基结合,生成相对稳定的自旋加合物,可以用电子自旋共振波谱法检测自旋加合物的数量,利用自旋加合物的数量来计算原来自由基的多少。

H:

V:

ESR测自由基是怎么被检测的(细胞,组织,溶液?体内,体外?)

(MGD)2 - Fe2 +,是含有10mmol·L- 1MGD 和2mmol·L- 1FeSO4的溶液。

体外捕集:处死后取组织(血液、细胞),加入捕集剂,ESR测定

体内捕集:腹腔注射捕集剂,处死取组织(血液、细胞),ESR测定

腹腔注射几乎没有检测到自由基信号,或者信号很弱,而处死后样品加捕获剂则可以检测到自由基信号。

通用捕获剂

典型的自旋捕捉剂是亚硝基化合物或氮氧化合物,把足够量的自旋捕捉剂加入到产生自由基的体系中,自旋捕获剂就会快速地和任何出现的自由基反应,最后给出稳定的可检测的氮样氧自由基加合物。所形成的自由基加合物的ESR 谱上有被捕自由基基因给出的超精细分裂,可鉴别被捕自由基通用自旋捕获剂所形成的自由基加合物对自由基结构变化相当敏感,

ESR 技术检测O-2

O-2可以与1,2-二羟基苯-3,5-二磺酸钠(Tiron)(钛铁试剂)快速反应生成一种称之为“Tiron 半醌自由基”的自旋加合物,比较稳定,可在室温下应用电子顺磁共振波谱仪(EPR)进行检测,从而解决了生理条件下水溶液中寿命极其短暂的O-2·的定性和定量问题

ESR 技术检测·OH

DMPO作自由基捕获剂对自由基结构变化相当敏感,可以提供自由基结构的详细信息。它与·OH产生的自旋加合物的ESR谱表现出特别容易识别的特征谱线。在溶液中容易形成的自我捕集产物二聚体自由基不会干扰实验结果。

ESR 技术检测血红蛋白结合的一氧化氮

在组织或血液中,一氧化氮大多与氧或过渡金属反应生成了硝酸盐或亚硝酸盐以及一氧化氮与金属的配合物。一氧化氮与血红蛋白的结合速率常数非常高,而且能够得到有特征的ESR 波谱。利用这一性质,我们可以用血红蛋白作为一氧化氮的捕集剂检测一氧化氮自由基。但是,HbNO 极易氧化,这就限制了这种方法在富氧条件下的应用。

ESR 技术检测生物体系产生的一氧化氮

一氧化氮与含金属蛋白反应产生的亚硝酰的金属配合物,往往会抑制细胞中许多重要的酶,对细胞产生毒害作用。目前应用较多的捕集剂的有Fe2+- (DETC)2,它可与一氧化氮形成稳定的单亚硝酰-铁配合物MNIC,给出特征的ESR 波谱。但由于Fe2+-( DETC)2不溶于水,在一定程度上限制了它的使用。铁配合物捕集一氧化氮的最新进展得益于Komarov等人的研究,他们使用DETC 的衍生物MGD,与亚铁离子合成稳定的亲水性配合( MGD)2- Fe2+,该配合物易溶于水( MGD)2-Fe2+非常适合捕集检测活细胞或组织中放的一氧化氮。但

MNIC-DETC为疏水性物质,MNIC-MGD 为亲水性物质; MNIC-DETC 可附着于细胞膜甚至进入细胞,而MNIC-MGD 不能进入细胞。因此,根据其各自的特性,实验中应选取不同的捕捉剂。

分光光度法

概念:是利用物质所特有的吸收光谱来鉴别物质或测定其含量的一项技术。

特点:灵敏度高、精确度高、操作简便、快速。对于复杂的组分系统,无须分离即可检测出其中所含的微量组分的特点。

原理:利用自由基使显色剂发生颜色变化, 根据吸光度的变化值而间接测得自由基的含量1、羟基自由基

1.1 水杨酸法

Fenton 反应产生·OH, ·OH 氧化水杨酸得到2 , 3-二羟基苯甲酸, 用其在510 nm 处的吸光度值表示·OH的多少, 吸光度值与·OH的量成正比。

1.2 细胞色素C 氧化法

其反应机理为·OH能使还原型细胞色素C(浅红色)氧化成氧化型细胞色素C(浅黄色) 通过测定反应体系中吸光度的减少量(550 nm) , 间接测得·OH的含量。

1.3 脱氧核糖法

采用Fe3 +-EDTA-抗坏血酸-过氧化氢体系产生·OH。此方法中脱氧核糖作为·OH的攻击目标。脱氧核糖受·OH攻击后裂解, 在酸性、加热的条件下可与硫代巴比妥酸反应生成红色化合物。可根据在532 nm 处测定的吸光度值来间接反映·OH的含量。

1.4 DMSO

羟自由基氧化DMSO生成的甲醛与2,4-二硝基苯肼(DNPH)反应在碱性条件下生成稳定的酒红色腙类物质,其最大吸收波长为390nm,分光光度法测定其含量可间接测定羟自由基的生成量。

1.5氧化褪色分光光度法

亚甲兰(MB)、二甲基亚砜(DMSO)、溴邻苯三酚红(BPR)、茜素紫、邻二氮菲-Fe2+ Fenton 反应产生·OH, ·OH使邻二氮菲-Fe2+氧化为邻二氮菲-Fe3+, 使邻二氮菲-Fe2+在536 nm 处的最大吸收峰消失。根据536 nm 处吸光度变化判断受试物清除·OH的能力。需要注意的是, 测定时加样方法对结果有重要影响, 需先将邻二氮菲、PBS 及水混匀, 并且每管加入FeSO4后立即混匀, 否则会使局部颜色过浓, 影响结果的重复性。

2、超氧自由基

超氧自由基的分光光度法测定, 最常用的方法有细胞色素 C 的超氧自由基还原法和硝基四氮唑蓝(nitro bluetetrazolium , NBT) 还原法。

具有氧化活性的细胞色素C被O2-还原后, 形成了在波长550 nm 处有强吸收的亚铁细胞色素, 可以用于O2-的测定。但是, 细胞色素C还原法的体系中如果存在着其他还原性物质便会对结果造成干扰, 如还原性酶的干扰。

NBT 在O2-的作用下, 还原生成不溶于水、蓝色的二甲臜(Diformazan), 它的最大吸收波长560 nm , 吸光系数达10000 以上, 测定灵敏度相当高。

肾上腺素氧化法以肾上腺素氧化为肾上腺素红作为O2-生成的指标。测定310 nm处肾上腺素红的产量可间接测出反应体系的O2-含量。该法操作简便, 而且灵敏度可以设法增加, 但干扰因素较多。

在羟胺氧化法中O2-可氧化羟胺生成亚硝酸根,在酸性条件下, 亚硝酸与氨基苯磺酸和N2甲奈基二氨基乙烯反应生成红色化合物, 后者在530 nm 处有最大吸收峰,测定在530 nm 处的吸光度变化, 可以间接的反映O2-的含量, 但是该方法存在一定的缺点, 如甲萘